离散系统的零极点分析

合集下载

判断系统稳定性

判断系统稳定性

摘要现今数字信号处理理论与应用已成为一门很重要的高新科学技术学科,通过功能强大的MATLAB软件与数字信号处理理论知识相互融合在一起,既使我们对数字信号处理的理论知识能够有更加深厚的解也提高了动手能力,实践并初步掌握了MATLAB 的使用。

根据本次课题要求,通过使用MATLAB,方便了对系统函数的繁琐的计算,并且直观形象的用计算机进行模拟仿真,通过观察图,由图像的特征从而进一步的对系统进行形象的分析。

本课题中给出了系统函数,对其稳定性进行分析我们可以通过MATLAB画零极图观察极点的分布,另外还可以通过MATLAB分析系统的单位阶跃响应、单位脉冲响应、幅频相频特性的图形更加具体的对系统进行分析。

关键字:离散系统函数、MATLAB、零极点分布、系统稳定性。

一、设计原理1.设计要求(1):根据系统函数求出系统的零极点分布图并且判断系统的稳定性。

(2):求解系统的单位阶跃响应,并判断系统的稳定性。

(3):求系统的单位脉冲响应,并判断系统的稳定性(4):求出各系统频率响应,画出幅频特性和相频特性图(zp2tf,zplane,impz等)2、系统稳定性、特性分析进行系统分析时我主要利用MATLAB软件绘制出系统零极点的分布图、单位脉冲响应图、单位阶跃响应图等。

采用MATLAB 软件进行设计时我调用了软件本身的一些函数来对课题进行绘图和分析。

诸如zplane、impz、stepz、freqz等。

对系统函数的零极图而言:极点在单位圆内,则该系统稳定,极点在单位圆外,则该系统为非稳定系统。

当极点处于单位圆内,系统的冲激响应曲线随着频率的增大而收敛;当极点处于单位圆上,系统的冲激响应曲线为等幅振荡;当极点处于单位圆外,系统的冲激响应曲线随着频率的增大而发散。

系统的单位阶跃响应若为有界的则系统为稳定系统。

由以上的判据配合图形对系统的稳定性进行分析,达到我们的课程要求。

系统函数H(z)的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。

数字信号处理实验4

数字信号处理实验4

实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。

二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。

三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMzN a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。

如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。

格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。

其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。

zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。

②roots 函数。

用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。

2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。

1077《数字信号处理》西南大学网教19秋作业答案

1077《数字信号处理》西南大学网教19秋作业答案

1077 20192判断题1、应用DFT分析无限长信号的频谱时,必然会产生误差。

. A.√. B.×2、离散周期信号的DFS中,频域的周期N对应数字频率为2π 。

. A.√. B.×3、实数序列的DFT为共轭对称的序列。

. A.√. B.×4、一个域的周期性,对应另一域的离散性。

. A.√. B.×5、单位圆上的零点,对应幅频特性的零值。

. A.√. B.×6、LP表示的滤波器类型是低通滤波器。

. A.√. B.×7、圆周卷积和线卷积相等的条件是圆周卷积的点数不小于线性卷积的长度。

. A.√. B.×8、单位脉冲序列的DTFT结果为1。

. A.√. B.×9、x(n)与h(n)的卷积的Z变换为X(Z)H(Z)。

. A.√. B.×10、所谓全通系统,就是其频率响应的幅度在任意需要考虑的频率点处均为常数。

. A.√. B.×11、FIR滤波器由于无原点外的极点,故相比IIR阶次更高。

. A.√. B.×12、对连续信号作频谱分析,设信号的采样频率为10KHz,频域的分辨能力为不大于10Hz,则对应DFS点数为1000 点。

. A.√. B.×13、靠近单位圆上的极点,对应幅频特性的极大值。

. A.√. B.×14、线性相位可分为第一类与第二类线性相位两种情况。

. A.√. B.×15、为满足线性相位要求,窗函数本身也应满足相应的对称性。

. A.√. B.×16、冲激响应不变法由于存在混叠,不能设计高通、带通滤波器。

. A.√. B.×17、FIR滤波器的结构往往是非递归型的。

. A.√. B.×18、单位延迟单元对应的硬件是存储器,其数目影响系统的复杂度。

. A.√. B.×19、时域加窗,频域会产生频谱泄漏。

. A.√. B.×20、从s域到z域映射,虚轴和单位圆、左半平面与单位圆内部,都必须对应。

数字信号处理 实验 离散系统的Z域分析

数字信号处理 实验 离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析 学号: 姓名:评语: 成绩:一、实验目的1、掌握离散序列z 变换的计算方法。

2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。

3、掌握利用MATLAB 进行z 反变换的计算方法。

二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:∑∞-∞=-=n nzn x Z X )()(。

在MA TLAB 中可以利用符号表达式计算一个因果序列的z 变换。

其命令格式为: syms n;f=(1/2)^n+(1/3)^n; ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )*h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n nzn h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若∞<∑∞-∞=n n h |)(|,则系统稳定。

由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。

因为∑∞-∞=-=n nzn h z H )()(,若z =1时H (z )收敛,即∞<=∑∞-∞==n z n h z H |)(||)(1,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。

因此因果稳定系统应满足的条件为:1,||<∞≤<ααz ,即系统函数H (z )的所有极点全部落在z 平面的单位圆之内。

3、MA TLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t)、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的)。

2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10-5 s . 4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t)=sint 的周期T 0= 2π ,若对f(t)以fs=1Hz 进行取样,所得离散序列f(k)=sin(k) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0.1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) 。

9、 f (k) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

西安交通大学数字信号处理实验报告

西安交通大学数字信号处理实验报告

数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。

第七节 离散系统的稳定性分析

第七节 离散系统的稳定性分析

离散系统如上图所示,则
E(z) R(z) 1 Go (z)
若闭环系统稳定,则由终值定理
ess
lim e(k)
k
lim (z
z 1
1) E ( z )
lim (z
z 1
1) R(z) 1 Go (z)
将离散系统仿照连续系统分为0、1、2型:
若系统开环脉冲传递函数G0 (z)中含有 i(i=0,1,2)个|z|=1的极点,则系统称为i型
第七节 离散系统的稳定性分析
如上节所讲,采样会破坏系统的稳定性,所 以在设计采样系统时最先考虑的是稳定性。 对采样系统稳定性分析主要建立在Z变换的 基础上。
连续系统的稳定性
连续系统稳定
所有特征根均具有负实部
方法:劳斯判据,Hurwitz判据及奈氏判据。
在分析采样系统时,可以利用Z变换与拉氏变 换数学上的关系,找到Z平面与S平面之间的周 期映射关系,从而利用原有的各种判据来分析
0
2型
0
2 r(t)=t*1(t)时
静态速度误差系数
R(z)
Tz (z 1)2
, ess
lim [(z
z1
1) 1 1 Go(z)
Tz (z 1)2
]
T
lim z1 (z
1 1)Go ( z)
若定义KV
1 T
lim (z 1)Go (z)
z 1
,则ess
1 Kv
Kv
ess
0型
0
1型 2型
Bode Diagrams
50 40 30 20 10
Phase (deg); Magnitude (dB)
-100 -120 -140 -160
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
axis([-5,45,-700000,500000]);
3.分析各系统的稳定性与系统零极点位置的关系。
根据Z域条件:离散系统稳定的充要条件为系统函数H(Z)的所有极点位于Z平面的单位圆内。
六个图都没有零点,图1,2,4的极点都在单位圆内,所以系统1,2,4是稳定的,图3,5,6的极点
都在单位圆外,所以系统3,5,6是不稳定的。
My1.m
a=[1 -1];
b=[1];
impz(b,a);
axis([-1,15,0,1.2]);
(2)
My2.m
a=[1 -0.5]; b=[1]; impz(b,a);
axis([-1,15,0,1.2]);
(3)
My3.m
a=[1 -1.5]; b=[1]; impz(b,a);
axis([-5,50,0,800000]);
时域条件:离散系统稳定的充要条件为 ,即系统单位响应绝对求和。
Z域条件:离散系统稳定的充要条件为系统函数H(Z)的所有极点位于Z平面的单位圆内。
2、零极点分布与系统单位响应时域特性的关系
离散系统单位响应h(n)的时域特性完全由系统函数H(z)的极点位置决定。H(z)的每一个极点将决定h(k)的一项时间序列。显然,H(z)的极点位置不同,则h(n)的时域特性也完全不同。
a=[1 –1];
b=[1];impz(b,来自)axis([-5,10,0,1.2])
3分析各系统的稳定性与系统零极点位置的关系。
五,实验过程原始记录(数据,图表,计算等)
1.写出上面6图对应系统的系统函数。
(1)
(2)
(3)
(4)
(5)
(6)
2.编辑各系统函数的相应的.m文件,输出冲激响应波形;
(1)
(4)
My4.m
a=[1 -0.25 0.5]; b=[1]; impz(b,a);
axis([-5,30,-1,1.2]);
(5)
My5.m
a=[1 -2 1.25]; b=[1]; impz(b,a);
axis([-5,150,-1200000,1200000]);
(6)
My6.m
a=[1 -2 2]; b=[1]; impz(b,a);
六,实验结果分析或总结
通过本次实验,我学会使用MATLAB进行离散系统的Z域分析,进一步掌握系统零极点分布与系统稳定性的关系。而且编辑各系统函数的相应的.m文件,输出冲激响应波形。已经达到了实验目的。
数字信号处理实验报告
实验室: 实验日期: 年 月 日
院(系)
年级、专业、班
姓名
成绩
课程
名称
数字信号处理
实验项目
名称
离散系统的零极点分析
指导
教师
一 ,实验目的
1、学会使用MATLAB进行离散系统的Z域分析。
2、进一步掌握系统零极点分布与系统稳定性的关系
二,实验原理
1、离散系统的零极点分布与系统稳定性
对任意有界的输入序列f(n),若系统产生的零状态响应y(n)也是有界的,则称该离散系统为稳定系统,它可以等效为下列条件:
3、在MATLAB中,利用函数impz可绘出对应H(z)的单位响应序列h(n)的波形。
三,使用仪器,材料
微型计算机,MATLAB7.0开发环境
四,实验内容与步骤
1、写出上面6图对应系统的系统函数;
2编辑各系统函数的相应的.m文件,输出冲激响应波形;
例:对图6-1所示的系统,系统函数为H(z)= ,即系统极点为单位园上实极点,则绘制单位响应时域波形的MATLAB命令如下:
相关文档
最新文档