离散数学 第1章 习题解答
02324离散数学(课后习题解答(详细)

离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
离散数学第1章习题答案

#include<stdio.h>#include<stdlib.h>#include<malloc.h>#define MAX_STACK_SIZE 100 typedef int ElemType; typedef struct{ElemType data[MAX_STACK_SIZE];int top;} Stack;void lnitStack(Stack *S){S->top=-1;}int Push(Stack *S,ElemType x){if(S->top==MAX_STACK_SIZE-1){printf("\n Stack is full!");return 0;}S->top++;S->data[S->top]=x;return 1;}int Empty(Stack *S){return (S->top==-1);}int Pop(Stack *S,ElemType *x){if(Empty(S)){printf("\n Stack is free!");return 0;}*x=S->data[S->top];S_>top__;return 1;}void conversion(int N){int e;Stack *S=(Stack*)malloc(sizeof(Stack));InitStack(S); while(N){Push(S,N%2);"}while(!Empty(S)){Pop(S, &e);printf("%d ",e);}}void main(){ int n;printf(" 请输入待转换的值n: \n");scanf ("%d",&n);conversion(n);1. 判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1) 离散数学是计算机专业的一门必修课。
离散数学习题解答_屈婉玲耿素云高等教育出版社(第一部分)

(10)除非天下大雨,否则他不乘班车上班;
(11)下雪路滑,他迟到了;
(12)2 与 4 都是素数,这是不对的;
(13)“2 或 4 是素数,这是不对的”是不对的.
答:
命题 1
命题 2
(1) p:刘晓月跑得快 q:刘晓月跳得高
命题 3 -
符号化
(2) p:老王是山东人 q:老王是河北人
-
(3)
p:天气冷
(6)
只要俄罗斯不位于南半球,亚洲人口就不是最多
(7)
只要亚洲人口不是最多,俄罗斯就不位于南半球
真值 1 0 1 1 1 0 1
10.设 p:9 是 3 的倍数,q:英国与土耳其相邻,将下面命题用自然语言表述,并指出真值:
(1)
;
(2)
;
(3)
;
(4)
.
答:根据题意,p 为真命题,q 为假命题.
自然语言
的类型.
27.设 A、B 都是含命题变量项 p1,p2,…,pn 的公式,证明:
重言式.
解:
A
B
是重言式当且仅当 A 和 B 都是
(2)p: 是无理数.
(7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008 年元旦下大雪.
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.
(1) 5 是有理数.
答:否定式: 5 是无理数. p : 5 是有理数. q : 5 是无理数.其否定式 q 的真值
0
1
0
0
1
0
1
0
1
0
1
1
0
1
1
1
离散数学第一章命题逻辑习题答案

习题一
1.
利用逻辑联结词把下列命题翻译成符号逻辑形式: (7)不识庐山真面目,只缘生在此山中。 令P:身在此山中; Q:识庐山真面目;译为P ~ Q (8)两个三角形相似当且仅当它们对应角相等或者对应边 成比例。 令P:两个三角形相似; Q:对应角相等; R:对应边成比例;译为 P (Q R) (9)如果一个整数能被6整除,那么它就能被2和3整除。 如果一个整数能被3整除,那么它的各位数字之和也能 被3整除。 令P:被6整除; Q:被2整除; R:被3整除; S:各位数字之和被3整 除。译为(P (Q R)) (R S)
习题一 14.
• 从A、B、C、D4人中派2人出差,要求满足下述条件:如 果A去,则必须在C或D中选一人同去;B和C不能同时去; C和D不能同去。用构造范式的方法决定出选派方案。 若X表示“X去出差”, 可得公式 (A (C D)) ~(B C) ~(C D) (~A (C ~D) (~C D) ) (~B ~C ) (~C ~D ) …… (~A ~B ~C ~D) (~A ~B ~C D) (~A ~B C ~D) (~A B ~C ~D) (A ~B ~C D) (A ~B C ~D) (~A B ~C D) (A B ~C D) 可得派法: {B, D} {A, C} {A, D}
(完整版)离散数学答案(尹宝林版)第一章习题解答

(完整版)离散数学答案(尹宝林版)第一章习题解答第一章命题逻辑习题与解答⒈ 判断下列语句是否为命题,并讨论命题的真值。
⑴ 2x - 3 = 0。
⑵ 前进!⑶ 如果8 + 7 > 20,则三角形有四条边。
⑷ 请勿吸烟!⑸ 你喜欢鲁迅的作品吗?⑹ 如果太阳从西方升起,你就可以长生不老。
⑺ 如果太阳从东方升起,你就可以长生不老。
解⑶,⑹,⑺表达命题,其中⑶,⑹表达真命题,⑺表达假命题。
⒉ 将下列命题符号化:⑴ 逻辑不是枯燥无味的。
⑵ 我看见的既不是小张也不是老李。
⑶ 他生于1963年或1964年。
⑷ 只有不怕困难,才能战胜困难。
⑸ 只要上街,我就去书店。
⑹ 如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐。
⑺ 如果林芳在家里,那么他不是在做作业就是在看电视。
⑻ 三角形三条边相等是三个角相等的充分条件。
⑼ 我进城的必要条件是我有时间。
⑽ 他唱歌的充分必要条件是心情愉快。
⑾ 小王总是在图书馆看书,除非他病了或者图书馆不开门。
解⑴ p :逻辑是枯燥无味的。
“逻辑不是枯燥无味的”符号化为 ?p 。
⑵ p :我看见的是小张。
q :我看见的是老李。
“我看见的既不是小张也不是老李”符号化为q p ?∧?。
⑶ p :他生于1963年。
q :他生于1964年。
“他生于1963年或1964年”符号化为p ⊕ q 。
⑷ p :害怕困难。
q :战胜困难。
“只有不怕困难,才能战胜困难”符号化为q → ? p 。
⑸ p :我上街。
q :我去书店。
“只要上街,我就去书店”符号化为p → q 。
⑹ p :小杨晚上做完了作业。
q :小杨晚上没有其它事情。
r :小杨晚上看电视。
s :小杨晚上听音乐。
“如果晚上做完了作业并且没有其它事情,小杨就看电视或听音乐”符号化为s r q p ∨→∧。
⑺ p :林芳在家里。
q :林芳做作业。
r :林芳看电视。
“如果林芳在家里,那么他不是在做作业就是在看电视”符号化为r q p ∨→。
⑻ p :三角形三条边相等。
离散数学 左孝凌 课后习题解答 详细

表 1.33
p q q→p p→(q→p) p q p→q p→(p→q)
00 1
1
11 1
1
01 0
1
10 1
1
10 1
1
01 1
1
11 1
1
00 0
1
8
第1章 习题解答
由上表可见:p→(q→p)和p→(p→q)的真值表完全相同,且都是永真式,所以 p→(q →p)p→(p→q)。
⑹(p↔q)(p∨q)∧(p∧q) 证明:证明(p↔q)和(p∨q)∧(p∧q)的真值表如表 1.34 所示。
表 1.29
p q p→q (p→q) q p∧q
00 1Biblioteka 01001 100
0
10 0
11
1
11 1
00
0
由上表可见:(p→q)和 p∧q 的真值表完全相同,所以(p→q)p∧q。 ⑵p→qq→p 证明:证明 p→qq→p 的真值表如表 1.30 所示。
表 1.30
p q p→q p q q→p
00 1 1 1
3
第1章 习题解答
⑶ p:我们划船;q:我们跑步;原命题符号化为:(p∧q)。 ⑷ p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p→(q↔r)。 5. 用符号形式写出下列命题。 ⑴假如上午不下雨,我去看电影,否则就在家里读书或看报。 ⑵我今天进城,除非下雨。 ⑶仅当你走,我将留下。 解:⑴ p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符 号化为:(p→q)∧(p→r∨s)。 ⑵ p:我今天进城;q:天下雨;原命题符号化为:q→p。 ⑶ p:你走;q:我留下;原命题符号化为:q→p。
1
离散数学第一章习题解答,屈婉玲耿素云高等教育出版社

习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为1.(2是无理数.答:此命题是简单命题,其真值为1.(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1.(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0.(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0.(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p:错误!未找到引用源。
是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1是有理数.是无理数.p.q.其否定式q的真值为1.(2不是无理数.答:是有理数. p 不是无理数. q 是有理数. 其否定式q 的真值为1.(3)2.5是自然数.答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1.(4)ln1是整数.答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值. (1)2与5都是素数答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数.答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧⌝,其真值为1. (4)3是偶素数.答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数.答:p :4是素数,q :4是偶数,符号化为p q ⌝∧⌝,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数.(4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数.答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ⌝∨⌝,其真值为1.(5) 符号化:r s ⌝∨⌝,其真值为0. 6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ⌝∧∨∧⌝. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p与q同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p与q不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值.(1)只要错误!未找到引用源。
离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2(1)p:2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命可编辑范本题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
⑺p:a是偶数;q:b是偶数;r:a+b是偶数;原命题符号化为:p∧q→r4. 将下列命题符号化,并指出各复合命题的真值。
⑴如果3+3=6,则雪是白的。
⑵如果3+3≠6,则雪是白的。
⑶如果3+3=6,则雪不是白的。
⑷如果3+3≠6,则雪不是白的。
⑸3是无理数当且仅当加拿大位于亚洲。
⑹2+3=5的充要条件是3是无理数。
(假定是10进制)⑺若两圆O1,O2的面积相等,则它们的半径相等,反之亦然。
⑻当王小红心情愉快时,她就唱歌,反之,当她唱歌时,一定心情愉快。
解:设p:3+3=6。
q:雪是白的。
⑴原命题符号化为:p→q;该命题是真命题。
⑵原命题符号化为:⌝p→q;该命题是真命题。
⑶原命题符号化为:p→⌝q;该命题是假命题。
⑷原命题符号化为:⌝p→⌝q;该命题是真命题。
⑸p:3是无理数;q:加拿大位于亚洲;原命题符号化为:p↔q;该命题是假命题。
⑹p:2+3=5;q:3是无理数;原命题符号化为:p↔q;该命题是真命题。
⑺p:两圆O1,O2的面积相等;q:两圆O1,O2的半径相等;原命题符号化为:p↔q;该命题是真命题。
⑻p:王小红心情愉快;q:王小红唱歌;原命题符号化为:p↔q;该命题是真命题。
习题1.21.判断下列公式哪些是合式公式,哪些不是合式公式。
⑴(p∧q→r)⑵(p∧(q→r)⑶((⌝p→q)↔(r∨s))⑷(p∧q→rs)⑸((p→(q→r))→((q→p)↔q∨r))。
解:⑴⑶⑸是合式公式;⑵⑷不是合式公式。
2.设p:天下雪。
q:我将进城。
r:我有时间。
将下列命题符号化。
⑴天没有下雪,我也没有进城。
⑵如果我有时间,我将进城。
⑶如果天不下雪而我又有时间的话,我将进城。
解:⑴⌝p∧⌝q⑵r→q⑶⌝p∧r→q3.设p、q、r所表示的命题与上题相同,试把下列公式译成自然语言。
⑴r∧q⑵¬ (r∨q)⑶q↔ (r∧¬ p)⑷(q→r)∧(r→q)解:⑴我有时间并且我将进城。
⑵我没有时间并且我也没有进城。
⑶我进城,当且仅当我有时间并且天不下雪。
⑷如果我有时间,那么我将进城,反之亦然。
4. 试把原子命题表示为p、q、r等,将下列命题符号化。
⑴或者你没有给我写信,或者它在途中丢失了。
⑵如果张三和李四都不去,他就去。
⑶我们不能既划船又跑步。
⑷如果你来了,那末他唱不唱歌将看你是否伴奏而定。
解:⑴p:你给我写信;q:信在途中丢失;原命题符号化为:(⌝p∧⌝ q)∨(p∧q)。
⑵p:张三去;q:李四去;r:他去;原命题符号化为:⌝p∧⌝q→r。
⑶p:我们划船;q:我们跑步;原命题符号化为:⌝(p∧q)。
⑷p:你来了;q:他唱歌;r:你伴奏;原命题符号化为:p→(q↔r)。
5. 用符号形式写出下列命题。
⑴假如上午不下雨,我去看电影,否则就在家里读书或看报。
⑵我今天进城,除非下雨。
⑶仅当你走,我将留下。
解:⑴p:上午下雨;q:我去看电影;r:我在家读书;s:我在家看报;原命题符号化为:(⌝p→q)∧(p→r∨s)。
⑵p:我今天进城;q:天下雨;原命题符号化为:⌝q→p。
⑶p:你走;q:我留下;原命题符号化为:q→p。
习题1.31.设A、B、C是任意命题公式,证明:⑴A⇔A⑵若A⇔B,则B⇔A⑶若A⇔B,B⇔C,则A⇔C证明:⑴由双条件的定义可知A↔A是一个永真式,由等价式的定义可知A⇔A成立。
⑵因为A⇔B,由等价的定义可知A↔B是一个永真式,再由双条件的定义可知B↔A 也是一个永真式,所以,B⇔A成立。
⑶对A、B、C的任一赋值,因为A⇔B,则A↔B是永真式,即A与B具有相同的真值,又因为B⇔C,则B↔C是永真式,即B与C也具有相同的真值,所以A与C也具有相同的真值;即A⇔C成立。
2.设A、B、C是任意命题公式,⑴若A∨C⇔B∨C, A⇔B一定成立吗?⑵若A∧C⇔B∧C, A⇔B一定成立吗?⑶若¬A⇔¬B,A⇔B一定成立吗?解:⑴不一定有A⇔B。
若A为真,B为假,C为真,则A∨C⇔B∨C成立,但A⇔B 不成立。
⑵不一定有A⇔B。
若A为真,B为假,C为假,则A∧C⇔B∧C成立,但A⇔B不成立。
⑶一定有A⇔B。
3.构造下列命题公式的真值表,并求成真赋值和成假赋值。
⑴q∧(p→q)→p⑵p→(q∨r)⑶(p∨q)↔(q∨p)⑷(p∧⌝q)∨(r∧q)→r⑸((¬p→(p∧¬q))→r)∨(q∧¬r)解:⑴q∧(p→q)→p的真值表如表1.24所示。
表1.24使得公式q∧(p→q)→p成真的赋值是:00,10,11,使得公式q∧(p→q)→p成假的赋值是:01。
⑵p→(q∨r)的真值表如表1.25所示。
表1.25使得公式p→(q∨r)成真的赋值是:000,001,010,011,101,110,111,使得公式p→(q∨r)成假的赋值是:100。
⑶(p∨q)↔(q∨p)的真值表如表1.26所示。
表1.26所有的赋值均使得公式(p∨q)↔(q∨p)成真,即(p∨q)↔(q∨p)是一个永真式。
⑷(p∧⌝q)∨(r∧q)→r的真值表如表1.27所示。
表1.27111,使得公式(p∧⌝q)∨(r∧q)→r成假的赋值是:100。
⑸((⌝p→(p∧⌝q))→r)∨(q∧⌝r)的真值表如表1.28所示。
表1.28使得公式((⌝p→(p∧⌝q))→r)∨(q∧⌝r)成真的赋值是:000,001,010,011,101,110,111,使得公式((⌝p→(p∧⌝q))→r)∨(q∧⌝r)成假的赋值是:100。
4.用真值表证明下列等价式:⑴⌝(p→q)⇔p∧⌝q证明:证明⌝(p→q)⇔p∧⌝q的真值表如表1.29所示。
表1.29由上表可见:⌝(p→q)和p∧⌝q的真值表完全相同,所以⌝(p→q)⇔p∧⌝q。
⑵p→q⇔⌝q→⌝p证明:证明p→q⇔⌝q→⌝p的真值表如表1.30所示。
表1.30由上表可见:p→q和⌝q→⌝p的真值表完全相同,所以p→q⇔⌝q→⌝p。
⑶⌝(p↔q)⇔p↔⌝q证明:证明⌝(p↔q)和p↔⌝q的真值表如表1.31所示。
表1.31由上表可见:⌝(p↔q)和p↔⌝q的真值表完全相同,所以⌝(p↔q)⇔p↔⌝q。
⑷p→(q→r)⇔(p∧q)→r证明:证明p→(q→r)和(p∧q)→r的真值表如表1.32所示。
表1.32由上表可见:p→(q→r)⇔(p∧q)→r。
⑸p→(q→p)⇔ ⌝p→(p→⌝q)证明:证明p→(q→p)和⌝p→(p→⌝q)的真值表如表1.33所示。
表1.33由上表可见:p→(q→p)和⌝p→(p→⌝q)的真值表完全相同,且都是永真式,所以p→(q →p)⇔⌝p→(p→⌝q)。
⑹⌝(p↔q)⇔(p∨q)∧⌝(p∧q)证明:证明⌝(p↔q)和(p∨q)∧⌝(p∧q)的真值表如表1.34所示。
表1.34由上表可见:⌝(p↔q)和(p∨q)∧⌝(p∧q)的真值表完全相同,所以⌝(p↔q)⇔(p∨q)∧⌝(p∧q)⑺⌝(p↔q)⇔(p∧⌝q)∨(⌝p∧q)证明:证明⌝(p↔q)和(p∧⌝q)∨(⌝p∧q)的真值表如表1.35所示。
表1.35由上表可见:⌝(p↔q)和(p∧⌝q)∨(⌝p∧q)的真值表完全相同,所以⌝(p↔q)⇔(p∧⌝q)∨(⌝p∧q)。
⑻p→(q∨r)⇔(p∧⌝q)→r证明:证明p→(q∨r)和(p∧⌝q)→r的真值表如表1.36所示。
表1.36由上表可见:p→(q∨r)和(p∧⌝q)→r的真值表完全相同,所以p→(q∨r)⇔(p∧⌝q)→r。
5. 用等价演算证明习题4中的等价式。
⑴⌝(p→q)⇔⌝(⌝p∨q) (条件等价式) ⇔p∧⌝q (德·摩根律)⑵⌝q→⌝p⇔⌝⌝q∨⌝p (条件等价式) ⇔q∨⌝p (双重否定律)⇔⌝p∨q (交换律)⇔ p→q (条件等价式)⑶⌝(p↔q)⇔⌝((p→q)∧(q→p)) (双条件等价式) ⇔⌝((⌝p∨q)∧(⌝q∨p)) (条件等价式) ⇔(p∧⌝q)∨(q∧⌝p) (德·摩根律) ⇔((p∧⌝q)∨q)∧((p∧⌝q)∨⌝p) (分配律)⇔(p∨q)∧(⌝q∨⌝p) (分配律)⇔(⌝p∨⌝q)∧(q∨p) (交换律)⇔(p→⌝q)∧(⌝q→p) (条件等价式) ⇔p↔⌝q (双条件等价式) ⑷p→(q→r)⇔⌝p∨(⌝q∨r) (条件等价式)⇔(⌝p∨⌝q)∨r (结合律)⇔⌝(p∧q)∨r (德·摩根律)⇔(p∧q)→r (条件等价式) ⑸p→(q→p)⇔⌝p∨(⌝q∨p) (条件等价式) ⇔T⌝p→(p→⌝q)⇔p∨(⌝p∨⌝q) (条件等价式) ⇔T所以p→(q→p)⇔ ⌝p→(p→⌝q)⑹⌝(p↔q)⇔⌝((p∧q)∨(⌝p∧⌝q)) (例1.17)⇔(p∨q)∧(⌝p∨⌝q) (德·摩根律) ⇔(p∨q)∧⌝(p∧q) (德·摩根律) 所以⌝(p↔q)⇔(p∨q)∧⌝(p∧q)⑺⌝(p↔q)⇔⌝((p→q)∧(q→p)) (双条件等价式) ⇔⌝((⌝p∨q)∧(⌝q∨p)) (条件等价式) ⇔(p∧⌝q)∨(⌝p∧q) (德·摩根律)⑻p→(q∨r)⇔⌝p∨(q∨r) (条件等价式)⇔(⌝p∨q)∨r (结合律)⇔⌝(p∧⌝q)∨r (德·摩根律)⇔(p∧⌝q)→r (条件等价式)6.试用真值表证明下列命题定律。