变压器直流电阻试验常见问题

合集下载

测量变压器绕组直流电阻中发现问题的分析及处理

测量变压器绕组直流电阻中发现问题的分析及处理
电 阻不平衡 率超标现 象 。
12 连接 不紧 . 测 试实践 表明 ,引 线与套 管导杆 或分接开 关之
间连接不 紧都可 能导致变 压器直 流电阻不平 衡率超 标。1 )某 S ~ 1 0 /0型配 电变 压器,其直流 电 儿 0 01
阻如表 1 所示 。
家标准 规定限 额 。有时 即使 采用 合格的 导线,但 由
于导线 截面尺 寸偏差不 同,也 可以导 致绕组直 流 电 阻不平衡 率超标 。 如用三 盘 31 例 .5×l 的扁铜 线分 0 别绕制 某台变压 器的三 相绕组 ,导线铜 材的 电阻率 很 好, , 00 7 4 m2 截 面尺寸都 合格,只 R .12 1 m / = Q m, 是其 中一盘的尺 寸是最 大负偏 差: 窄边a 一.3 宽 为 00 ,
李柱峰
L u・ n I Zh - g f e
( 延边大学附属 医院,延吉 1 3 0 ) 3 0 0

要: 《 在 电力设备预防性试验规程 》 中测量绕组直流 电阻这~项 目仅次于色谱分析排在第二位, 可 见其重要性 , 多年来的实践证明 , 测量变压器绕组的直流 电阻能有效检查绕组焊接质量, 分接 开关接触是否 良好 , 关联支路是否正确、 间有无短路等缺陷。 层 正常的变 压器三相直流电阻基 本平衡 , 差值最大不超过三项平均值的 2 或 4 % %。然而在实际测试过程 中经常会遇到一些特
表 2变压器直流 电阻
分接位置 直流电阻 ( Q)
Ao m I V V 0 1 3 6 0. 0 38 Bm o 035 .8 036 .4 Cm o 037 1 037 .0 2 03 l .1 2 8
. 化 8
02 6Q,B m为 02 1Q,C m为 03 .8 o .8 o .5Q,不平 衡

变压器直流电阻不平衡的常见故障分析

变压器直流电阻不平衡的常见故障分析

变压器直流电阻不平衡的常见故障分析摘要:变压器是发电厂最常见的电力设备之一,变压器的好坏可直接影响机组的安全运行,而变压器直流电阻作为变压器在出厂交接及预防试验的重点工作之一,对变压器发生故障后的检查有着至关重要的作用。

因此,本文主要针对变压器直流电阻不平衡的常见故障进行分析,探讨了故障发展的原因,并根据原因提出了相应的处理措施,仅供参考。

关键词:变压器;直流电阻;故障;处理变压器直流电阻不平衡在一定程度上会造成变压器绕组判断故障的正确性,而且造成的变压器直流电阻不平衡的因素也比较多,不过最为常见的有人为因素、绕组结构因素、材质因素以及变压器自身因素。

与此同时,由于变压器直流电阻作为变压器出厂交接及预防等方面的试验工作的一部分,其针对变压器出现故障后的原因分析有着重要的意义,所以本文从变压器主流电阻试验数据出现问题的原因分析入手,以便提出有效的处理措施。

一、无载调压变压器直流电阻不平衡故障原因分析无载调压变压器内部的线路比较复杂,其中变压器绕组,通常都是从抽头出发,引致分接开关触头接点,继而再从分接开关触头出发连接相应的档位,形成星形连接绕组。

所以在此过程中一旦出现故障,那么该过程中的每一环节都有可能发生故障问题。

如表一中的前三个档位的不平衡试验数据,我们可以发现都是因为直流电阻的AB数据比较偏大,而相应的BC和CA的数据相差不大[1]。

因此,我们可以判断得出三相中故障主要出现在A相,所以针对A相的相关的绕组、抽头、分接开关以及相应的一些部位检查,得到以下几点故障原因:首先,检查分接开关动静触头接点。

在对分接开关动静触头的检查时,发现接触位置存在接触不良问题,导致直流电阻数据出现问题。

为确保检查的正确性,技术人员继续检查。

其次,检查触头相应的接引线及焊接位置。

如果在检查时发现,抽头的焊接部位接触不良时,此时的变压器直流电阻的多项数据都会出现异常。

第三,检查绕组。

技术人员在检查绕组的过程中,针对绕组的匝层和层间是否存在变形或短路问题实施检测,如果出现变形或者短路问题,直流电阻数据会出现异常,不过这种情况造成的故障发生的概率与实际故障发生内容会保持一致,但是发生的概率却比较低[2]。

变压器线圈直流电阻测量及其结果分析

变压器线圈直流电阻测量及其结果分析

变压器线圈直流电阻测量及其结果分析[摘要]:本文主要分析探讨变压器直流电阻的多种测量方法以及注明相关的注意事项,之后对测量得到的电阻进行分析,观察理论值与实际值之间的差距,最后详细的对电路中出现的一些小故障进行分析,并提出一些相关问题的解决方法。

[关键词]:变压器直流电阻电桥法规范要求结果分析一、变压器线圈直流电阻测量的方法1.选用的测量方法到目前为止,有电压降法和电桥法能够对变压器线圈的直流电阻进行测量,而在实验室最常用的是电桥法,这是因为电压降法有一定的局限性,不能十分精确地测出变压器线圈的直流电阻。

由于变压器中的每相绕组相当于电感与定值电阻相串联,电感的阻值在短时间内难以达到稳定,所以最后得到的阻值并不准确。

为什么电感的阻值会发生变化呢?在通电后,电感中的电流逐渐增大,由楞次定律可知,电感中产生了反向阻碍电流,但这并不能改变电感中电流增大的趋势,经过一段时间后,电流会达到一个稳定值,此时电感电压也会达到稳定值,到了这个时候才能利用测量数据进行计算,最后可以得到比较精确的变压器线圈直流电阻。

这种方式明显效率太低,不符合当今高效率的理念,因此我们常常采用另外一种测量方式――电桥法,电桥法可分为单臂电桥法和双臂电桥法,利用相关设备我们可以直接读数得到变压器直流阻值(线圈电阻值等于测量的臂电阻值乘以倍率数)。

除了以上两种方法以外,还可以采用三相绕组同时加压法,该方法可以说是电压降法的升级版,原理是根据楞次定律,使电感中最终产生的合磁通量为零,也就是说将各相电流产生的磁通量相互抵消,使之不产生阻碍电流,因此可以减少直流电阻的测量时间,能够提高测量效率。

具体操作为:对三相绕组同时加电压,其中各相绕组中的电流逐渐增大,根据右手定则,三相电流各个铁芯产生的磁通作用相互抵消,最后几乎不产生感应电流,所以该方法能够在短时间获得稳定的电流,大大缩短了操作时间。

2.测量相关注意的事项就电桥法来说,单线桥适用于测量1欧以上阻值的电阻,若测量的阻值低于1欧则会影响精确度,这是因为使用单线桥法测量时,它测出的阻值是有误差的,其中包含了实测电阻两边的导线的电阻,当被测的电阻越小,对最后得出的阻值影响越大。

变压器直流电阻测试标准

变压器直流电阻测试标准

变压器直流电阻测试标准变压器是电力系统中常见的重要设备,其性能稳定与否直接关系到电力系统的安全运行。

而变压器的直流电阻测试是评定变压器绝缘状态和内部连接情况的重要手段之一。

本文将介绍变压器直流电阻测试的标准及相关注意事项。

一、测试标准。

1. 测试仪器及设备。

直流电阻测试仪是进行变压器直流电阻测试的必备设备,其性能应符合国家标准,并且在使用前需要进行校准。

2. 测试方法。

在进行直流电阻测试时,需要先将变压器的绕组接地,然后使用测试仪器对各个绕组进行测试,记录测试数值并进行比对分析。

3. 测试数值。

变压器直流电阻测试的数值应符合国家标准规定的范围,一般来说,各个绕组之间的电阻值应基本一致,若出现明显偏差则需要进一步检查。

二、注意事项。

1. 测试前的准备。

在进行直流电阻测试之前,需要对测试仪器进行检查和校准,确保其性能稳定可靠。

同时,需要对变压器进行必要的准备工作,确保测试的准确性。

2. 测试过程中的注意事项。

在测试过程中,需要保持测试仪器与被测变压器的连接良好,避免因连接不良导致测试结果不准确。

同时,在测试时需要注意安全,避免因操作不当导致事故发生。

3. 测试结果的分析。

在进行直流电阻测试后,需要对测试结果进行认真分析,若发现测试数值与标准范围有明显偏差,需要及时进行故障排查和处理,确保变压器的安全运行。

三、总结。

变压器直流电阻测试是评定变压器绝缘状态和内部连接情况的重要手段,通过严格按照测试标准进行测试,并注意事项的遵守,可以确保测试结果的准确性和可靠性,为变压器的安全运行提供保障。

在进行变压器直流电阻测试时,需要严格按照标准操作,并注意事项的遵守,确保测试结果的准确性和可靠性。

同时,对于测试结果的分析和处理也是非常重要的,只有及时发现并处理问题,才能保证变压器的安全运行。

希望本文介绍的变压器直流电阻测试标准及相关注意事项能够对大家有所帮助。

变压器直流电阻几种异常故障的分析与处理

变压器直流电阻几种异常故障的分析与处理

变压器直流电阻几种异常故障的分析与处理摘要:通过对三起有载调压变压器直流电阻数据异常故障分析,现场通过简单的方法进行处理,使变压器直流电阻数据恢复正常。

关键词:变压器;有载调压;分接开关;直流电阻1、引言变压器绕组的直流电阻是反映变压器绕组有无故障的一个关键性指标,而变压器绕组直流电阻的测试是变压器众多试验项目中一个非常重要的试验项目,也是出现故障时分析故障原因以及发生故障的部位经常使用的试验方法,这是因为变压器直流电阻值及其不平衡率对判定变压器绕组(如导电杆与引线的连接、分接开关及绕组)的故障具有重要意义。

在现场进行变压器绕组直流电阻测试时,往往会出现直流电阻变化率及不平衡率超《DL/T 596 2021电力设备预防性试验规程》中的要求,其中一部分原因是因为变压器绕组系统内部存在异常(如匝间短路、层间短路、引线和绕组焊接质量不良等原因),如异常发生在这些部位,便预示着变压器绕组已经受到损伤,继续运行则会造成变压器绕组损坏等严重后果;而另一部分原因是因为变压器绕组内部某些接触部位接触不良或接触面不清洁导致,而这些导致直流电阻数据异常的原因往往经过现场简单处理便能恢复正常。

这些异常往往不会对变压器运行造成影响,但异常的数据可能会造成试验人员错误判断变压器的内部状况,导致增大工作量,浪费人力、物力进行故障排查甚至对变压器进行吊芯、吊罩处理等情况的出现。

2、变压器直流电阻数据异常的原因直流电阻试验可以反映出变压器载流部分有无缺陷、绕组有无短路及分接开关分接头各分接位置、切换开关、极性转换开关引线与套管接触是否良好等缺陷。

导致变压器直流电阻不平衡的因素众多,但总的来说有如下几个方面:(1)变压器套管中的导电杆和内部引线接触不良;(2)分接开关接触不良。

由于分接开关内部弹簧压力不足、触头不清洁、电镀脱落等原因,造成部分分接头电阻增大,从而导致三相直流电阻不平衡;(3)大容量变压器的低压绕组采用双螺旋或四螺旋式,由于螺旋间导线互移,引起每相绕组间的电阻不平衡;(4)焊接不良。

变压器直流电阻三相同时测量须注意的问题

变压器直流电阻三相同时测量须注意的问题

变压器直流电阻三相同时测量须注意的问题摘要:测量变压器绕组直流电阻是发现其故障的有效手段,三相同时测量变压器绕组直流电阻,缩短了试验时间,提高了工作效率。

本文通过测试实例,分析了测量原理,提出变压器直流电阻三相同时测量须注意的问题。

关键词:变压器直流电阻三相测试装置中图分类号:TM934.12 文献标识码:A文章编号:Abstract: The measurement of transformer winding dc resistance is found, the fault of the effective means, three-phase simultaneous measurement of transformer winding dc resistance, and the shorter the test time and increase the work efficiency. This article through the test examples, this paper analyzes the principle of measurement, this paper puts forward three simultaneous measurement of dc resistance transformer issues must be noticed.Keywords: transformer, dc resistance, three-phase test, devices变压器绕组直流电阻测试是检测变压器绕组故障的重要手段,对发现变压器绕组匝间短路,绕组断股及各引出线接触不良等故障有很高的灵敏度,所以在专业规程中,对此项目都有严格的要求,如变压器出厂试验、交接试验、预防性试验时都必须测量。

在现场试验工作中,采用的测试方法有:双臂电桥法、单相直流压降法及三相同时测量的直流压降测试法。

变压器绕组直流电阻不平衡的原因分析及处理措施

变压器绕组直流电阻不平衡的原因分析及处理措施

变压器绕组直流电阻不平衡的原因分析及处理措施摘要:变压器绕组直流电阻的测量是变压器试验中的一个重要试验项目。

直流电阻试验,可以检查出绕组内部导线的焊接质量,引线与导线的焊接质量,分接开关、引线、与套管等载流部件的接触是否良好,三相电阻是否平衡等。

直流电阻不平衡会导致变压器相间或相对地间产生循环电流,增加变压器的附加损耗,甚至导致变压器的不对称运行,引发电力事故。

本文主要分析变压器绕组直流电阻不平衡的原因分析及处理措施。

关键词:变压器绕组;直流电阻不平衡的原因分析;处理措施引言在变压器检修和预防试验过程中,如果测量变压器三相绕组直流电阻不平衡率超过规定标准,维修试验者应引起高度重视,根据实验要求与实际相结合,对直流电阻进行分段综合考虑。

判断故障点,变压器和变压器高压套管应防止军帽潜伏性金属热,引起设备故障或事故。

1、变压器绕组直流电阻不平衡的原因分析根据试验数据,初步判断1至4档直流电阻值不平衡系数普遍偏大,4档至7档各档位直流电阻值不平衡系数变小均合格。

进一步分析1至4档电阻的极差基本保持一致,AO、BO数据基本大小平衡,可以判断有载开关状态良好,中性点线圈及A、B两相绕组正常,但C相存在问题。

接着,我们对试验接线、接线桩头连接处进行反复检查、打磨,发现试验接线正确,接线桩头与套管连接紧密,表面没有油膜等污物,打磨后测量,其测量值与前次测量值基本一致,可以基本排除由测量接线错误、引线电阻及其接线电阻过大而引起的C相直流电阻偏大这个可能性,初步怀疑有载开关可能存在问题。

接下来,为了确定变压器绕组内部是否存在故障,我们通过油色谱组分分析试验来检查确定。

变压器绝缘材料主要是绝缘油和绝缘纸,变压器在故障下产生的气体主要是来源于油和纸的热裂分解,气相色谱分析就是根据故障时产生的气体在绝缘油中含量的多少,判断其故障类型。

由于变压器油在高温下会分解出甲烷、乙烷、乙烯,乙炔更是要在上千度温度下才会生成,根据油样结果,乙炔数值为0,其他各气体成分均没有超标,也就是说变压器内部没有出现短路而引起的发热现象,那么由线圈匝间、层间、相间短路所引起的变压器内部故障可以基本排除。

变压器绕组直流电阻不平衡的原因分析及处理措施

变压器绕组直流电阻不平衡的原因分析及处理措施

变压器绕组直流电阻不平衡的原因分析及处理措施发表时间:2020-07-30T16:11:01.557Z 来源:《当代电力文化》2020年第7期作者:姜治国[导读] 变压器直流电阻的测试是变压器交接和预试试验的重要项目之一,通过此项试验摘要:变压器直流电阻的测试是变压器交接和预试试验的重要项目之一,通过此项试验,可对变压器绕组接头焊接是否存在质量问题,绕组有无层间、匝间短路,引出线有无断路,多股导线并绕的绕组是否有断股,分接开关的各位置接触是否良好,分接开关的位置是否符合变压器实际运行状况等问题进行检查。

关键词:变压器;绕组直流电阻不平衡;处理措施引言变压器绕组直流电阻试验是查找变压器故障的主要手段,直流电阻不平衡会导致变压器相间或相对地间产生循环电流,增加变压器的附加损耗,甚至导致变压器的不对称运行,可能导致变压器烧毁,引发电力事故。

中国变压器技术标准《油浸式电力变压器技术参数和要求》(GB/T6451—2015)和《干式电力变压器技术参数和要求》(GB/T10228—2015)对变压器绕组直流电阻的不平衡率作了要求,明确规定了绕组直流电阻不平衡率的线间差和相间差的偏差限值。

1变压器绕组直流电阻不平衡原因分析 1.1试验方法及测量方式不合理在试验过程中试验方法及测量方式主要涉及仪器的选择不当、试验接线错误和残余电荷的影响等。

介于这些技术上的问题,在预试时采取更换其他合格的试验仪器,详细检查试验接线确保其正确,在试验开始前对被试品充分放电等相关措施,在确保排除试验方法和测量方式不存在问题的前提下重新进行试验,确保所测试验数据的准确性和可靠性。

1.2变压器自身存在缺陷(1)由于制造工艺不良,引线和绕组焊接处接触不良,造成电阻偏大,从而导致绕组引线的长短、截面尺寸等的偏差进而影响各相绕组直流电阻不平衡。

(2)由于变压器运行时间较长导致绕组与套管导电杆连接处存在氧化层或紧固螺丝松动;套管导电杆与外引线接触不良;变压器绕组断股或变形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器直流电阻试验常见问题
直流电阻测试仪作为一种基本测试仪器应用范围极为广泛。

一般应用在电力系统的变压器、互感器、各种线圈(断路器分合闸线圈的精确测量)等诸多设备。

变压器绕组(绕组连同套管)的直流电阻测试是变压器在交接、大修和分接开关更换及检修后,必不可少的基本试验项目,也是故障后的重要试验。

QJ44 双臂电桥
这类电桥的测量电流为毫安级,测试过程较慢,而且精度也较低,测试耗时长。

具体使用方法大家可以自行在网上寻找,这里就不在介绍了。

优点就是携带方便,价格便宜。

数字式单通道直流电阻测试仪
一般测试线均为仪器配套自带,理论上两测试线短接时电阻值为零。

测试速度与精度QJ44型电桥相比较大大提高,接线简单,测试时需要选择相应的电流档位来提高测试精度。

厂家一般会给仪器配备自检电阻
三通道直流电阻测试仪
测试线仪器配套带,配备自检电阻。

YN接线绕组可同时测量三相直流电阻,测量同时可以直接计算出三相不平衡率,测试速度得到极大提升。

部分厂家三通道直流电阻测试仪还有低压助磁功能,测量超大容量的变压器时将大大缩短测试时间。

PS:我不是卖仪器的对仪器不做过多介绍下面正式进入正文
测试目的
1、检查绕组接头的焊接质量和绕组有无匝间短路;
2、有载(无载)分接开关的各个位置接触是否良好以及分接开关实际位置是否与指示位置相符;
3、引出线有无断裂;
4、对于三相电力变压器通过对试验结果计算其三相直流电阻不平衡率,来判别其是否符合设计或者相关标准
测试方法(原理)
1、电流电压法(电压降法)
其原理是在被试绕组中施加直流电流,绕组两端产生电压降,测量其绕组两端的电流及电压降,根据欧姆定律即可计算出其直流电阻。

该方法主要缺点是需要较长较长时间才能得出测试值,因为充电时间一般需要十几分钟甚至几十分钟。

2、平衡电桥法
测量原理为电桥平衡原理,分为单臂电桥和双臂电桥。

单臂电桥常用与测量1Ω以上的电阻,被测电阻越小,误差越大。

引线和接触电阻会带来一定的误差。

双臂电桥能够消除引线和接触电阻带来的误差,适合测量准确度要求较高的小电阻。

其工作原理在以后文章会加以分析解释,本文不做过多介绍
3、全压恒流充电法
恒压电压源和恒流源及控制回路构成,能大大减少缩短充电时间,准确迅速测量绕组直流电阻,数字式直流电阻测试仪内部就装设了恒压恒流源。

4、低压助磁法
主要针对低压绕组直流电阻,一般D接线测试速度最慢。

其原理就是加深铁芯饱和程度。

除了一些仪器自带助磁测量法,内部自动切换。

一般需要现场试验人员自行接线。

注意事项:
1、测试中要记录当时试验温度(干式变压器),对于油浸式变压器要记录其油面温度及绕组温度。

详细方法这里不做太多说明。

2、尽可能使用出厂所带测试线,在以往测试过程中发现使用非仪器自带测试线会对测试结果产生整体偏差在于出厂及历年试验结果对比时会产生较大误差
3、在测试过程中一定要将测试线夹子固定牢靠,其一大型变压器在测试时施加电流较大,如果接线不够牢靠,容易产生电弧;其二如果测试过程中夹子掉落极容易损坏仪器(高电压)。

4、部分仪器在更换测试相别或者档位时需等待放电结束后方可更换相别或档位
5、如果接线巴掌或者接线柱涂抹有导电膏应在测试前将导电膏清理干净
6、测试过程中严禁触摸被测试绕组和其他绕组。

7、测试过程中仪器一定要可靠接地,如果采用临时发电机供电,尽量避免和其他大功率电器共用
测试标准
具体标准参考GB50150-2016变压器篇。

1600KVA及以下三相变压器,各绕组互相差别不应大于4%;无中性点引出的绕组,线间各绕组互相差别不应大于2%。

1600KVA以上三相变压器,各绕组互相差别不应大于2%;无中性点引出的绕组,线间各绕组互相差别不应大于1%。

与同温下产品出厂实测值比较,相应变化不应大于2%。

换算公式如下:
R2=R1*T+t2/T+t1
有关变压器直流电阻计算将在下篇文章与大家进行分享。

故障处理
根据笔者经验将在现场测试时一般会遇到的问题总结如下:
1、三相不平衡率(各绕组相间或者线间差别)超标,表现为任意相别直流电阻值呈现有规律偏大(多档位)
2、测试(充电)时间太久无数据
3、测试结果整体与上次(出厂或历年)试验比较偏差较大
4、三相不平衡率(各绕组相间或者线间差别)超标,表现为任意相别直流电阻值呈现无规律突变
5、某相与出厂或者历年数据比较整体偏小
处理方法:
对于问题“1”
1、重新检查接线,可以更换任意两相进行对比测试,来确定是否与测试线有关
2、在测试值没有稳定时进行计算会有一定的误差,考虑充电时间是否足够
3、考虑计算方法,必要时采用Excel表格公式进行自动计算。

4、在排除人机误差情况后;考虑套管引出线与将军帽连接处是否氧化。

在笔者以往测试现场发现某厂变压器存在这种通病,这种情况一般发生在潮湿的南方。

对于问题“2”
1、确定测试电流是否选择合适,如测试低压绕组时候施加电流较小,充电时间可能有十几分钟。

2、测试回路是否开路,个别仪器有自带检测开路功能
3、考虑仪器自身问题,用仪器自带标准检测电阻检测仪器是否良好。

4、对于高压侧装有熔断器或者负荷开关的箱式变压器,检查熔断器与负荷开关关合情况。

5、最坏的情况引出线没有焊接,在某供电单位曾发生过类似情况。

对于问题“3”
1、现场测试数据未经换算直接与出厂或者历年数据比较
2、换算后仍然偏大,考虑分接开关问题,可对分接开关进行试验
3、焊接不良,多股并联绕组,其中某一股焊接不良一般电阻偏大
对于问题“4”
1、排除人为原因与仪器问题后,这种情况一般考虑为分接开关问题
2、笔者发现很多变压器投运后分接开关可能几年都不会动一次,这时分接开关就有可能不清洁或者有油膜,这时可将分接开关来回进行多次切换,去除表面污渍油膜对于问题“5”
1、排除人为原因与仪器问题后,这种情况一般考虑为匝间短路
笔者水平有限,可能有瑕疵,欢迎大家多多指点。

相关文档
最新文档