浙教版七年级下册数学期末试卷

合集下载

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试题及答案

浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。

浙教版数学七年级下册期末考试试题附答案

浙教版数学七年级下册期末考试试题附答案

浙教版数学七年级下册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分。

)1. 3-2等于()A. -9B. -6C. 9D. 192.下列调查中,最适合采用全面调查的是()A. 对全国中学生睡眠时间的调查B. 对我市各居民日平均用水量的调查C. 对光明中学七(1)班学生身高的调查D. 对某批次灯泡使用寿命的调查3.化简:(﹣2)2003+(﹣2)2002所得的结果为()A. 22002B. ﹣22002C. ﹣22003D. 24.下列运算正确的是()A. a5+a2=a7B. (−a6)3=a18C. a0÷a−3=a3D. a6−a2=a45.下面式子从左边到右边的变形是因式分解的是()A. x2﹣x﹣2=x(x﹣1)﹣2B. x2﹣4x+4=(x﹣2)2C. (x+1)(x﹣1)=x2﹣1D. x﹣1=x(1﹣1x)6.如图,己知AB∥CD,DB⊥BC,∠1=40°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°7.已知方程组{x+y=3mx−y=5的解是方程x﹣y=1的一个解,则m的值是()A. 1B. 2C. 3D. 48.如图,若△DEF是由△ABC经过平移后得到,已知A,D之间的距离为1,CE=2,则EF是()A. 1B. 2C. 3D. 49.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,求原来每天装配机器的台数x,下列所列方程中正确的是()A. 6x +242x=3 B. 6x+24x+2=3 C. 6x+302x=3 D. 30x+302x=310.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.己知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为( )A. {y−3x=150.2(x+y)=1280 B. {y−3x=150.8(x+y)=1280C. {3x−y=150.2(x+y)=1280 D. {3x−y=150.8(x+y)=1280二、填空题(本大题共6小题,每小题4分,共24分。

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案(完整版)(必考题)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

【浙教版】七年级数学下期末试卷含答案

【浙教版】七年级数学下期末试卷含答案

一、选择题1.七年级(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当李校长走到门口时听到有人在发言,那么发言人是教师或学生的概率为( ) A .1925 B .310 C .4750 D .122.下列事件中,是必然事件的是( )A .任意掷一枚质地均匀的骰子,掷出的点数是奇数B .操场上小明抛出的篮球会下落C .车辆随机到达一个路口,刚好遇到红灯D .明天气温高达30C ︒,一定能见到明媚的阳光3.“用长分别为5cm 、12cm 、1cm 的三条线段可以围成直角三角形”这一事件是( ) A .必然事件 B .不可能事件 C .随机事件 D .以上都不是 4.下列选项中的图标,属于轴对称图形的是( )A .B .C .D . 5.下列命题正确的是( )A .全等三角形的对应边相等B .面积相等的两个三角形全等C .两个全等三角形一定成轴对称D .所有等腰三角形都只有一条对称轴 6.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 7.如图,90ACB ∠=︒,AC BC =,AE CE ⊥于点E ,BD CE ⊥于点D ,5AE cm =,2BD cm =,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm 8.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A.15︒B.20︒C.30D.45︒9.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠B=∠D B.BE=DF C.AD=CB D.AD∥BC10.用一水管向图中容器内持续注水,若单位时间内注入的水量保持不变,则在注满容器的过程中,容器内水面升高的速度()A.保持不变B.越来越慢C.越来越快D.快慢交替变化11.如图,已知CB∥DF,则下列结论成立的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠3 D.∠1+∠2=180º12.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A .21B .22C .23D .24二、填空题13.一副没有大小王的扑克,共 52 张,从中任意抽取一张牌恰好是红桃的机会为____. 14.一个布袋内只装有1个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是________. 15.如图,将一张长方形纸片分别沿着EP 、FP 对折,使点A 落在点A ′,点B 落在点B ′,若点P ,A ′,B ′在同一直线上,则两条折痕的夹角∠EPF 的度数为_____.16.如图,在三角形纸片中,8,5,6AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则AED ∆的周长等于_________________cm .17.在非直角三角形ABC 中,∠A =50°,高BD 和高CE 所在的直线相交于点H ,则∠BHC =___.18.在烧开水时,水温达到100℃就会沸腾,下表是某同学做“观察水的沸腾”实验时所记录的两个变量时间(分)和温度T(℃)的数据:在水烧开之前(即),温度T 与时间的关系式为__________.19.若3240A '∠=︒,则A ∠的补角的度数为_________.20.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++……. 那么x y + =________.三、解答题21.将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上. (1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率.22.△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)点P 在x 轴上,且点P 到点A 与点C 的距离之和最小,直接写出点P 的坐标为 .23.已知:在AOB 和COD △中,OA OB =,OC OD =.如图,若60AOB COD ∠=∠=︒,试探究AC 与BD 的关系,并说明理由24.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?25.已知:如图,O 是直线AB 上一点,OD 是AOC ∠的平分线,COD ∠与COE ∠互余.求证:AOE ∠与COE ∠互补.请将下面的证明过程补充完整;证明:O 是直线AB 上一点,180AOB ∴∠=︒COD ∠与COE ∠互余,COD COE ∴∠+∠=_______︒.90AOD BOE ∴∠+∠=︒ OD 是AOC ∠的平分线,AOD ∴∠=∠_________.(理由:_________)B O E COE∴∠=∠.(理由:______________) =AOE BOE ∠+∠_______︒. 180AOE COE ∴∠+∠=︒ AOE ∴∠与COE ∠互补. 26.计算 (1)342442··()(2)a a a a a ++- (2)22(2)(2)(2)8a b a b a b b -+--+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】 用发言人是老师或学生的情况数除以总情况数即可求得发言人是老师或学生的概率.【详解】 解:发言人是教师或学生的概率为33550+=1925,故选:A.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.2.B解析:B【分析】根据必然事件的概念作出判断即可解答.【详解】解:A、抛任意掷一枚质地均匀的骰子,掷出的点数是奇数是随机事件,故A错误;B、操场上小明抛出的篮球会下落是必然事件,故B正确;C、车辆随机到达一个路口,刚好遇到红灯是随机事件,故C错误;D、明天气温高达30C ,一定能见到明媚的阳光是随机事件,故D错误;故选B.【点睛】本题考查了必然事件的定义,必然事件指在一定条件下一定发生的事件,熟练掌握是解题的关键.3.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】∵5+1<12,∴用长分别为5cm、12cm、1cm的三条线段不能构成三角形,则“用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是不可能事件,故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.A解析:A【分析】直接根据轴对称图形的概念进行判断即可;【详解】A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,正确掌握知识点是解题的关键;5.A解析:A【分析】分别利用全等三角形的性质以及等腰三角形的性质判断得出即可.【详解】解:A、全等三角形的对应边相等,是真命题;B、面积相等的两个三角形不一定全等,原命题是假命题;C、两个全等三角形不一定成轴对称,原命题是假命题;D、所有等腰三角形不一定都只有一条对称轴,如等边三角形有三条对称轴,原命题是假命题;故选:A.【点睛】本题主要考查了命题与定理,熟练掌握几何性质与判定是解题的关键.6.B解析:B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.7.C解析:C【分析】利用垂直定义及同角的余角相等可得∠AEC=∠D=∠ACB=90°,∠A=∠BCD,根据AAS 证明△ACE≌△CBD,可得AE=CD=5cm,CE=BD=2cm,由此即可求出DE的长.【详解】解:∵AE⊥CE,BD⊥CE,∠ACB=90°,∴∠AEC=∠D=∠ACB=90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD,CE=BD,∵AE=5cm,BD=2cm,∴DE=CD−CE=5−2=3cm.故选:C.【点睛】本题考查了全等三角形的判定和性质,正确寻找全等三角形解决问题是解题的关键.8.C解析:C【分析】根据矩形的性质得到AD∥BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB=15°,根据三角形的外角的性质得到∠ACF=∠AGC=∠GAF+∠F=2∠F,于是得到结论.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠DCB=90°,∴∠F=∠ECB=15°,∴∠GAF=∠F=15°,∴∠ACF=∠AGC=∠GAF+∠F=2∠F=30°,故选C.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.9.C解析:C【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【详解】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∠B=∠D,∠AFD=∠CEB,AF=CE,满足AAS,能判定△ADF≌△CBE;B、BE=DF,∠AFD=∠CEB,AF=CE,满足SAS,能判定△ADF≌△CBE;C、AD=CB,AF=CE,∠AFD=∠CEB,满足SSA,不能判定△ADF≌△CBE;D、AD∥BC,则∠A=∠C,又AF=CE,∠AFD=∠CEB,满足ASA,能判定△ADF≌△CBE;故选:C.【点睛】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.C解析:C【分析】此容器不是一个圆柱体,从下到上直径越来越小,因为相同体积的水在直径较大的地方比在直径较小的地方的高度低,因此,若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快.【详解】由图可知:此容器不是一个圆柱体,从下到上直径越来越小∵相同体积的水在直径较小的地方比在直径较大的地方的高度更高∴若单位时间内注入的水量保持不变,容器内水面上升的速度会越来越快故答案选:C【点睛】本题考查了体积、直径、高之间的关系,寻找出三者之间的变化关系是解题关键.11.B解析:B【分析】根据两条直线平行,同位角相等,即可判断.【详解】解:∵CB∥DF,∴∠2=∠3(两条直线平行,同位角相等).故选:B.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.C解析:C【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【详解】解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,因此S大正方形=a2,S△②=12(a﹣b)b=12ab﹣12b2,S△①=12a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=12a2﹣12ab+12b2,=12[(a+b)2﹣3ab],=12(100﹣54)=23,故选:C.【点睛】考查完全平方公式的意义,适当的变形是解决问题的关键.二、填空题13.【解析】【分析】由一副扑克牌(除大小王外)共52张红桃的有13张直接利用概率公式求解即可求得答案【详解】解:∵一副扑克牌(除大小王外)共52张红桃的有13张∴一副扑克牌(除大小王外)共52张从中随意解析:1 4【解析】【分析】由一副扑克牌(除大、小王外)共52张,红桃的有13张,直接利用概率公式求解即可求得答案.【详解】解:∵一副扑克牌(除大、小王外)共52张,红桃的有13张,∴一副扑克牌(除大、小王外)共52张,从中随意抽一张是红桃的概率是:131524.故答案为:1 4 .【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.【解析】试题解析:4 9 .【解析】试题画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是黄球的概率是49.考点:列表法与树状图法.15.90°【分析】根据翻折的性质得到∠APE=∠APE∠BPF=∠BPF根据平角的定义得到∠APE+∠BPF=90°即可求得答案【详解】解:如图所示:∵∠APE=∠APE∠BPF=∠BPF∠APE+∠A解析:90°【分析】根据翻折的性质得到∠APE=∠A'PE,∠BPF=∠B'PF,根据平角的定义得到∠A'PE+∠B'PF =90°,即可求得答案.【详解】解:如图所示:∵∠APE=∠A'PE,∠BPF=∠B'PF,∠APE+∠A'PE+∠BPF+∠B'PF=180°,∴2(∠A'PE+∠B'PF)=180°,∴∠A'PE+∠B'PF=90°,又∴∠EPF=∠A'PE+∠B'PF,∴∠EPF=90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.16.9【分析】根据翻折变换的性质可得DE=CDBE=BC然后求出AE再根据三角形的周长列式求解即可【详解】∵BC沿BD折叠点C落在AB边上的点E处∴DE=CDBE=BC∵AB=8cmBC=6cm∴AE=解析:9【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【详解】∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB−BE=AB−BC=8−5=3cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=6+3,=9cm.故答案为9.【点睛】本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.17.50°或130°【分析】①△ABC是锐角三角形时先根据高线的定义求出∠ADB=90°∠BEC=90°然后根据直角三角形两锐角互余求出∠ABD再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行解析:50°或130°.【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形等角的余角相等求出∠BHC=∠A,从而得解.【详解】解:①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°.在△ABD中,∵∠A=50°,∴∠ABD=90°-50°=40°,∴∠BHC=∠ABD+∠BEC=40°+90°=130°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=50°.综上所述,∠BHC的度数是130°或50°.故答案为:50°或130°.【点睛】本题主要考查了直角三角形的性质,三角形的外角性质,等角的余角性质,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.18.T=7t+30【解析】【分析】由表知开始时温度为30℃再每增加2分钟温度增加14℃即每增加1分钟温度增加7℃可得温度T与时间t的关系式【详解】解:∵开始时温度为30℃每增加1分钟温度增加7℃∴温度T解析:T=7t+30【解析】【分析】由表知开始时温度为30℃,再每增加2分钟,温度增加14℃,即每增加1分钟,温度增加7℃,可得温度T与时间t的关系式.【详解】解:∵开始时温度为30℃,每增加1分钟,温度增加7℃,∴温度T与时间t的关系式为:T=30+7t.故答案为:T=7t+30.【点睛】本题考查了求函数的关系式,关键是得出开始时温度为30℃,每增加1分钟,温度增加7℃.19.【分析】根据互补两角之和为180°解答即可【详解】解:∵该角度数为32°40′∴它的补角的度数=180°-32°40′=147°20′故答案为:【点睛】本题考查了补角的知识解答本题的关键在于熟练掌握︒解析:14720'【分析】根据互补两角之和为180°,解答即可.【详解】解:∵该角度数为32°40′,∴它的补角的度数=180°-32°40′=147°20′.故答案为:14720'︒.【点睛】本题考查了补角的知识,解答本题的关键在于熟练掌握互补两角之和为180°.20.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x 和y 的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x 和y 的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数.三、解答题21.(1)P (抽到奇数)=23;(2)P (恰好抽到为35)=16【解析】试题分析:(1)先求出这组数中奇数的个数,再利用概率公式解答即可; (2)根据题意列举出能组成的数的个数及35的个数,再利用概率公式解答.试题 (1)根据题意可得:有三张卡片,奇数只有“3和5”一张,故抽到奇数的概率P=;(2)根据题意可得:随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,共能组成6个不同的两位数:32,52,23,53,25,35.其中恰好为35的概率为.考点:概率公式22.(1)答案见解析;(2)(0,0).【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点的位置,然后顺次连接即可;(2)找出点C 关于x 轴的对称点C′,连接AC′与x 轴的交点即为所求的点P ,根据直线AC'的解析式即可得解.【详解】(1)如图所示,△A 1B 1C 1即为所求;(2)如图所示,作点C 关于x 轴的对称点C '(﹣2,﹣2),连接AC ',交x 轴于P , 由A 、C '的坐标可得AC '的解析式为y =x ,当y =0时,x =0,∴点P 的坐标为(0,0).故答案为:(0,0).【点睛】此题考查轴对称变换作图,最短路线,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.AC BD =,AC 与BD 的夹角60APB ∠=︒,理由见解析.【分析】根据已知先证明AOC BOD ∠=∠,再利用三角形全等判定“SAS”证明AOC BOD ≌,则可得结论AC BD =及OAC OBD ∠=∠,现结合图形,利用三角形的外角性质即可求出60APB ∠=︒.【详解】解:AC BD =,AC 与BD 的夹角60APB ∠=︒,理由是:∵60AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,∴AOC BOD ∠=∠.在AOC △和BOD 中,AO BO AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴()AOC BOD SAS ≌,∴AC BD =;∵OAC OBD ∠=∠,∴OAC AOB OBD APB ∠+∠=∠+∠,∴AOB APB ∠=∠,∴60APB ∠=︒.【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并利用全等性质证明线段与角的等量关系是解题的关键.24.(1)10;(2)1;(3)3;(4)不一样,理由见解析;【解析】【分析】(1)根据t=0时甲乙两人的路程差即为两人的距离解答即可;(2)根据s 不变的时间即为修车时间解答即可;(3)根据两人的函数图象的交点即为相遇,写出时间即可;(4)利用速度与时间路程的关系解答即可;【详解】解:(1)由图象可知,乙出发时,乙与甲相距10千米.故答案为10.(2)由图象可知,走了一段路程后,乙的自行车发生故障,停下来修车的时间为=1.5-0.5=1小时,故答案为1.(3)图图象可知,乙从出发起,经过3小时与甲相遇.故答案为3(4)乙骑自行车出故障前的速度与修车后的速度不一样.理由如下: 乙骑自行车出故障前的速度7.50.5=15千米/小时. 与修车后的速度22.57.53 1.5--=10千米/小时. 因为15>10,所以乙骑自行车出故障前的速度与修车后的速度不一样.【点睛】此题主要考查了学生从图象中读取信息的能力,以及路程、速度、时间的关系等知识,解题的关键是灵活运用图中信息解决问题,所以中考常考题型.25.90;COD ; 角平分线的定义;等式性质,180.【分析】根据余角的定义可得∠COD+∠COE=90°,再根据平角的定义可得∠AOD+∠BOE=90°;根据角平分线的定义可得∠AOD=∠COD ,再根据等式性质可得∠BOE=∠COE ,进而得证.【详解】证明:∵O 是直线AB 上一点∴∠AOB=180°∵∠COD 与∠COE 互余∴∠COD+∠COE=90°∴∠AOD+∠BOE=90°∵OD 是∠AOC 的平分线∴∠AOD=∠COD (理由:角平分线的定义)∴∠BOE=∠COE (理由:等式性质)∵∠AOE+∠BOE=180°∴∠AOE+∠COE=180°∴∠AOE 与∠COE 互补.故答案为:90;COD ; 角平分线的定义;等式性质,180.【点睛】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义,掌握角平分线的性质.26.(1)86a ;(2)4ab【分析】(1)计算同底数幂的乘法,幂的乘方,积的乘方,再合并同类项即可;(2)利用乘法公式展开、去括号变号,再合并同类项即可.【详解】解:(1)342442··()(2)a a a a a ++- , =8884a a a ++ ,= 86a ;(2)22(2)(2)(2)8a b a b a b b -+--+,=()2222244+48a b a ab b b ---+, =222224448a b a ab b b --+-+,=4ab .【点睛】本题考查整式加减乘混合运算,掌握同底数幂的乘法法则,幂的乘方法则,积的乘方法则,平方差公式,完全平方公式,同类项以及合并同类项法则是解题关键.。

浙教版七年级下册数学期末试卷及参考答案

浙教版七年级下册数学期末试卷及参考答案

浙教版七年级下册数学期末试卷及参考答案一、填空题1、大于2、1/43、y=(10-3x)/2,x=(10-2y)/34、1x10^-75、x=1/46、4cm²7、x≠1,x=08、60°9、-1/210、x(y-9)11、吊桥、塔吊等12、x=-3,x=213、①、③、④14、B15、C16、C17、5㎝二、选择题14、B15、C16、C17、D18、B二、选择题。

(20分)14.选B。

由题意可知,当x=0时,y=1;当x=1时,y=0;当x=2时,y=-1;当x=3时,y=-2,可得出y=-x+1,故选B。

15.选C。

将y=2x-1代入2x-y=1中,得2x-(2x-1)=1,解得y=-1,故选C。

16.选D。

将y=2x+1代入x-y+1=0中,得x-(2x+1)+1=0,解得x=-2,故选D。

17.选D。

由题意可得,当x=1时,y=2;当x=2时,y=3;当x=3时,y=4,可得出y=x+1,故选D。

18.选D。

解方程组得x=1,y=4,将其代入选项中可得2x+3y=14,故选D。

19.选B。

由题意可得,x+3y=6,3x+5y=12,解得x=3,y=1,代入选项中可得3x+y=12,故选B。

20.选B。

将y=2x-1代入4x+3y=9中,得4x+3(2x-1)=9,解得x=2,代入y=2x-1中,得y=3,故选B。

21.选B。

解方程组得x=2,y=1,代入选项中可得x2+y2=5,故选B。

22.选A。

将y=-2x+1代入x2+y2=5中,得x2+(-2x+1)2=5,化简得5x2-4x-4=0,解得x=-1或x=0.8,代入y=-2x+1中,得y=3或y=-0.6,故选A。

23.选C。

将y=3x-1代入2x-y=1中,得2x-(3x-1)=1,解得x=2,代入y=3x-1中,得y=5,故选C。

三、计算题。

(23分)24.(1)解:将2x+1作为分母,得frac{3x-2}{2x+1}=\frac{2x+4}{2x+1}$$化简,得3x-2=2x+4$$解得x=3,将x=3代入原方程检验,左边=3*3-2=7,右边=2*3+1=7,故x=3是原方程的根。

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷(含答案)

浙教版七年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分)1.(3分)下列各组数中,是二元一次方程2x﹣3y=1的解的是()A.B.C.D.2.(3分)下列计算正确的是()A.a4﹣a2=a2B.a4÷a2=a2C.a4+a2=a6D.a4•a2=a8 3.(3分)为了解本校学生课外使用网络情况,学校采用抽样问卷调查,下面的抽样方法最恰当的是()A.随机抽取七年级5位同学B.随机抽取七年级每班各5位同学C.随机抽取全校5位同学D.随机抽取全校每班各5位同学4.(3分)已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5.(3分)1纳米=0.000000001米,则2纳米用科学记数法表示为()A.2×10﹣9B.﹣2×109C.2×10﹣8D.﹣2×108 6.(3分)如图是某手机店今年1﹣5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月7.(3分)下列等式不正确的是()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)(﹣a﹣b)=﹣(a+b)2C.(a﹣b)(﹣a+b)=﹣(a﹣b)2D.(a﹣b)(﹣a﹣b)=﹣a2﹣b28.(3分)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c9.(3分)分式有意义时,x的取值范围是()A.x≠0 B.x≠1 C.x≠0或x≠1 D.x≠0且x≠1 10.(3分)若(x+2y)2=(x﹣2y)2+A,则A等于()A.8xy B.﹣8xy C.8y2D.4xy11.(3分)多项式4a2+1再加上一个单项式后,使其成为一个多项式的完全平方,则不同的添加方法有()A.2种B.3种C.4种D.多于4种12.(3分)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣2)0﹣2﹣1=.14.(3分)分式与的最简公分母为.15.(3分)如图,将一条两边沿互相平行的纸带折叠,若∠1=30°,则∠α=°.16.(3分)因式分解:3a3﹣12a=.17.(3分)已知关于x,y的方程组的解是,则a2﹣b2的值为.18.(3分)如图,一副三角板的三个内角分别是90°,45°,45°和90°,60°,30°,按如图所示叠放在一起(点A,D,B在同一直线上),若固定△ABC,将△BDE绕着公共顶点B顺时针旋转α度(0<α<180),当边DE与△ABC的某一边平行时,相应的旋转角α的值为.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.(6分)计算:(1)(2a2)3÷a3(2)(2m+1)(m﹣2)﹣2m(m﹣2)20.(8分)解方程(组):(1)(2)21.(6分)先化简,再求值:,其中x=.22.(8分)如图,点D在△ABC的边AC上,过点D作DE∥BC交AB于E,作DF∥AB 交BC于F.(1)请按题意补全图形;(2)请判断∠EDF与∠B的大小关系,并说明理由.23.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的样本中男生和女生的人数相同,利用所得数绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)求样本中男生的人数;(2)求样本中女生身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170之间的学生总人数.24.(8分)某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)作侧面和底面,加工成如图2所示的竖式和横式两种无盖的长方体纸箱.(加工时接缝材料不计)(1)若该厂仓库里有1000张正方形纸板和2000张长方形纸板.问竖式和横式纸箱各加工多少个,恰好将库存的两种纸板全部用完?(2)该工厂原计划用若干天加工纸箱2400个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天完成了任务,问原计划每天加工纸箱多少个?25.(10分)如图,将几个小正方形与小长方形拼成一个边长为(a+b+c)的正方形.(1)若用不同的方法计算这个边长为(a+b+c)的正方形面积,就可以得到一个等式,这个等式可以为(只要写出一个即可);(2)请利用(1)中的等式解答下列问题:①若三个实数a,b,c满足a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;②若三个实数x,y,z满足2x×4y÷8z=,x2+4y2+9z2=44,求2xy﹣3xz﹣6yz的值.26.(12分)阅读下列材料:对于多项式x2+x﹣2,如果我们把x=1代入此多项式,发现x2+x﹣2的值为0,这时可以确定多项式中有因式(x﹣1);同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x﹣2=(x﹣1)(x+2).又如:对于多项式2x2﹣3x﹣2,发现当x=2时,2x2﹣3x﹣2的值为0,则多项式2x2﹣3x﹣2有一个因式(x﹣2),我们可以设2x2﹣3x﹣2=(x﹣2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2﹣3x﹣2=(x﹣2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=时,多项式6x2﹣x﹣5的值为0,所以多项式6x2﹣x﹣5有因式,从而因式分解6x2﹣x﹣5=;(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式,请你尝试用试根法分解多项式:①2x2+5x+3;②x3﹣7x+6;(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3有因式,,,所以分解因式(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=.参考答案一、选择题(本题有12小题,每小题3分,共36分)1.B 2.B 3.D 4.D 5.A 6.C 7.D 8.C 9.D 10.A 11.B 12.C 二、填空题(共6小题,每小题3分,满分18分)13.14.2xy215.75°16.3a(a+2)(a﹣2).17.﹣15 18.45°,75°,165°.三、解答题(第19题6分,第20题8分,第21题6分,第22、23、24题各8分,第25题10分,第26题12分,共66分)19.解:(1)原式=8a6÷a3=8a3;(2)原式=2m2﹣4m+m﹣2﹣2m2+4m=m﹣2.20.解:(1)去分母得:2﹣x=﹣1﹣2x+6,解得:x=3,经检验x=3是增根,分式方程无解;(2),①×3+②×2得:13x=65,解得:x=5,把x=5代入①得:y=2,则方程组的解为.21.解:原式=•﹣•=﹣1﹣=﹣﹣=﹣,当x=时,原式=﹣=﹣3.22.解:(1)如图,(2)∠EDF=∠B.理由如下:∵DE∥BC,∴∠B=∠AED,∵DF∥AB,∴∠AED=∠EDF,∴∠EDF=∠B.23.解:(1)(1)抽取的总人数是:10÷25%=40(人),样本中男生的人数40×=20(人)答:样本中男生的人数为20人;(2)40×(1﹣17.5%﹣37.5%﹣25%﹣15%)=2(人),答:样本中女生身高在E组的人数为2人;(3)=299(人),答:全校身高在160≤x<170之间的学生总人数299人.24.解:(1)设加工竖式纸箱x个,横式纸箱y个,依题意,得:,解得:.答:加工竖式纸箱200个,横式纸箱400个.(2)设原计划每天加工纸箱a个,则实际每天加工纸箱1.5a个,依题意,得:﹣=2,解得:a=400,经检验,a=400是所列分式方程的解,且符合题意.答:原计划每天加工纸箱400个.25.解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)①∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣(2ab+2ac+2bc)=112﹣2×38=45;②∵2x×4y÷8z=,∴2x×22y÷23z=,∴2x+2y﹣3z=2﹣2,∴x+2y﹣3z=﹣2,∵(x+2y﹣3z)2=x2+4y2+9z2+2(2xy﹣3xz﹣6yz),x2+4y2+9z2=44,∴(﹣2)2=44+2(2xy﹣3xz﹣6yz),∴2xy﹣3xz﹣6yz=﹣20.26.解:(1)当x=1时,6x2﹣x﹣5=0,设6x2﹣x﹣5=(x﹣1)(mx+n),解得m=6,n=5,∴因式分解6x2﹣x﹣5=(x﹣1)(6x+5),故答案为1,x﹣1,(x﹣1)(6x+5);(2)①当x=﹣1时,2x2+5x+3=0,∴2x2+5x+3=(x+1)(2x+3);②当x=1时,x3﹣7x+6=0,∴x3﹣7x+6=(x﹣1)(x﹣2)(x+3);(3)当x=y=2时,(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=0,∴(x﹣2)3﹣(y﹣2)3﹣(x﹣y)3=3(x﹣2)(y﹣2)(x﹣y),故答案为(x﹣2),(y﹣2),(x﹣y),3(x﹣2)(y﹣2)(x﹣y).。

浙教版七年级下册期末数学试卷(含答案)

浙教版七年级下册期末数学试卷(含答案)

七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为()A.0.000124B.0.0124C.-0.00124D.0.00124 3.下列四个多项式中,能因式分解的是()A.a2+1B.a2-6a+9C.x2+5y D.x2-5y 4.若3x=4,9y=7,则3x-2y的值为()A.47B.74C.-3D.275.下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.下列分式中不管x取何值,一定有意义的是()A.2xxB.211xx--C.231xx++D.1+1xx-7.能使分式4723xx+-值为整数的整数x有()个.A..1B.2C.3D..4 8.22018-22019的值是()A.12B.-12C.-22018D.-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()A.∠D+∠B B.∠B-∠D C.180°+∠D-∠B D.180°+∠B-∠D 10.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D.96mm2二、填空题(每小题3分,共24分11.当x= 时,分式21(3)(1)xx x-+-的值是0.12.当x2+kx+25是一个完全平方式,则k的值是.13.若关于x的方程3111axx x=+--无解,则a的值是.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.15.3x+2y=20的正整数解有.16.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为.17.已知m=x yx-把公式变形成己知m,y,求x的等式.18.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数为“智慧数”,比如:22-12=3,3就是智慧数,从0开始,不大于2019的智慧数共有个.三、解答题(共46分)19.化简(1)(-a2)3+3a2a4(2)211aaa---20.计算(1)2(2)422x x yx y++=⎧⎨+=⎩(2)2131xx-= +21.化简22212(1)441x x xxx x x-+÷+⨯++-,并在-2≤x≤2中选择适当的值代入求值.22.师生对话,师:我像你这么大的时候,你才1岁,你到我这样大的时候,我已经40岁了,问老师和学生现在各几岁?23.中华文明,源远流长:中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表请根据所给信息,解答下列问题①图1条形统计图中D组人数有多少?②在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的四心角的度数为度;•③规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?24.杨辉三角形,又称贾宪三角形,帕斯卡三角形,是二项式系数在三角形中的一种几何排列,在我国南宋数学家杨所著的《详解九章算术》(1261年)一书中用如图的三角形解释二项和的乘方规律(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=(a+b)(a2+2ab+b2)=a3+3a2b+3ab2+b3(a+b)4=(a+b)(a3+3a2b+3ab2+b3)=a4+4a3b+6a2b2+4ab3+b4“杨辉三角”里面蕴藏了许多的规律(1)找出其中各项字母之间的规律以及各项系数之间的规律各一条;(2)直接写出(a+b)6展开后的多项式;(3)运用:若今天是星期四,经过84天后是星期,经过8100天后是星期.25.如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.参考答案1.【分析】利用平移的性质和旋转的性质分别分析得出即可.【解答】解:A、利用旋转可以得到,故此选项错误;B、利用旋转可以得到,故此选项错误;C、利用位似结合旋转可得到,故此选项错误;D、是由一个基本图形通过平移得到的,故此选项正确.故选:D.【点评】此题主要考查了利用平移设计图案,正确把握平移的定义是解题关键.2.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10-3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10-3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10-n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.4.【分析】由3x=4,9y=7与3x-2y=3x÷32y=3x÷(32)y,代入即可求得答案.【解答】解:∵3x=4,9y=7,∴3x-2y=3x÷32y=3x÷(32)y=4÷7=47.故选:A.【点评】此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将3x-2y变形为3x÷(32)y是解此题的关键.5.【分析】根据抽样调查和全面调查的特点即可作出判断.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、了解某厂生产的电灯使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解全国初中生的视力情况,因工作量较大,只能采取抽样调查的方式;C、要了解某校七年级学生的身高情况,要求精确、难度相对不大,实验无破坏性,应选择全面调查方式;D、要了解“娃哈哈”产品的合格率,具有破坏性,应选择抽样调查.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.【分析】根据分式有意义的条件即可求出答案.【解答】解:(A)由分式有意义的条件可知:x≠0,故A不选;(B)由分式有意义的条件可知:x≠±1,故B不选;(D)由分式有意义的条件可知:x≠-1,故D不选;故选:C.【点评】本题考查分式有意义的条件,解题的关键是熟练运用分式的运算法则,本题属于基础题型.7.【分析】首先把分式转化为13223x+-,则原式的值是整数,即可转化为讨论1323x-的整数值有几个的问题.【解答】解:474613132 23232323x xx x x x+-=+=+----,当2x-3=±1或±13时,4723xx+-是整数,即原式是整数.解得:x=2或1或8或-5;4个,故选:D.【点评】此题主要考查了分式的值,正确化简分式是解题关键.8.【分析】直接利用提取公因式法分解因式得出答案.【解答】解:22018-22019=22018×(1-2)=-22018.故选:C.【点评】此题主要考查了提取公因式法分解音质,正确找出公因式是解题关键.9.【分析】根据三角形外角的性质可得∠BCD=∠D+∠E,再由平行线的性质表示出∠E,即可得出答案.【解答】解:∵AB∥DE,∴∠E=180°-∠B,∴∠BCD=∠D+∠E=180°-∠B+∠D.故选:C.【点评】本题考查了平行线的性质,解答本题的关键是掌握三角形外角的性质及平行线的性质.10.【分析】设每个小长方形的长为xmm,宽为ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个宽-一个长=3,于是得方程组,解出即可.【解答】解:设每个长方形的长为xmm,宽为ymm,由题意,得3523 x yy x=⎧⎨-=⎩,解得:159xy=⎧⎨=⎩.9×15=135(mm2).故选:B.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题(每小题3分,共24分11.【分析】直接利用分式的值为零的条件以及分式的定义分析得出答案.【解答】解:∵分式21(3)(1)xx x-+-的值是0,∴x2-1=0且(x+3)(x-1)≠0,解得:x=-1.故答案为:-1.【点评】此题主要考查了分式的值为零的条件以及分式的定义,正确把握相关定义是解题关键.12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+25=x2+kx+52,∴kx=±2•x•5,解得k=±10.故答案为:±10.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.据此解答可得.【解答】解:去分母,得:ax=3+x-1,整理,得:(a-1)x=2,当x=1时,分式方程无解,则a-1=2,解得:a=3;当整式方程无解时,a=1,故答案为:3或1.【点评】本题考查了分式方程的解,分式方程无解的条件,最简公分母为0,或者得到的整式方程无解.14.【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40-5-10-6-7-8=4.故答案是:4.【点评】本题是对频率、频数灵活运用的综合考查.注意:每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.15.【分析】用x表示出y,即可确定出正整数解.【解答】解:方程3x+2y=20,解得:2032xy-=,当x=2时,y=7;x=4时,y=4;x=6时,y=1,则方程的正整数解为246,741x x xy y y⎧=⎧==⎧⎪⎨⎨⎨===⎩⎪⎩⎩,,故答案为:246,741 x x xy y y⎧=⎧==⎧⎪⎨⎨⎨===⎩⎪⎩⎩,.【点评】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=3,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵△ABC沿着点B到点C的方向平移到△DEF的位置∴△ABC≌△DEF,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=3,∵AB=6,DH=2,∴HE=DE-DH=6-2=4,∴阴影部分的面积=12×(6+4)×3=15.故答案为:15.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.17. 【分析】把y 与m 看做已知数表示出x 即可.【解答】解:方程去分母得:mx=x -y ,移项合并得:(m -1)x=-y , 解得:1y x m=-, 故答案为:1y x m =- 【点评】此题考查了分式的基本性质,熟练掌握运算法则是解本题的关键.18. 【分析】根据“智慧数”的定义得出智慧数的分布规律,进而得出答案.【解答】解:∵(n+1)2-n 2=2n+1,∴所有的奇数都是智慧数,∵2019÷2=1009…1,∴不大于2019的智慧数共有:1009+1=1010.故答案为:1010.【点评】此题考查了新定义,平方差公式,理解“智慧数”的定义是解题关键.三、解答题(共46分)19. 【分析】(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,即可得到结果.【解答】解:(1)原式=-a 6+3a 6=2a 6;(2)原式=()2221(1)(1)11111a a a a a a a a a --+--==----. 【点评】此题考查了分式的加减法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.20. 【分析】(1)方程组利用代入消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)()22422x x y x y ⎩++⎧⎨+=①=②,把②代入①得:x+4=4,即x=0,把x=0代入②得:y=1,则方程组的解为01x y ⎧⎨⎩==;(2)去分母得:2x -1=3x+3,解得:x=-4,经检验x=-4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21. 【分析】直接利用分式的混合运算法则化简得出答案.【解答】解:原式=2(1)(1)1(2)(2)11x x x x x x x +-+⨯⨯++- =2x x +, ∵-2≤x≤2,当x=-2,-1,1时都不合题意,∴当x=0时,原式=0.【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键.22. 【分析】设老师的年龄是 x 岁,学生的年龄是y 岁,根据老师和学生年龄差不变来列方程组解答.【解答】解:设老师的年龄是x 岁,学生的年龄是y 岁,由题意得:根据题意列方程组得: 140x y y x x y ⎨--⎩-+⎧==, 解得2714x y ⎧⎨⎩==.答:老师和学生现在的年龄分别为27岁和14岁.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目的关键,老师和学生年龄差不变.23. 【分析】(1)从调查人数减去A 、B 、C 、E 组人数,剩下的就是E 组人数,(2)B 组人数除以调查人数即可,360°乘以C 组人数所占调查人数的百分比即可求出,(3)用样本估计总体,实际总人数乘以样本中优秀人数所在调查人数的百分比.【解答】解:(1)条形统计图中的D 组人数:200-10-30-40-70=50人,答:图1条形统计图中D 组人数有50人.(2)30÷200=15%,360°×40200=72°,故答案为:15,72.(3)2000×70200=700人,答:这次海选比赛的2000名学生中成绩“优等”的大约有700人.【点评】考查条形统计图、扇形统计图的制作方法及两个统计图所反映数据的特点,掌握用样本估计总体的统计思想方法.24.【分析】(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)展开后得a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)分别展开84和8100后看最后一项即可.【解答】解:(1)字母的规律a降幂排列,b升幂排列;系数符合斐波那契数列;(2)(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;(3)84=(7+1)4的最后一项是1,∴经过84天后是星期是星期五;8100=(7+1)100的最后一项是1,∴经过84天后是星期是星期五;故答案为星期五,星期五.【点评】本题考查多项式的展开;能够根据定义,通过观察找到规律,再结合多项式乘以多项式的特点求解即可.25.【分析】(1)过C作CP∥DE,延长CB交FG于H,依据平行线的性质,即可得到∠CHA=∠PCH=60°,依据三角形外角性质,即可得到∠CBA的度数;(2)过C作CP∥DE,延长CB交FG于H,依据平行线的性质,即可得到∠D+∠DCH+∠FHC=360°,再根据三角形外角性质,即可得到α,β,γ之间的数量关系.【解答】解:(1)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠PCD=180°-∠D=60°,∠PCH=120°-∠PCD=60°,∴∠CHA=∠PCH=60°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠CBA=60°+90°=150°,(2)如图,过C作CP∥DE,延长CB交FG于H,∵DE∥FG,∴PC∥FG,∴∠D+∠PCD=180°,∠FHC+∠PCH=180°,∴∠D+∠DCH+∠FHC=360°,又∵∠CBA是△ABH的外角,AB⊥FG,∴∠AHB=∠ABC-90°,∴∠FHC=180°-(∠ABC-90°)=270°-∠ABC,∴∠D+∠DCH+270°-∠ABC=360°,即∠D+∠DCB-∠ABC=90°.即α+β-γ=90°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。

浙教版七年级下册数学期末测试卷及含答案(综合考察)

浙教版七年级下册数学期末测试卷及含答案(综合考察)

浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,宽为50厘米的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为()A.400cm 2B.500cm 2C.600cm 2D.700cm 22、下列调查,适合用普查方式的是()A.了解一批炮弹的杀伤半径B.了解扬州电视台《关注》栏目的收视率 C.了解长江中鱼的种类 D.了解某班学生对“扬州精神”的知晓率3、下列运算正确的是()A.(a﹣3)2=a 2﹣9B.a 2•a 4=a 8C. =±3D.4、下列运算结果正确的是( )A. B. C. D.5、下列运算正确的是()A.2a+3a=5aB.(x-2) 2=x 2-4C.(x-2)(x-3)=x 2-6D.a 8÷a 4=a 26、如图,下列结论中,正确的是()A.∠1和∠2是同位角B.∠2和∠3是内错角C.∠2和∠4是同旁内角D.∠1和∠4是内错角7、下列运算正确的是()A. B. C. D.8、关于x的分式方程= 有解,则字母a的取值范围是()A.a=5或a=0B.a≠0C.a≠5D.a≠5且a≠09、下列运算正确的是( )A. B. C. D.10、为了解中学生获取资讯的主要渠道,设置“A.报纸.B.电视.C.网络,D.身边的人.E.其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,2411、下列各运算中,计算正确的是()A.a 2+2a 2=3a 4B.a 10÷a 2=a 5C.(a﹣b)2=a 2﹣b 2D.(﹣2a 2)3=﹣8a 612、已知关于x、y的方程组的解互为相反数,则m的值为()A.﹣B.C.﹣4D.413、下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x 2﹣y 2B. ﹣x=C.x 2﹣4x+3=(x ﹣2)2+1D.x÷(x 2+x)= +114、下列调查中,调查方式选择合理的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查市场上某品牌电脑的使用寿命,采用普查的方式C.调查嘉陵江的水质情况,采用抽样调查的方式D.要了解全国初中学生的业余爱好,采用普查的方式15、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若代数式有意义,则实数x的取值范围是________.17、因式分解:________.18、6m(x2﹣9)与9mx﹣27m的公因式为________19、计算:=________,=________.20、已知方程的两个解是,,则________,________21、已知,则的值等于________.22、平移和旋转都不改变图形的________ 和________.23、计算:________.24、我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是________毫米.25、若关于x的方程=的解为正数,则m的取值范围是________ .三、解答题(共5题,共计25分)26、先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=﹣.27、如图,点D为射线CB上一点,且不与点B、C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.画出正确的图形,猜想∠EDF与∠BAC的数量关系,并说明理由.28、甲、乙二人解关于x,y的方程组甲正确地解出而乙因把c抄错了,结果解得求出a,b,c的值,并求乙将c抄成了何值?29、如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.30、如图,已知∠1=∠2,DE⊥BC,AB⊥BC,求证:∠A=∠3.证明:∵DE⊥BC,AB⊥BC(已知)∴∠DEC=∠ABC=90°(________)∴DE∥AB(________)∴∠2=________(________)∠1=________ (________)又∵∠1=∠2(________)∴∠A=∠3(________)参考答案一、单选题(共15题,共计45分)1、A2、D3、D4、D5、A6、C7、D8、D9、B10、D11、D12、D13、A14、C15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版七年级下册数学
期末试卷
TPMK standardization office【 TPMK5AB- TPMK08-
浙教版七年级下册数学期末试卷
一、选一选(每小题有4个选项,其中有且只有一个正确,请把正确选项的编码
填入答题卷的相应空格内,每小题3分,共30分)
1.下列各组数不可能组成一个三角形的是………………………………………( ) (A )3,4,5 (B )7,6,6 (C )7,6,13 (D )175,176,177 2.已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是( )
(A )3.5×104米 (B )3.5×104-米 (C )3.5×105-米 (D )3.5×106-米 3.如图,由ABC ∆平移得到的三角形有几个……( ) (A )3 (B )5 (C )7 (D )15
4.小马虎在下面的计算中只做对了一道题,他做对的题目
是…………………………………………………( )
(A )7613a a a += (B )4267a a a =⋅ (C )4267)(a a = (D )6
767=÷a a 5.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)
所示,那么她所旋转的牌从左数起是 ………………………………………( ) (A )第一张 (B )第二张 (C )第三张 (D )第四张
6.从1、2、3、4四个数中任意取两个求和,其结果最有可能是…………………( )
(A )3 (B )4 (C )5 (D )6 7.王老师的一块三角形教学用玻璃不小心打破了(如图),
C
B
A
他想再到玻璃店划一块,为了方便他只要带哪一块就可以 了……………………………………………………( ) (A ) ① (B ) ② (C ) ③ (D ) ④
8.方程组⎩⎨⎧=+=-13432y x y x 的解是………………………………………………………( )
(A )⎩⎨⎧-==11y x (B )⎩⎨⎧-=-=11y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧-=-=72y x 9.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货
物,每袋货物都是一样重的。

驴子抱怨负担太重,骡子说:“你抱怨干嘛,如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是 …………………………………………………… ( ) (A )5 (B )6 (C )7 (D )8 10.如图,在△ABC 中,AD ⊥BC 于D 点,BD=CD ,若BC =6,
AD =5,则图中阴影部分的面积为……………………
( )
(A )30 (B )15 (C )7.5 (D )6
二、填一填(请把正确答案填入相应横线上,每小题3分,共30分) 11.当x = 时,分式
2
9
3--x x 的值为零。

12.分解因式:=-22916b a 13.计算:=⨯--203)3
1
(
14.全等三角形的对应边 ,对应角 。

15.暗箱里放入除颜色外其他都相同的10个球,其中4个黑球,6个白球,搅
拌均匀后任取一个球,取到是黑球的概率是 .
D B
C
A
A
16.如图,平面镜A 与B 之间夹角为 120,光线经
平面镜A 反射到平面镜B 上,再反射出去,若
21∠=∠,则1∠的度数为
17.若非零实数b a ,满足224
1b ab a -=,则
=a
b
18.五根木棒长分别为1、2、3、4、5分米,用其中
三根围成三角形,可以围成 个不同三角形。

19.如图,ABD ∆≌ACE ∆,点B 和点C 是对应顶点,
8AB cm =,7BD cm =,3AD cm =,则
=DC ㎝.
20. 观察下列各式,你发现什么规律:
请你将猜想到的规律用只含有一个字母的等式表示出来 .
三、解一解(共40分)
21.(本题6分)如下图,由小正方形组成的L 形图中,请你用三种方法分别在图中添画一个小正方形,使它成为轴对称图形:
22.(本题12分)计算下列各式
(1))()()(223a ab b a -÷-÷ (2))21)(12()12(2a a a +-+-+
E
D
C
B
A
2222213212431354146511315195141
⨯=-⨯=-⨯=-⨯=-⨯==-……
方法一
方法二
方法三
(3)分解因式3
2
363x x x -+- (4) 先化简:x
x x -+
-11
12,并找一个你喜欢的 数代入求值。

23.(本题6分) 解方程:2
2
13111x x x x --=--
24.(本题7分) 如图,M 是AB 的中点,
,D C ∠=∠
21∠=∠。

说明 AC=BD 的理由(填空) 解: M 是AB 的中点, ∴ AM =
( )
在BMD AMC ∆∆和中
∴ ≌ ( ) ∴
( )
()
(
)
______________________
__________________________________AM ⎧=⎪⎪
=⎨⎪⎪=⎩
)(
2
1M
D
C
B
A
25.(本题9分) 如图是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被
分成三个面积相等的扇形,装置A 上的数字分别是2,6,8,装置B 上的数字分别是4,5,7,这两个装置除了表面数字不同外,其他构造完全相同。

现在你和另外一个人分别同时用力转动A 、B 两个转盘中的箭头,如果我们规定箭头停留在较大数字的一方获胜(若箭头恰好停留在分界线上,则重新转动一次,直到箭头停在某一个数字为止),那么你会选择哪个装置呢?请借助列表法或树状图说明理由。

浙教版七年级下册数学期末试卷参考答案
一、 选一选
1. C
2. B
3.B
4. C
5. A
6. C
7.A
8. A
9. A 10. C
提示: 5. 根据扑克牌上的图案; 6. 1+4=5, 2+3=5; 7. 选A,根据ASA; 9.设驴子原来所驮的货物是x 袋, 骡子所驮的货物是y 袋,则列出方程组为⎩⎨
⎧+=--=+1
1)
1(21x y x y 装置B
装置A
10. 5.7652
1
21212121=⨯⨯⨯=⋅⨯==∆BC AD S S ABC 阴 二、 填一填
11. 3 12. )34)(34(b a b a -+ 13. 91 14. 相等;相等 15. 5
2
16. 30 17. 2 18. 3 19. 5 20. 1)1()2(2-+=+n n n
提示: 15. P(黑)=52104=; 16.度)(3021201801=-=∠; 17.b a b a 2
1
,0)212==-(;
18. 2、3、4; 3、4、5; 2、4、5 三、 解一解 21. 每画出一种得2分
22. (1) 解:原式=)()(2
26a ab b a -÷-÷ …………………………1分
=12216---b a ………………………………………1分 =b a 3 ………………………………………1分
(2) 解:原式=1414422+-++a a a …………………………2分 =24+a ………………………………………1分 (3) 解:原式=)21(32x x x +-- ………………………………1分 =2)1(3x x -- ……………………………………2分
(4) 解:原式=
11
)
1)(1(+=--+x x x x ……………………………1分 求值答案不唯一,可以取除了1以外的任何数 …………… 2分 23. 解:去分母,得 223)1(1x x x x -=--+ ………… 1分 去括号,得 22311x x x x -=+-+ ………… 1分
移项,合并同类项,得 0222=-x x ………… 1分
把左边分解因式,得 0)1(2=-x x ………… 1分 ∴ 01=x , 12=x ………… 1分
经检验12=x 是增根舍去,所以原方程的根是0=x . … 1分
方法三
方法二方法一
24. BM ( 线段中点的意义) ;
D C ∠=∠ (已知) ; 21∠=∠ (已知) ; BM BMD AMC ∆≅∆ (AAS)
AC=BD (全等三角形的对应边相等) (每空0.5分)
25. 选择A 装置
4 (2,4) 2
5 (2,5) 7 (2,7) 4 (6,4) 开始
6 5 (6,5)
7 (6,7) 4 (8,4)
8 5 (8,5)
7 (8,7) ………… 4分
P (A )=95,P (B )=9
4
………………………………… 4分
∵P (A )>P (B ),∴选择A 装置 …………………………1分。

相关文档
最新文档