二维核磁共振谱全解

合集下载

核磁共振二维谱简介

核磁共振二维谱简介
一维核磁共振谱:横坐标同时表示化学位移和偶合常数2种 不同的核磁共振参数。
二维核磁共振谱:采用不同的脉冲序列技术,得到图谱中 一个坐标表示化学位移,另一个坐标表示偶合常数,或另 一个坐标表示同核或异核化学位移,这类核磁图谱称作二 维核磁共振谱。
3
技术依托
(1)自旋核调控脉冲技术 (2)自旋核特性的理论发展 (3)计算机技术的发展 (4)超导磁体的发展
9
三、2DHH相关谱(HHCOSY)
Correlatedspectroscopy(COSY)
主要解决的问题: 建立结构中存在偶合 1 1 关系的 H与 H的联系
对角峰
相关峰 偶合关系
10
ቤተ መጻሕፍቲ ባይዱ 11
1 四、检测 H的化学位移相关谱
1,HMQC谱
12
2,HMBC谱
13
Theend
14
1)确定复杂图谱中碳原子与连接质子之间偶合常数 2)确定复杂图谱中质子质子之间的偶合常数 3)建立相互偶合的质子之间的关系 4)建立质子与碳之间的连接关系 5)建立分子中碳原子之间的连接关系 6)对一维图谱中的信号进行准确归属
8
二、2DJ分解谱(Jresolvedspectroscopy)
分同核J分解谱和异核J分解谱,异核J分解谱可区分碳的级 数,可用DEPT谱代替。
4
一维NMR实验过程
射 频 脉
预备期
检测期 ( t ) 2
S(t ) 2 (FID ) 傅立叶 变 换
S(n2)
5
二维NMR多 脉冲序列 预备期 Preparationperiod 演化期(t1) Evolutionperiod 混合期 Mixingperiod 检测期(t2) Detectionperiod

二维NMR谱原理及解析

二维NMR谱原理及解析
H0
碳谱与氢 谱的对比
氢谱不足
不能测定不 含氢的官能 团
对于含碳较多的 有机物,烷氢的 化学环境类似, 而无法区别
碳谱补充
给出各种含碳官能团 的信息,几乎可分辨 每一个碳核,光谱简 单易辨认
2.2
2.0
1.8
1.6
1.4
1.2
ppm
1D 谱 分辨率可通过提高外磁场强 度和增加谱图的维数而提高. nD NMR (n=2,3,4)
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
一维核磁共振氢谱
1D NMR--脉冲序列和原理示意图
D1
核磁共振氢谱
1H NMR是应用最为广泛的核磁共振波谱。
JBC=7 Hz
B,C是磁不等价的核
JAB JAC
Hc C B
A
A
*C
*CH
*CH2 H2
*CH3 H3 H2 H1 C
H1 C C C
H1
由于一些核的自然丰度并非100%.顾此谱图中可能出现偶合分 裂的峰和无偶合的峰.氯仿中的氢谱是一个典型的例子.
H-12C H-13C
H-13C x100
105 Hz
B0
Be
原子核实际感受到的磁场: B = (1-s) B0 S:化学位移常数
化学位移
分子中的原子并不是孤立存在,它不仅在相互间发生作用也同周围环 境发生作用,从而导致相同的原子核却有不同的核磁共振频率.
化学位移
自旋-自旋偶合
Larmor
E B0
频率
e.g. B0=11.7 T,
w(1H)=500 MHz w(13C)=125 MHz 化学位移 ~ B0 » kHz 自旋-自旋偶合» Hz-kHz

二维核磁共振谱的原理

二维核磁共振谱的原理

二维核磁共振谱的原理
二维核磁共振谱的原理是利用傅里叶变换将化学位移、耦合常数等核磁共振参数展开在二维平面上。

这样,在一维谱中重叠在一个频率坐标轴上的信号分别在两个独立的频率坐标轴上展开,从而减少了谱线的拥挤和重叠,提供了自旋核之间相互作用的信息。

具体来说,二维核磁共振谱技术的基本原理可以用二维傅里叶变换来解释。

当样品置于两个垂直的外磁场中时,样品中的原子核会在这两个磁场的作用下产生多重共振信号。

通过调节两个外磁场的频率,可以得到关于样品内部核之间相互作用的二维核磁共振谱数据。

二维核磁共振谱综述

二维核磁共振谱综述
1.什么是二维谱 二维核磁共振(2D NMR)方法是有Jeener 于1971年首先提出 的,是一维谱衍生出来的新实验方法.引入二维后,减少了谱线的拥 挤和重叠,提高了核之间相互关系的新信息.因而增加了结构信息, 有利于复杂谱图的解析.特别是应用于复杂的天然产物和生物大分 子的结构鉴定,2DNMR是目前适用于研究溶液中生物大分子构象 的唯一技术.一维谱的信号是一个频率的函数,记为S(ω),共振峰分 别在一条频率轴上.而二维谱是两个独立频率变量的信号函数,记 为S(ω1,ω2),共振峰分布在由两个频率轴组成的平面上.2D-NMR 的b最大特点是将化学位移,偶合常数等参数字二维平面上展开,于 是在一般一维谱中重叠在一个频率轴上的信号,被分散到两个独立 的频率轴构成的二维平面上.,同时检测出共振核之间的相互作用.
3.二维谱的表达方式
(1)堆积图(stacked plot). • 堆积图的优点是直观,具有立体感.缺点是 难以确定吸收峰的频率。大峰后面可能隐 藏小峰,而且耗时较长。 • (2)等高线(Contour plot) 等高线图类似于等高线地图,这种图的优 点是容易获得频率定量数据,作图快。缺 点是低强度的峰可能漏画。目前化学位移 相关谱广泛采用等高线。
4.2 化学位移相关谱(Correlated Spectroscopy ,COSY)
• 二维化学位移相关谱包括 • 同核化学位移相关谱(Homonuclear correlation) • 1)通过化学键:COSY, TOCSY, 2DINADEQUATE。 • 2)通过空间:NOESY, ROESY。 • 异核化学位移相关谱(Heteronuclear correlation) • 强调大的偶合常数:1H-13C –COSY • 强调小的偶合常数,压制大的偶合常数: COLOC(远程1H-13C –COSY)

【2019年整理】二维核磁共振谱精简2

【2019年整理】二维核磁共振谱精简2

测一些弱小的相关峰很有
01:37
用。
投影图
是1D谱形式,相当于宽 带质子去偶氢谱,可准 确确定各谱峰的化学位 移值。
截面图
12
J分解谱
1. 同核J分解谱
一维谱中谱峰往往严重重叠,造成谱线裂分不 能 清楚分辨, 耦合常数不易读出。
在二维 J分解 谱中,只要化学位移 d 略有差别,
峰组的重叠就有可能避免,从而解决一维谱谱峰重 叠的问题。
01:37
27
XX
MM A
COSY-90
2,3-二溴丙酸
谱中任意一个交叉峰含两个紧靠的矩 形(它们共同形成一个交叉峰),通 过稍下的矩形中心往稍上的矩形中心 连线,可得到一倾斜的箭头。箭头指 向左上为正,箭头指向右上为负。
COSY-45
通常通过偶数键偶合的偶合常数J为
负值,通过奇数键偶合的偶合常数J
01:37
13
同核J分解谱 AX体系
谱信息: (弱偶合体系) ≥10时为弱偶合,一级图谱。 w2: 全去偶谱 →化学位移 dH,转动前化学位移与耦合常数同时出现。 w1: 谱线多重性 → 偶合常数 JHH,峰组的峰数一目了然。 若为强偶合体系,其同核J谱的表现形式将比较复杂。
01:37
14
同核J分解谱
CH3 CH2
65
CH2 CH2 C
CH3
4 321
01:37
25
F2域及F1域皆为1D 1H-NMR
先用化学位移判断, 后用交叉峰验证。
2位H与3位H 3位H与4位H
谷氨酸的COSY90o等高线图
01:37
26
6 COSY-45(-COSY)
减小COSY脉冲序列中第二个脉冲的宽度,使脉冲角度 为度,较多使用45。 优点: (1)对角线峰沿对角线的宽度降低,有利于发现强耦 合体系之间的相关峰; (2)从COSY-45可判别耦合常数的符号。

二维核磁共振氢谱-解释说明

二维核磁共振氢谱-解释说明

二维核磁共振氢谱-概述说明以及解释1.引言1.1 概述核磁共振(NMR)技本是一种非常重要的分析技术,广泛应用于化学、生物化学、药物研究等领域。

其通过原子核所具有的自旋和电荷产生的磁矩,与外加磁场相互作用,从而产生共振现象,通过测定不同原子核在不同化学环境中的共振频率,可以为分子结构的研究提供丰富的信息。

而二维核磁共振氢谱则是核磁共振技术的重要分支,它通过核磁共振原理和多维谱的记录方式,可以进一步提供复杂分子结构的详细信息,成为研究和分析的重要工具。

本文将深入介绍二维核磁共振氢谱的原理、应用和技术发展,以期对该领域的研究工作有所帮助。

1.2 文章结构文章结构部分应该包括对整篇文章的组织和内容安排进行介绍。

可以描述文章的逻辑顺序和各个部分的内容提要,让读者对整篇文章的架构有一个清晰的了解。

例如:文章结构部分将介绍本文的组织结构和内容安排。

首先,对于二维核磁共振氢谱的原理将进行详细的解释和讨论,包括其基本概念和相关理论知识。

其次,将探讨二维核磁共振氢谱在不同领域的应用,以及其在科学研究和医学诊断中的重要性。

最后,将阐述二维核磁共振氢谱的技术发展以及对未来可能的影响。

通过这样的结构安排,读者可以清晰了解本文的内容和重点讨论的方向。

1.3 目的本文的目的在于深入探讨二维核磁共振氢谱在化学领域中的重要性和应用价值。

通过对二维核磁共振氢谱原理、应用和技术发展的全面介绍,可以帮助读者更深入地理解这一技术在分析化学物质中的作用。

同时,也旨在对未来二维核磁共振氢谱技术的发展方向进行展望,为相关领域的研究和实践提供一定的指导和借鉴。

通过本文的阐述,读者将能够更好地把握二维核磁共振氢谱的前沿动态,从而为相关领域的研究和应用提供帮助和启发。

2.正文2.1 二维核磁共振氢谱的原理二维核磁共振氢谱(2D NMR)是一种核磁共振(NMR)技术,它通过在两个独立的核磁共振实验中收集数据,并通过两个独立的核磁共振实验之间的相互关联来提供额外的信息。

2D核磁共振谱

2D核磁共振谱

t1
t2
2D NMR Pulse Sequence
The 2D NMR Spectrum
Pulse Sequence
t1
t2
Spectrum
Before mixing
Coupled spins
After mixing
The Power of 2D NMR: Resolving Overlapping Signals
丙烯酸丁酯的同核J分解谱
2 D J 分解 1H NMR谱

Mugineic acid 是存在于禾本科植物中,具有输送铁 的功能的一种物质
COO 1' + NH
-
COO1'' + N H2 OH
COOH OH
异核 J 谱

异核 J 谱常见的为碳原子与氢原子之间产生偶合的 J 分解谱,它的
2方向(水平轴)的投影如同全去偶碳谱。 1方向(垂直轴)反映
O
8
10 4 6
7
15
HO
用以区别偕偶和邻偶的COSY-45谱
H-H COSY
COSY-45
11 1 2 3 12 13 14
O
8
10 4 6
7
15
HO
NOESY 和ROESY

二维 NOE 谱简称为 NOESY,它反映了有机化合物结构中核与核之间空间距离的关 系,而与二者间相距多少根化学键无关。因此对确定有机化合物结构、构型和构
2D 核磁共振谱
胡立宏 研究员
2004-2
Slide number
二维 FT-NMR

是八十年代经 Ernst和 Freeman 等小组的努力发展起来的 NMR新技术,是NMR软件开发和应用最新技术的结果。 二维核磁共振谱的出现对鉴定有机化合物结构来说,解决 问题更客观、可靠,而且提高了所能解决的难度和增加了 解决问题的途径。 化学位移和偶合常数: (H)- (H), (H)-(C), (C)-(C), (H)-J, (C)-J 采用软件对对二维谱进行自动解析

二维核磁共振谱

二维核磁共振谱

3. 确定未知物中季碳原子的连接关系
季碳原子上不直接连氢,因此COSY上没有与其对应的交叉峰。 要把季碳原子和别的耦合体系连接起来需要COLOC或HMBC。
4. 确定未知物中的杂原子,并完成它们的连接 从碳谱、氢谱有可能确定杂原子的存在形式,如―C≡N,
―C=N―,―OH,―OCH3等。 从δc,δH的数值,可判断碳氢官能团与杂原子的连接关系。 从碳-氢长程相关谱可确定杂原子与碳氢官能团之间的连接,因
在这样的二维谱中,横座标刻度(ω2)为碳谱化学位移,在该谱上方 有常规碳谱。纵座标为双量子频率ω1,在2D INADEQUATE谱中有一条 ω1=2ω2的准对角线。所有耦合的(相邻的)一对碳-13核会在同一水平 线上(ω1相同),左右对称地处于准对角线的两侧,且ω2分别等于它们 的δ值处有相关峰。据此可以找出相邻的两碳原子,进而可以连出整个分 子的碳原子骨架。
OH
HO
O
OH
O
HO
OH O
例4:从茛科铁破锣属(Beesia)植物中分离到一新化合物gbc-26,为白 色无定形粉末,mp.274-276℃(CHCl3-MeOH,c,[α]D20十2.6;MeOH, c,0.12),Liebermann-Burchard反应阳性,Molish反应阳性、薄层 水解检识有木糖。 FAB-MS显示 m/z683[M+H]+,结合1H和13CNMR谱数据推测其分子式 为C37H62O11,不饱和度为7。 IR谱在3600-3100及1040,1090出现强吸收;在1720,1260cm-1显示 强吸收带。
6.56(dd,H-7),
5.99(d,H-8), 2.20
(s,H-10), 1.51(s,5-
Me), 0.87(s,1-Me), 0.78(s,1’-Me)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
3)多量子谱 通常所测定的核磁共振谱线为单量子跃迁
(Δm=± 1)。发生多量子跃迁时Δm为大于 1的整 数。研究多量子跃迁可以帮助解决以下问题:( 1) 多量子跃迁随着阶数的增加,跃迁数目迅速减少, 应用高阶多量子谱使谱得到简化;( 2)利用多量 子相关的特征,选择性地探测一定阶数的多量子 信号,使不同自旋系统得以分开;( 3)多量子滤 波可以简化为一维和二维谱,用脉冲序列可以检 测出多量子跃迁,得到多量子跃迁的二维谱。
二维核磁共振波谱法
二维核磁共振 (2D NMR) 方法是Jeener 于1971 年首先提出的 ,是一维谱衍生出来的新实验方法。
引入二维后 , 不仅可将化学位移、偶合常数等 参数展开在二维平面上,减少了谱线的拥挤和 重叠, 而且通过提供的 HH、CH、CC之间的偶合 作用以及空间的相互作用,确定它们之间的连 接关系和空间构型,有利于复杂化合物的谱图 解析,特别是应用于复杂的天然产物和生物大 分子的结构鉴定。 2DNMR也是目前适用于研究 溶液中生物大分子构象的唯一技术。
15
在同核1H,1H -2D J分解谱中,被测定的核为 1H核。
16
3
2
5
4
6
H
3
C CH3
4
O
C1
5
6
C
2
O CH2 CH3
H
F1
-10
J0 (HZ)
10
δH 6
4
2 F2
反式丙烯酸乙酯的 1H-1H同核二维J分解谱
4、检测期: 在此期间检测作为 t2函数的各种横向矢 量的FID的变化,它的初始相及幅度受到 t1函数 的调制。
与t2轴对应的ω2( F2轴),通常是化学位移, 与t1轴对应的ω1( F1 轴)是什么,取决于二维谱 的类型。
5
实验过程: t1=t+nΔt
数据矩阵
二维核磁共振谱
数据矩阵对t2FT


14
二、 二维J分解谱
二维J分解谱是将不同的 NMR信号分解在两 个不同的轴上,使重叠在一起的一维谱的化学 位移δ和偶合常数 J分解在平面两个坐标上,提 供了精确的偶合裂分关系,便于解析。二维 J分 解谱分为同核和异核 J分解谱。
(一)氢、氢同核二维 J分解谱
同核二维J分解谱将1HNMR中重迭密集的谱线多重峰结 构展开在一个二维平面上,可将偶合常数3JHH(或2JHH)与 化学位移分别在F1、F2二个轴上给出,在F1轴上清晰给出 峰的多重性,读取J值。
F1



1t FT
F2
6
用固定时间增量⊿t1依次递增 t1进行系列实验, 反复叠加,因 t2时间检测的信号 S(t2)的振幅或相 位受到s(t1)的调制,则接收的信号不仅与 t2有关, 还与t1有关。每改变一个 t1,记录S(t2), 因此得到 分别以时间变量 t1, t2为行列排列数据矩阵,即在 检测期获得一组 FID信号,组成二维时间信号 S(t1,t2) 。因t1,t2是两个独立时间变量,可以分别 对它们进行傅立叶变换,一次对 t2,一次对t1,两次 傅立叶变换的结果,可以得到两个频率变量函数 S(ω1,ω2)的二维谱。
2
一、1D-NMR 到2D-NMR的技术变化 (一)一维核磁共振谱及脉冲序列 基本脉冲序列 :
3
(二)二维核磁共振谱及基本脉冲序列 基本脉冲序列 :
二维谱实验通常分为 4个阶段:
d
t1
tm
t2
预备期
演化期
混合期
检测期
1、预备期: 预备期ห้องสมุดไป่ตู้时间轴上通常是一个较长
的时期,使核自旋体系回复到热平衡状态,
7
二、常用 2D-NMR图谱的表现形式 1.堆积图 堆积图的优点是直观 ,具有立体感 .缺点是 难以确定吸收峰的频率。大峰后面可能隐藏 小峰,而且耗时较长。
8
2.等高线图
等高线图中最中心的圆圈表示峰的位置, 圆圈的数目表示峰的强度。
等高线图类似于等高线地图,这种图的优点 是容易获得频率定量数据,作图快。缺点是 低强度的峰可能漏画。目前化学位移相关谱 广泛采用等高线图。 3. 投影图(一维谱) 堆积图在 F1或F2方向上的投影,是一维谱形 式,可用来准确确定 F1轴或F2轴上各谱峰的 化学位移值。
交叉峰有两个,分别出现
1
2
34
5
在对角线两侧,并以对角
线对称。这两个交叉峰和
对角峰可以组成一个正方 形,并且由此来推测这两
F1
组核A和X有偶合关系(或
彼此相关)。
O
CH3 CH2
CH2 CH2 C
CH3
5432
1
F2
12
第二节 二维核磁共振光谱的类型
一、二维核磁共振光谱的分类 二维谱可分为三类: 1)J 分解谱
4
2、演化期: 在t1开始时由一个脉冲或几个脉 冲使体系激发,使之处于非平衡状态。 t1=t+nΔt ,逐步延长,其对应的核磁信号的相 位和幅值也就不相同。 3、混合期: 由一组固定长度的脉冲和延迟组成。
在此期间通过相干或极化的传递,建立检测条件。 混合期有可能不存在,它不是必不可少的(视二 维谱的种类而定)
J 分解谱亦称 J谱或者δ -J谱。它把化学位移和自 旋偶合的作用分辨开来,分别用 F2、F1表示,包 括异核和同核 J谱。 2)化学位移相关谱
化学位移相关谱也称δ -δ谱,它把不同自旋核的 共振信号相互关联起来,是二维谱的核心。包括 同核化学位移相关谱,异核化学位移相关谱, NOESY 和化学交换谱等。
1
第一节 基本原理
NMR 一维谱的信号是一个频率的函数,共振峰 分布在一个频率轴(或磁场)上,可记为S(ω)。
二维谱信号是二个独立频率(或磁场)变量的函 数,记为S(ω 1,ω2),共振信号分布在两个频率轴组成的 平面上。也就是说 2D NMR将化学位移、偶合常数 等NMR参数在二维平面上展开,于是在一般一维谱 中重迭在一个坐标轴上的信号,被分散到由二个独 立的频率轴构成的平面上,使得图谱解析和寻找核 之间的相互作用更为容易。不同的二维 NMR方法得 到的图谱不同,二个坐标轴所代表的参数也不同。
9
β-紫罗兰酮
10
三、二维谱共振峰的名称
1.对角峰
1
5
它们处在坐标F1=F2 2
34
的对角线上,每组自
旋核都有一个对角峰。
对角峰在F1或F2上的
投影得到常规的一维 偶合谱或去偶谱。
F1
O
CH3 CH2
CH2 CH2 C
CH3
5432
1
F2
11
2.交叉峰
交叉峰也称为相关峰,它们不在对角线上,
即坐标 F1≠F 2。交叉峰显示了具有相同偶合常 数的不同核之间的偶合(交叉)。
相关文档
最新文档