浅谈晶体缺陷及其应用
材料科学中的晶体缺陷研究

材料科学中的晶体缺陷研究晶体缺陷是指晶体中存在的一些不规则的原子或离子排列和分布问题,是材料科学研究中重要的研究内容。
晶体缺陷的存在对材料的物理、化学和力学性质都有着重要的影响。
因此,通过深入地研究晶体缺陷,可以为我们探索材料的基本特性提供更为准确的理论依据。
下面,我们将从三个方面阐述晶体缺陷的相关内容。
1. 晶体缺陷的种类晶体缺陷的种类较多,其中包括点缺陷、线缺陷、面缺陷和体缺陷等。
点缺陷是指晶体中某些空位位于正常位置上,并且这些空位与晶体中的原子占据相同的位置。
点缺陷的种类有很多,包括空位、间隙原子、杂质原子等。
线缺陷指在晶体中形成一维线状的缺陷,它们包括晶界缺陷、螺旋位错、链状位错和位错环等。
面缺陷是指二维空间中缺陷形成的区域,它们包括晶体表面、晶体内的晶界、堆垛错、微观分异和悬线等。
而体缺陷则是指晶体内部三维空间中的缺陷,它们包括孔隙、空洞、杂质团、脱电子空穴、瑞士面等等。
2. 晶体缺陷对材料性能的影响晶体缺陷是材料学中的关键问题,它们直接影响材料的物理和力学性质。
例如,在金属中存在大量的位错,这些位错会导致材料的塑性行为和热稳定性变化。
晶体缺陷的处理方式可以通过材料中的热处理、拉伸或其他方法来控制,这些方法会改变材料中缺陷的种类和密度,从而影响材料的性质和应用。
例如,在高压淬火和退火中,缺陷密度和晶粒大小可以通过优化形成,改善材料的耐腐蚀性、强度和塑形性。
此外,晶体缺陷的存在会影响材料的光学性能和导电性,可以被利用于电子学、光学和光电等领域的应用。
例如,缺陷引起的光谱吸收、荧光和发光可以用于激光器、荧光分析和发光器件。
多孔材料中的缺陷可以通过与化学物质反应来控制气体分子的吸附、催化和分离,因此在吸附剂、载体、过滤和催化领域有着广泛的应用。
3. 晶体缺陷的研究方法晶体缺陷的研究是材料科学中的一项关键课题。
目前,晶体缺陷的研究主要包括影像学、动力学模拟和实验研究等。
其中影像学方法主要是通过透射电子显微镜、正交偏光显微镜和X射线衍射等技术来观察和研究晶体中的缺陷。
晶体缺陷和材料性能

晶体缺陷和材料性能晶体缺陷是一种常见的材料学现象,它能够影响材料的力学、电学、热学等性能。
在材料科学中,深入了解晶体缺陷对材料性能的影响是非常重要的。
本文将介绍晶体缺陷的种类和其影响力学、电学、热学性能的机制。
一、晶体缺陷的种类晶体缺陷通常可以分为点缺陷、线缺陷和面缺陷三种:1.点缺陷:最简单的点缺陷是晶格中离子交换,如阴离子被阳离子占据。
空穴和插入的离子也属于点缺陷。
空穴是空出一个或多个原子位置的缺陷,它们造成晶体中电子和磁性的变化。
插入的离子是不同元素的原子,它们插入到晶体中取代其它原子位置。
2.线缺陷:线缺陷是晶格中的一条线,它与晶体中其它原子排列方式不同。
位错是最常见的线缺陷。
每个位错都是从一个或多个失配的原子重叠开始,其结果会改变晶体的物理特性。
3.面缺陷:面缺陷是晶体表面的缺陷,如晶界和小角度晶界。
晶界是两个或多个晶体的边界,它们对材料的物理和化学性质有很大影响。
小角度晶界也是晶界,它是两个晶体在晶界处缓慢旋转而形成的。
由于晶界存在,会导致晶体的力学和电学性质发生改变。
二、晶体缺陷对材料性能的影响晶体缺陷能够影响材料的力学、电学、热学等性能。
下面将介绍晶体缺陷对各种性能的影响机制:1.力学性能:晶体缺陷会影响材料的塑性、强度和韧性等机械性能。
在弹性形变的情况下,位错和其他线缺陷产生的内应力可以改变晶体的力学性质。
当材料受到应力时,点缺陷会导致晶体内部出现位移和形变。
靠近晶体表面的缺陷,比如晶界和表面缺陷,可以作为裂纹的萌芽点,从而引起材料的断裂。
2.电学性能:电学性能是指材料的导电性、电阻率等性质。
晶体缺陷可以对材料的电学性能产生显著影响。
二硫化钼(MoS2)是一种典型的半导体,在晶体中的点缺陷和线缺陷会导致其导电性变得更好或更差。
此外,晶体缺陷还可以影响材料的光谱特性、介电常数和色散等方面的性质。
3.热学性能:晶体缺陷还可以影响材料的热学性能,如热容量、导热性等。
点缺陷和线缺陷可以改变晶体的热传导和物理吸收特性。
晶体缺陷知识点

晶体缺陷知识点晶体缺陷是固体材料中晶格出现的非理想性质,通常由于外界因素或内部原子位置错配引起。
晶体缺陷可以对材料的性质和行为产生显著影响,因此对晶体缺陷的认识和理解对于材料科学和工程领域至关重要。
本文将主要介绍晶体缺陷的类别、产生原因以及对材料性能的影响等相关知识点。
一、点缺陷点缺陷是晶体中最常见的缺陷之一,它包括空位、附加原子和原子间隙等。
空位是晶体中原子缺失的位置,它可能由于热振动、离子辐照或经历一系列化学反应等因素而形成。
附加原子是晶体中多余的原子,它可以是来自杂质或外界加入的额外原子。
原子间隙是晶体中原子之间的间隙空间,它的存在会导致晶体结构的变形和变化。
二、线缺陷线缺陷是晶体中延伸成线状的缺陷,包括位错和螺旋排列。
位错是晶体中原子错位或排列不当导致的线性缺陷,它可以通过晶体的滑移和或扩散过程产生。
螺旋排列是沿晶体某个轴线方向发生的原子错位,在某些晶体材料中常见。
三、面缺陷面缺陷是晶体中存在的平面或界面缺陷,包括晶界、层错和孪晶等。
晶界是晶体中两个晶粒的交界面,它由于晶体生长或晶体结构不匹配引起。
层错是晶体中原子层次错位排列的缺陷,通常发生在层状晶体结构中。
孪晶是晶体中两个晶粒具有相同的晶格方向但是镜像对称的缺陷。
四、体缺陷体缺陷是晶体中三维空间内存在的缺陷,主要包括孔洞和包裹物。
孔洞是晶体中的空隙空间,可以影响晶体的密度和物理性质。
包裹物是晶体中包裹其他原子或分子的空间,它可以是点状、线状或面状。
晶体缺陷的产生原因多种多样,包括热力学因素、机械应力和外部影响等。
温度和压力的变化可以导致晶体中原子位置发生偏移或畸变,进而产生缺陷。
机械应力也可以引起晶体的位错和断裂等缺陷。
此外,电磁辐射、化学环境和放射性衰变等因素也会影响晶体的结构和缺陷形成。
晶体缺陷对材料的性能和行为产生重要影响。
例如,点缺陷的存在可以改变材料的电导率、热导率和光学性能。
线缺陷和面缺陷可以导致晶体的强度和塑性发生变化,并影响晶体的断裂行为。
《晶体缺陷》课件

热稳定性
晶体缺陷可能影响材料在高温下的稳 定性,降低其使用温度范围。
比热容
晶体缺陷可能影响比热容,改变材料 吸收和释放热量的能力。
光学性能的影响
折射率与双折射
光吸收与散射
晶体缺陷可能导致折射率变化和双折射现 象,影响光学性能。
晶体缺陷可能导致光吸收增强或光散射增 加,改变光学透射和反射特性。
荧光与磷光
热电效应
某些晶体缺陷可能导致热电效应增强,影响 热电转换效率。
介电常数
晶体缺陷可能影响介电常数,改变电场分布 和电容。
电阻温度系数
晶体缺陷可能影响电阻温度系数,改变温度 对电阻的影响。
热学性能的影响
热导率变化
晶体缺陷可能降低材料的热导率,影 响热量传递和散热性能。
热膨胀系数
晶体缺陷可能影响热膨胀系数,影响 材料在温度变化下的尺寸稳定性。
。
韧性下降
晶体缺陷可能导致材料韧性下 降,使其在受到外力时更容易
脆裂。
疲劳性能
晶体缺陷可能影响材料的疲劳 性能,降低其循环载荷承受能
力。
强度与延展性
晶体缺陷可能影响材料的强度 和延展性,从而影响其承载能
力和塑性变形能力。
电学性能的影响
导电性变化
晶体缺陷可能改变材料的导电性,影响其在 电子设备中的应用。
传感器
基于晶体缺陷的原理,可以设计新型传感器,如压力传感 器、温度传感器和气体传感器等,以提高传感器的灵敏度 和稳定性。
在新能源领域中的应用
太阳能电池
在太阳能电池中,可以利用晶体 缺陷来提高光吸收效率和载流子 的收集效率,从而提高太阳能电
池的光电转换效率。
燃料电池
在燃料电池中,可以利用晶体缺陷 来改善电极的催化活性和耐久性, 从而提高燃料电池的性能和稳定性 。
晶体中的缺陷与性质

晶体中的缺陷与性质晶体是由原子、离子或分子有序排列形成的固体,晶体的缺陷是指晶体中的部分或全部原子、离子或分子的有序排列存在错位、缺失或杂质等异常状态。
晶体中的缺陷与性质密切相关,本文将就此展开阐述。
一、晶体缺陷分类晶体的缺陷可以分为点、线和面缺陷,其中点缺陷包括点阴阳离子空位、氧空位和间隙原子等;线缺陷包括错位、螺旋间隙和脆性断口等;面缺陷包括晶界、堆垛层错和晶面缺陷等。
二、晶体缺陷对性质的影响1.点缺陷对性质的影响一般来说,点缺陷在晶体中的浓度较高,因此其影响较为显著。
点缺陷可以影响晶体的形态、颜色和透明度,同时还能影响晶体的导电性、热性质和光学性质等。
以点阴阳离子空位为例,空位浓度较高时会导致导电性的改变,从而影响晶体的热性质;而空位的存在也可导致铁氧体等材料的磁性发生变化,进而影响材料的磁学性质。
2.线缺陷对性质的影响线缺陷的影响主要集中在材料的机械性质和热性质两方面。
以错位为例,当晶体中存在较多的错位时,会导致材料的韧性降低,从而影响其机械强度;而错位也可影响热传导,从而影响材料的热扩散性质。
3.面缺陷对性质的影响面缺陷是晶体中最为丰富的缺陷类型,它们可以影响晶体的形态、结晶质量和稳定性等多方面的性质。
以晶界为例,晶界处的原子排列并不规则,容易导致原子的扩散和聚集,从而影响材料的物理化学性质。
三、晶体缺陷的形成原因晶体缺陷的形成有多种原因,包括材料制备过程中的化学反应、熔融或液相晶体生长等。
在晶体生长过程中,如果晶体内部气体含量过高,就会导致原子排列异常,从而形成晶体缺陷。
此外,材料的加工过程也是晶体缺陷形成的重要原因之一。
材料在加工过程中受到的应力或温度变化等因素都会导致晶体的排列异常,从而形成不同类型的缺陷。
四、缺陷工程学缺陷工程学是一门利用缺陷控制和设计方法来提高材料性质的学科。
通过合理的材料加工过程和晶体生长控制,可以有效地减少缺陷浓度,从而提高材料的性能。
在缺陷工程学中,常用的方法包括补偿掺杂、退火处理、材料再结晶等。
晶体缺陷对物质性质的影响研究

晶体缺陷对物质性质的影响研究晶体缺陷是在晶体中存在的结构、性质和组分上的不完美,它们的存在对晶体的物质性质产生着深远的影响。
晶体缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。
本文将以不同种类的晶体缺陷为线索,探讨晶体缺陷对物质性质的影响。
1. 点缺陷点缺陷指的是晶体内部的原子位置被其他类型的原子取代或者缺失,例如空位缺陷、间隙原子缺陷、替代原子缺陷等。
这些点缺陷对晶体的导电性、光学性质以及力学性能产生了重要影响。
首先是空位缺陷。
当晶体中的原子位置上出现空位,将导致晶体的密度降低,热膨胀性增大,热导率降低等。
此外,空位缺陷还会引起晶体的电导率增加,因为空位上的电子可以自由移动,形成了电子的导向通道。
其次是替代原子缺陷。
当一种原子取代了晶体中的另一种原子,晶格结构会发生改变,从而引起晶体性质的变化。
比如,掺杂少量的杂质原子进入硅晶体中,使其成为P型或N型半导体。
2. 线缺陷线缺陷是指沿着晶体中某个方向发生了排列紊乱的错误,比如位错、螺旋融合等。
线缺陷对晶体的力学性能具有重要影响,尤其是在晶体的拉伸、扭曲等应变条件下。
位错是最常见的线缺陷类型,它是晶体中原子排列的错误。
位错能够作为晶体中断裂的起始点,降低晶体的力学强度。
此外,位错对晶体中电子的传输也有显著影响,导致半导体器件性能的改变。
3. 面缺陷面缺陷是晶体中平面上的缺陷,比如晶体表面的缺陷、晶体中的孪晶界、晶粒边界等。
面缺陷会导致晶体的力学强度降低、晶体形貌的变化以及晶界的界面能对晶体的性质产生影响。
晶界是晶体中相邻晶粒之间的界面,即晶粒的边缘。
晶界对晶体的性质影响巨大,它会改变晶体的电导率、磁性、化学反应速率等。
此外,晶界还对晶体的断裂、高温变形等力学性质起着重要作用。
总结起来,晶体缺陷对物质性质的影响是多样的。
不同类型的缺陷会导致晶体的导电性、光学性质、热学性质以及力学性能等发生变化。
研究晶体缺陷对物质性质的影响不仅可以深化对晶体内部结构和性质的理解,还有助于开发新型材料和改进现有材料的性能。
晶体缺陷的应用实例

晶体缺陷的应用实例
晶体缺陷是晶体结构中的一些错误或异常,它们可以对材料的物理性质和化学反应产生重要的影响。
以下是一些晶体缺陷的应用实例:
1. 电子元器件:在半导体材料中引入缺陷可以改变其电子结构,例如掺杂材料中的杂质原子可以形成能带,从而改变其导电性质。
晶体缺陷还可以用来制造二极管、发光二极管和太阳能电池等电子元器件。
2. 光学器件:晶体缺陷对光学性质的改变也是应用的重要方面。
例如,在掺杂晶体中引入Frenkel缺陷可以改变其荧光性质,
使其成为荧光材料,用于制造荧光灯和显示器件。
3. 陶瓷材料:在陶瓷材料中引入缺陷可以改变其机械性能,例如增加陶瓷材料的韧性和抗裂性。
同时,通过改变晶体缺陷结构还可以调控陶瓷材料的导热性能和介电性能,用于制造陶瓷电子器件和高温结构材料。
4. 光纤:在光纤中引入缺陷可以改变其光传输性能。
例如在光纤中引入色心缺陷可以实现高效的光吸收和放射,用于制造光纤放大器和激光器。
5. 催化剂:晶体缺陷可以提高催化剂的活性和选择性。
例如,金属氧化物催化剂中的晶格缺陷可以提高其活性位点的暴露度和电子传递性能,从而提高催化反应的效率。
总的来说,晶体缺陷在材料科学和工程中有广泛的应用,可以用于制造各种电子器件、光学器件、陶瓷材料、光纤和催化剂等,具有重要的科学和工业意义。
晶体缺陷ppt

晶体缺陷在温度、压力等外部因素的作用下会发生变化,如点缺陷的迁移、位错 的滑移、晶界的迁移等。这些演变过程会影响晶体的性能和结构。
02
晶体缺陷的类型
点缺陷
弗兰克尔缺陷
在晶体中,原子或离子的一部分占据了应该是另一个原子的 位置,造成晶体结构的不完整性。
肖特基缺陷
在晶体中,一个原子或离子跳到了另一个原子的位置,形成 了一个空位。
位错是金属材料中最常见的晶体缺陷之一,其密度和分布对材
料的力学性能有重要影响。
在金属材料制备和使用过程中,应尽量减少晶体缺陷的产生,
03
以提高金属材料的性能。
功能陶瓷中的晶体缺陷
功能陶瓷的性能与晶体缺陷密切相关,如电导 率、介电常数等。
功能陶瓷中的晶体缺陷包括位错、空位、晶界 等,这些缺陷对材料的物理和化学性能产生重 要影响。
Hale Waihona Puke 06未来展望与挑战晶体缺陷研究的未来方向
发展新的检测技术
随着科学技术的发展,需要不断开发新的检测技术来更准确地识 别和测量晶体缺陷。
深入研究微观机制
进一步深入研究晶体缺陷的微观机制,包括缺陷的形成、扩散、 相互作用等,有助于更好地理解缺陷对材料性能的影响。
发展新型材料
基于对晶体缺陷的深入理解,可以设计和开发具有更优性能的新 型材料。
晶体缺陷的重要性
材料性能影响
晶体缺陷对材料的物理和化学性能具有重要影响,如导电性、导热性、强度 等。
工业应用
在工业上,晶体缺陷的应用也十分广泛,如半导体器件、激光器、太阳能电 池等。
晶体缺陷的产生与演变
产生原因
晶体缺陷的产生主要有两种原因,一是材料制备过程中引入的缺陷,如熔炼、铸 造、热处理等过程中产生;二是晶体生长过程中形成的缺陷,如位错、层错等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈晶体缺陷及其应用1103011036 周康粉体一班摘要:晶体缺陷对晶体的力学性能既有有利的方面,也有不利的方面。
少量晶体缺陷对于晶体的物理性能能够产生重要影响,所以可以根据不同的晶体缺陷,开发利用其产生的影响,充分发挥可能产生的作用,研究并制备具有不同性能的材料,以适应人们不同的实际需要和时代的发展需求。
关键词:晶体缺陷; 性能; 铁磁性; 电阻; 半导体材料;杂质引言:在讨论晶体结构时,我们认为晶体的结构是三维空间周期有序的,其部质点按照一定的点阵结构排列。
这是一种理想的完美晶体,它在现实中并不存在,只作为理论研究模型。
相反,偏离理想状态的不完整晶体,即有某些缺陷的晶体,具有重要的理论研究意义和实际应用价值。
所有的天然和人工晶体都不是理想的完整晶体,它们的许多性质往往并不决定于原子的规则排列,而决定于不规则排列的晶体缺陷。
晶体缺陷对晶体生长、晶体的力学性能、电学性能、磁学性能和光学性能等均有着极大影响,在生产上和科研中都非常重要,是固体物理、固体化学、材料科学等领域的重要基础容。
研究晶体缺陷因此具有了尤其重要的意义。
本文着重对晶体缺陷及其对晶体的影响和应用进行阐述。
1.晶体缺陷的定义和分类1.1 晶体缺陷的定义在理想的晶体结构中,所有的原子、离子或分子都处于规则的点阵结构的位置上,也就是平衡位置上。
1926 年弗仑克尔l首先指出,在任一温度下,实际晶体的原子排列都不会是完整的点阵,即晶体中一些区域的原子的正规排列遭到破坏而失去正常的相邻关系。
我们把实际晶体中偏离理想完整点阵的部位或结构称为晶体缺陷.1.2 晶体缺陷的分类1.2.1、按缺陷的几何形态分类可分为四类:点缺陷、线缺陷、面缺陷、体缺陷。
1.点缺陷(零维缺陷):缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。
包括:空位(vacancy)、间隙原子(interstitial particle)、异类原子(foreign particle)。
点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。
2..线缺陷(一维缺陷):指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短。
线缺陷的产生及运动与材料的韧性、脆性密切相关。
3.面缺陷:面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。
如晶界、相界、表面、堆积层错、镶嵌结构等。
面缺陷的取向及分布与材料的断裂韧性有关。
固体材料中最基本和最重要的晶体缺陷是点缺陷,包括本征缺陷和杂质缺陷等。
1.2.2、按缺陷产生的原因分类:热缺陷、杂质缺陷、非化学计量缺陷、其它原因(如电荷缺陷,辐照缺陷等)。
1.热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷和肖脱基缺陷热缺陷浓度与温度的关系:温度升高时,热缺陷浓度增加2.杂质缺陷定义:亦称为组成缺陷,是由外加杂质的引入所产生的缺陷。
特征:如果杂质的含量在固溶体的溶解度围,则杂质缺陷的浓度与温度无关。
3.非化学计量缺陷定义:指组成上偏离化学中的定比定律所形成的缺陷。
它是由基质晶体与介质中的某些组分发生交换而产生。
特点:其化学组成随周围气氛的性质及其分压大小而变化。
2. 晶体缺陷对物理性能的影响缺陷的存在破坏了晶体结构的完整,对其性能有严重影响。
通常工业上应用的多晶体材料通过增加缺陷数目都可以提高材料的机械性能。
比如加入合金元素形成固溶体可以产生固溶强化,提高强度,这主要是增加了点缺陷造成的;金属经过冷加工变形也可以提高强度,这是通过增加线缺陷--位错数目来实现的;金属通过细化晶粒提高强度的原因:增加了面缺陷:晶界的数目。
而位错等缺陷的存在,会使材料易于断裂,比近于没有晶格缺陷的晶体的抗拉强度,降低至几十分之一。
我们分别从一下个方面进行讨论。
2.1 晶体电阻缺陷与晶体电学性能2.1.1 晶体电阻电阻就其物理意义来说是表征电子在运动过程中它所处的状态被改变的几率。
实际上位于晶体阵点上的原子(或离子实)是不断地振动着的,它与电子相互作用使电子状态发生改变,因此金属晶体有电阻,而且温度愈高电阻愈大。
而由于晶体缺陷的存在使得离子偏离平衡位置,从而使晶体存在缺陷电阻。
2.1.2 点缺陷电阻缺陷根据其特性会从三方面影响晶体的周期场。
(1)缺陷所在处的荷电量一般说来与基体离子的不同,故在缺陷附近形成了屏蔽场。
(2)因杂质原子与基体原子大小不同或因空位形成而使周围原子发生位移,或因基体原子脱离点阵位置而成为间隙原子都会形成附加位一称为变型位。
(3)即使替代原子与基体原子的原子价相同,原子大小相近,由于各自的原子位有差别,其附近的晶体周期场也会受到破坏。
这些也都能产生相应的电阻。
此外还有位错电阻,但位错电阻至今尚未精确计算过,主要问题在于散射位的探求较困难。
2.2 缺陷与半导体性能硅、锗等第4族元素的共价晶体绝对零度时为绝缘体,温度刀·高导电率增加但比金属的小得多,称这种晶体为半导体。
晶体呈现半导体性能的根本原因是填满电子的最高能带与导带之间的禁带宽度很窄,温度升高部分电子可以从满带跃迁到导带成为传导电子。
晶体的半导体性能决定于禁带宽度以及参与导电的载流子(电子或空穴)数目和它的迁移率。
缺陷影响禁带宽度和载流子数目及迁移率,因而对晶体的半导体性能有严重影响。
2.2.1 缺陷对半导体晶体能阶的影响硅和锗本征半导体的晶体结构为金刚石型。
每个原子与四个近邻原子共价结合。
杂质原子的引入或空位的形改变了参与结合的共价电子数目,影响晶体的能价分布。
有时为了改善本征半导体的性能有意掺入一些三、五族元素形成掺杂半导体;而其他点缺陷如空位或除三,五族以外的别的杂质原子原则上也会形成附近能阶。
位错对半导体性能影响很大,但目前只对金钢石结构的硅、锗中的位错了解得较多一点。
2.2.2 缺陷对载流子数目的影响点缺陷使能带的禁带区出现附加能阶,位错本身又会起悬浮键作用,它起着施主或受主的作用,另外位错俘获电子使载流子数目减少,所以半导体中实际载流子数目减少。
2.3 位错对铁磁性的影响只有过渡族元素的一部分或其部分化合物是铁磁性材料。
物质的铁磁性要经过外磁场的磁化作用表现出来。
能量极小原理要求磁性物质是由磁矩取向各异的磁畴构成。
一般说来加工硬化降低磁场H的磁化作用,磁畴不可逆移动开始的磁场Ho (起始点的磁场强度)升高,而加工则使物质的饱和磁化强度降低。
3. 晶体缺陷在半导体材料方面的应用3.1 ZnO过量的Zn 原子可以溶解在ZnO 晶体中,进入晶格的间隙位置,形成间隙型离子缺陷,同时它把两个电子松弛地束缚在其周围,对外不表现出带电性。
但这两个电子是亚稳定的,很容易被激发到导带中去,成为准自由电子,使材料具有半导性。
3. 2 Fe3O4Fe3O4 晶体中,全部的Fe2+离子和1/2 量的Fe3+离子统计地分布在由氧离子密堆所构成的八面体间隙中。
因为在Fe2+ — Fe3+ — Fe2+ —Fe3+—……之间可以迁移,Fe3O4 是一种本征半导体。
3. 3 掺杂硅半导体常温下硅的导电性能主要由杂质决定。
在硅中掺入VA 族元素杂质(如P、As、Sb 等)后,这些VA 族杂质替代了一部分硅原子的位置,但由于它们的最外层有5个价电子,其中4 个与周围硅原子形成共价键,多余的一个价电子便成了可以导电的自由电子。
这样一个VA 族杂质原子可以向半导体硅提供一个自由电子而本身成为带正电的离子,通常把这种杂质称为施主杂质。
当硅中掺有施主杂质时,主要靠施主提供的电子导电,这种依靠电子导电的半导体被成为n 型半导体。
3.4 BaTiO3 半导瓷在BaTiO3 瓷中,人们常常加入三价或五价杂质来取代Ba2+离子或Ti4+离子来形成n 型半导瓷。
例如,从离子半径角度来考虑,一般使用的五价杂质元素的离子半径是与Ti4+离子半径(0.064nm)相近的,如Nb5+=0.069nm,Sb5+=0.062nm,它们容易替代Ti4+离子;或者使用三价元素,如La3+=0.122nm,Ce3+=0.118nm,Nd3+=0.115nm,它们接近于Ba2+离子的半径(0.143nm),因而易于替代Ba2+离子。
由此可知,不管使用三价元素还是五价元素掺杂,结果大都形成高价离子取代,即形成n 型半导体。
国外学者对物质性能与缺陷的关系研究得相当多,它在包括激光、光电转换等许多方面都取得了可喜的进展,并有很好的应用前景。
相信在作为21世纪科技高速发展的今天,晶体缺陷及其对晶体物理性质的影响必将能更大的发挥其功效,为材料领域带来可喜的成就与发展!4 结束语正是由于材料具有缺陷,所以才会有些特殊的性质。
而我们能做的就是了解清楚,然后加以利用,更好的服务人类。
参考文献[1] 黄昆,汝琦固体物理[M].:高等教育[2]蒲永平.功能材料的缺陷化学.:化学工业,2008:1[3]林栋樑.晶体缺陷.交通大学,1996:5[4]继勤敏熊敬世晶体缺陷.,大学,1991.8[5]隋春宁骏自强官亚夫晶体缺陷及其在半导体材料方面的应用,2008 .11 .19[6]兴,黄如,晓彦.微电子学概论.第二版.:大学,2005:15。