晶体缺陷
晶体缺陷异质结构

晶体缺陷异质结构在固体物理学中,晶体缺陷异质结构是一个关键的研究领域,它涉及到晶体中原子排列的局部不规则性及其对材料性能的影响。
晶体通常以其规则的原子排列和长程有序性而著称,然而,在实际晶体中,总会存在各种各样的缺陷和不规则性。
这些缺陷可以是由原子或离子的缺失、取代或位置错乱引起的,也可以是由外部因素如辐射、杂质或温度变化等引起的。
当这些缺陷以特定的方式排列或聚集时,它们就形成了所谓的“异质结构”。
一、晶体缺陷的类型晶体缺陷主要分为点缺陷、线缺陷和面缺陷三种类型。
1.点缺陷:点缺陷是最简单的晶体缺陷形式,它只涉及到晶体中单个或少量原子的位置错乱。
常见的点缺陷有空位、填隙原子和反位原子。
空位是指晶体中某个位置上原子的缺失;填隙原子是指位于晶体正常点阵间隙中的多余原子;反位原子则是指晶体中某种类型的原子占据了另一种类型原子的位置。
2.线缺陷:线缺陷,也称为位错,是晶体中一种常见的一维缺陷。
位错可以看作是晶体中一部分原子相对于其他部分发生了滑移,形成了一条连续的错位线。
位错对晶体的力学性质、电学性质等都有重要影响。
3.面缺陷:面缺陷是晶体中二维的缺陷形式,包括晶界、孪晶界和堆垛层错等。
晶界是指不同晶粒之间的界面,孪晶界是指晶体中两部分原子排列呈镜像对称的界面,而堆垛层错则是指晶体中原子层的堆垛顺序发生了错误。
二、异质结构的形成异质结构通常是由不同类型的晶体缺陷相互作用、聚集或排列而形成的。
例如,在某些情况下,点缺陷可能会聚集在一起形成团簇或纳米尺度的结构;线缺陷可能会相互交错或形成网络结构;而面缺陷则可能会分隔晶体成不同的区域或畴。
这些缺陷的聚集和排列方式取决于晶体的生长条件、处理历史以及外部环境等因素。
三、晶体缺陷异质结构对材料性能的影响晶体缺陷异质结构对材料的物理、化学和机械性能都有显著的影响。
以下是一些主要方面:1.力学性质:晶体缺陷可以降低材料的强度和硬度,增加其塑性和韧性。
例如,位错可以作为滑移的起点和传播路径,在材料受力时促进塑性变形。
晶体缺陷

可写成
VCu
Cu3Au晶胞
ⅱ在NaCl中的Na+和Cl-1缺陷, 可写成
, VNa . VCl
NaCl晶胞
② 错位原子缺陷: 用错位原子的元素符号表示.
Cu3Au晶胞
错位Cu3Au晶胞
Au Cu
Cu Au
③ 杂质缺陷: 用该原子或离子的元素符号表示;
ZnS
Zn1-Cu S
Zn1- ’ Al S
其中R为模板剂三乙基胺, x + y = 1; Mg源为醋酸镁, 铝源为异丙
醇铝, 磷源为磷酸. ☺活性胶液的晶化温度: 150 ~ 250 oC. ☺分子筛的焙烧: 用于活性评价的分子筛试样需在500 ~ 600 oC, 以除去存在于分子筛孔道中的模板剂.
2. MgAPO-5 分子筛的表征 (1) X-射线粉末衍射 (XRD): 分子筛的物相结构和晶格参数; (2) 元素分析 (AES-ICP): 分子筛中的Al, P和Mg的含量; (3) 扫描电镜 (SEM): 分子筛的晶体形貌; (4) N2吸附 (BET): 分子筛的比表面积和比孔容; (5) 红外光谱 (FT-IR): 分子筛的骨架结构;
2 ( )
(2) MgAPO-5分子筛的AES-ICP分析
* 杂原子同晶取代为Mg(II)取代骨架Al(III) ( Mg ,Al ).
(3) 扫描电镜 (SEM): 分子筛的晶体形貌
a b c
d
e
f
* SEM images of as-synthesized MgAPO-5 (a-e) and calcined
(001)
KCl晶胞 (NaCl型晶体) 热振动 迁移至外表面
, VK
-
迁移至外表面 Schottky缺陷
晶体缺陷的名词解释

晶体缺陷的名词解释晶体缺陷是指晶体结构中存在的不规则性或者失序性,它们可以是由于晶体生长过程中的某些不完美导致的,也可以是在晶体使用过程中形成的。
晶体缺陷对材料的物理性质和化学性质有着重要影响,因此,对晶体缺陷的理解与研究具有重要意义。
一、点缺陷点缺陷是一种在晶体中以原子或原子团为单位存在的不规则性。
点缺陷可以分为两类,即缺陷原子和间隙原子。
缺陷原子是指晶体中一个位置上原子的缺失或替代,而间隙原子是指晶体中非正常晶格位置上的原子存在。
点缺陷的存在对晶体的导电性、热传导性以及光学性质等方面都会产生显著影响。
二、面缺陷面缺陷是指在晶体中存在的二维或三维结构缺陷。
面缺陷可以分为孪生界面、晶界和堆垛层错三类。
孪生界面是晶体内部两个完全互相倒转或者镜像对称的晶体颗粒之间的界面。
晶界是指晶体内部两个晶体颗粒之间的原子排列或晶格编织方式发生转变的区域。
堆垛层错是因为在晶体生长过程中,晶体颗粒之间因堆垛方式的差异而产生的错位。
面缺陷在晶体的力学性能、疲劳机制以及晶体生长等方面具有重要影响。
三、体缺陷体缺陷是指晶体内部原子排列或晶格结构出现不规则性或失序性的缺陷。
体缺陷包括空位、间隙和失序。
空位是指晶体内原子因缺失而导致的晶体结构不完整。
间隙是指晶体中非正常晶格位置上的原子存在。
失序则是指晶体中原子的无序或错位状态。
体缺陷对晶体的机械性能、热膨胀性质以及磁性等方面产生显著影响。
四、缺陷治理缺陷治理是指通过不同的方法和手段对晶体中的缺陷进行修复或改善的过程。
常见的缺陷治理方法包括热退火、添加合金元素和辅助材料等。
热退火是通过加热晶体使缺陷移动并重新排列,从而达到改善晶体结构的目的。
添加合金元素和辅助材料则是通过引入其他原子或化合物来改善晶体的物理性质和化学性质。
总结起来,晶体缺陷是晶体结构中存在的不规则性或失序性。
它们可以是点缺陷、面缺陷或体缺陷。
这些缺陷对晶体材料的性能产生重要影响,因此,研究和理解晶体缺陷的形成和治理具有重要意义。
晶体缺陷知识点

晶体缺陷知识点晶体缺陷是固体材料中晶格出现的非理想性质,通常由于外界因素或内部原子位置错配引起。
晶体缺陷可以对材料的性质和行为产生显著影响,因此对晶体缺陷的认识和理解对于材料科学和工程领域至关重要。
本文将主要介绍晶体缺陷的类别、产生原因以及对材料性能的影响等相关知识点。
一、点缺陷点缺陷是晶体中最常见的缺陷之一,它包括空位、附加原子和原子间隙等。
空位是晶体中原子缺失的位置,它可能由于热振动、离子辐照或经历一系列化学反应等因素而形成。
附加原子是晶体中多余的原子,它可以是来自杂质或外界加入的额外原子。
原子间隙是晶体中原子之间的间隙空间,它的存在会导致晶体结构的变形和变化。
二、线缺陷线缺陷是晶体中延伸成线状的缺陷,包括位错和螺旋排列。
位错是晶体中原子错位或排列不当导致的线性缺陷,它可以通过晶体的滑移和或扩散过程产生。
螺旋排列是沿晶体某个轴线方向发生的原子错位,在某些晶体材料中常见。
三、面缺陷面缺陷是晶体中存在的平面或界面缺陷,包括晶界、层错和孪晶等。
晶界是晶体中两个晶粒的交界面,它由于晶体生长或晶体结构不匹配引起。
层错是晶体中原子层次错位排列的缺陷,通常发生在层状晶体结构中。
孪晶是晶体中两个晶粒具有相同的晶格方向但是镜像对称的缺陷。
四、体缺陷体缺陷是晶体中三维空间内存在的缺陷,主要包括孔洞和包裹物。
孔洞是晶体中的空隙空间,可以影响晶体的密度和物理性质。
包裹物是晶体中包裹其他原子或分子的空间,它可以是点状、线状或面状。
晶体缺陷的产生原因多种多样,包括热力学因素、机械应力和外部影响等。
温度和压力的变化可以导致晶体中原子位置发生偏移或畸变,进而产生缺陷。
机械应力也可以引起晶体的位错和断裂等缺陷。
此外,电磁辐射、化学环境和放射性衰变等因素也会影响晶体的结构和缺陷形成。
晶体缺陷对材料的性能和行为产生重要影响。
例如,点缺陷的存在可以改变材料的电导率、热导率和光学性能。
线缺陷和面缺陷可以导致晶体的强度和塑性发生变化,并影响晶体的断裂行为。
《晶体缺陷》课件

热稳定性
晶体缺陷可能影响材料在高温下的稳 定性,降低其使用温度范围。
比热容
晶体缺陷可能影响比热容,改变材料 吸收和释放热量的能力。
光学性能的影响
折射率与双折射
光吸收与散射
晶体缺陷可能导致折射率变化和双折射现 象,影响光学性能。
晶体缺陷可能导致光吸收增强或光散射增 加,改变光学透射和反射特性。
荧光与磷光
热电效应
某些晶体缺陷可能导致热电效应增强,影响 热电转换效率。
介电常数
晶体缺陷可能影响介电常数,改变电场分布 和电容。
电阻温度系数
晶体缺陷可能影响电阻温度系数,改变温度 对电阻的影响。
热学性能的影响
热导率变化
晶体缺陷可能降低材料的热导率,影 响热量传递和散热性能。
热膨胀系数
晶体缺陷可能影响热膨胀系数,影响 材料在温度变化下的尺寸稳定性。
。
韧性下降
晶体缺陷可能导致材料韧性下 降,使其在受到外力时更容易
脆裂。
疲劳性能
晶体缺陷可能影响材料的疲劳 性能,降低其循环载荷承受能
力。
强度与延展性
晶体缺陷可能影响材料的强度 和延展性,从而影响其承载能
力和塑性变形能力。
电学性能的影响
导电性变化
晶体缺陷可能改变材料的导电性,影响其在 电子设备中的应用。
传感器
基于晶体缺陷的原理,可以设计新型传感器,如压力传感 器、温度传感器和气体传感器等,以提高传感器的灵敏度 和稳定性。
在新能源领域中的应用
太阳能电池
在太阳能电池中,可以利用晶体 缺陷来提高光吸收效率和载流子 的收集效率,从而提高太阳能电
池的光电转换效率。
燃料电池
在燃料电池中,可以利用晶体缺陷 来改善电极的催化活性和耐久性, 从而提高燃料电池的性能和稳定性 。
晶体缺陷

6 ln10 8.617 10 5 13.8 8.617 105 u 1.98(e V) 3 3 1 1 1.145 10 1.745 10 873 573
晶体缺陷
缺陷的含义:
通常把晶体点阵结构中周期性势场的畸变称为晶体的
结构缺陷。 理想晶体:质点严格按照空间点阵排列。 实际晶体:存在着各种各样的结构的不完整性。(原 因:原子或离子、分子的热运动,晶体形成条件、冷 热加工过程和辐射、杂质等因素)
意义: 1.缺陷对材料性能,比如对结构敏感的屈服强度、断裂 强度、塑性、电阻率、磁导率等有很大的影响. 2.晶体缺陷与扩散、相变、塑性变形、再结晶、氧化、 烧结有着密切关系。
在离子晶体中: 肖特基缺陷 为了维持电中性,当离子晶体中有一个正离子产生空 缺,则邻近必有1个负离子空位,即正负离子空位是成 对出现。 弗兰克尔缺陷 如果1个正离子跳到离子晶体的间隙位置,则在正常的 正离子位置出现1个正离子空位,即空位-间隙离子。
离子晶体中 的点缺陷
2.杂质缺陷定义:
亦称为组成缺陷,是由外加杂质的引入所产生的 缺陷。 类型:
例题2
Cu晶体的空位形成能为1.44×10-19J/atom,材料常数 A取1,Cu摩尔质量为63.54g/mol,500℃下密度为 8.96×106g/m3,求500℃下每立方米Cu中的空位数。 原子总数
N 6 63 . 54 8 . 96 10 6.02 1023
空位数
u n Nexp kT
不同材料的空位形成能
材料 W Fe Ni Cu Ag Mg Al Pb Sn
晶体缺陷

晶体缺陷晶体缺陷crystal defects实际晶体中原子偏离理想的周期性排列的区域称作晶体缺陷。
晶体缺陷在晶体中所占的总体积很小,也就是说,实际晶体中的绝大部分区域,原子排列于周期性位置上。
因此,晶体缺陷是近完整晶体中的不完整性。
但晶体缺陷对固体的许多结构敏感的物理量(如引起形变的临界切应力、扩散系数等)有极大的影响,晶体缺陷的研究对材料的强度、热处理等问题的研究有很重要的作用。
晶体缺陷分为:①点缺陷,包括空位、自填隙原子、代位原子、异类填隙原子等;②线缺陷,如位错;③面缺陷,如堆垛层错、孪晶界、反相畴界等,面缺陷还可以包括晶体表面、晶界和相界面(见界面)。
点缺陷图1是点缺陷的示意图,表示各种点缺陷的形式。
热平衡状态下点缺陷浓度C 遵从统计物理规律C=exp(-u/kT)这里k是玻耳兹曼常数;T是绝对温度;u是点缺陷形成能。
常用金属铁、铜、铝等的室温平衡空位浓度很小,接近熔点时的空位浓度约为 10-4。
自填隙原子形成能是空位形成能的3~4倍,其平衡浓度极小。
代位原子和异类填隙原子的最大浓度由相图决定。
表面空位和增原子的形成能和表面的取向关系很大,但都比体空位形成能小。
在某些表面,它们的形成能只有体空位形成能的一半。
因此它们的平衡浓度比体空位高得多(见晶体表面)。
界面的曲率半径ρ对平衡空位浓度Cv的影响由下式表示:这里 C0是界面曲率为零(曲率半径ρ为无穷大)的空位浓度,σ是界面能,V是原子体积。
图2a表示曲率半径不同引起的表面空位的浓度差(曲率半径不同对界面附近体空位浓度的影响类似)。
表面增原子浓度受到的影响和表面空位受到的影响相反(上式的括号内加一负号)。
由此引起的表面空位流和增原子流会使波浪状表面变平(图2a);使两个颗粒颈部变粗(图2b)。
这是粉末冶金烧结过程的重要理论依据。
非平衡状态下点缺陷浓度可以大大超过平衡浓度。
从熔点附近淬火后得到的过饱和空位浓度可以比平衡浓度大几个数量级。
形变产生的空位浓度达10-4 ε(ε是应变量)。
晶体缺陷

注意
形成填隙原子时,原子挤入间隙位置所需要的能量 比产生肖特基空位所需能量大,因此当温度不太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多。
Schottky 缺陷(空位缺陷)
有序合金中的错位
置 换 式
填 隙 式
化学缺陷
正离子
负离子
离子晶体中的点缺陷
1-大的置换原子 2-肖脱基空位 3-异类间隙原子
小角倾侧晶界(由一列刃型位错构成)
孪晶界( twin boundaries ) 孪晶是指两个晶体(或一个晶体的两部分)沿一个 公共晶面构成镜面对称的位向关系,这两个晶体 就称为“孪晶(twin)”,此公共晶面就称孪晶面 。 • 共格孪晶界 • 半共格孪晶界
共格孪晶界就是在孪晶面上的原子同时位于两个晶体点阵的 结点上,为两个晶体所共有,属于自然地完全匹配是无畸变 的完全共格晶面,它的界面能很低,约为普通晶界界面能的 1/10,很稳定,在显微镜下呈直线,这种孪晶界较为常见
晶体的一般特点是什么?点阵和晶体结构有何关系? 螺位错区别于刃位错的主要特征是什么? 在位错滑移时, 刃位错上原子受的力和螺位错上原子 受的力各有什么特点? 金属淬火后为什么变硬?
2.2.3 面缺陷
面缺陷是发生在晶格二维平面上的缺陷,其特征 是在一个方向上的尺寸很小,而另两个方向上的 尺寸很大,也可称二维缺陷。 1. 面缺陷的分类 晶界 亚晶界 面缺陷 孪晶界 相界 堆垛层错
多 晶 体 结 构 示 意 图
钢中的晶粒(其中黑线为晶界)
图2-50 纯铁的微观结构照片
亚晶界(sub-boundaries)
晶粒内部也不是理想晶体,而 是由位向差很小的称为嵌镶块 的小块所组成,称为亚晶粒。 亚晶粒的交界称为亚晶界。 晶粒之间位向差较大,亚晶粒 之间位向差较小。大于10°~ 15°的晶界称为大角度晶界。 各晶粒之间的界面属于大角度 晶界。亚晶界是小角度晶界, 位向差小于1Leabharlann °,其结构可以 看成是位错的规则排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位错具有以下基本性质:
位错是晶体中原子排列的线缺陷,不是几何意义的线,是有 一定尺度的管道。 形变滑移是位错运动的结果,并不是说位错是由形变产生的, 因为即使是在一块生长看起来很完美的晶体中,其内部仍然存 在很多位错。 位错线可以终止在晶体的表面(或多晶体的晶界上),但不 能终止在一个完整的晶体内部。 在位错线附近有很大应力集中,附近原子能量较高,易运动。 位错主要有两种:刃型位错和螺型位错缺陷
三、面缺陷
面缺陷是指沿着晶格内或晶粒间某些面的两侧局部范围内所出 现的晶格缺陷。 面缺陷主要有同种晶体内的晶界,小角晶界,层错,以及异种 晶体间的相界等。
KTP晶体中的双晶界
Tb:YAB晶体的腐蚀坑形态--挛晶
Yb:YAB晶体的孪晶
TYb:YAB晶体的孪晶
面缺陷主要有以下几种: 平移界面: 晶格中的一部分沿着某一面网相对于另一部分滑 动(平移)。 堆跺层错: 晶体结构中周期性的互相平行的堆跺层有其固有 的顺序。如果堆跺层偏离了原来固有的顺序,周期性改变,则 视为产生了堆跺层错。 晶界:是指同种晶体内部结晶方位不同的两晶格间的界面,或 说是不同晶粒之间的界面。按结晶方位差异的大小可将晶界分 为小角晶界和大角晶界等。小角晶界一般指的是两晶格间结晶 方位差小于10度的晶界。 相界:结构或化学成分不同的晶粒间的界面称为相界。
四、体缺陷
体缺陷,是指在晶体中三维尺度上出现的周期性排列的紊乱,也就是在较 大的尺寸范围内的晶格排列的不规则。这些缺陷的区域基本上可以和晶体 或者晶粒的尺寸相比拟,属于宏观的缺陷,较大的体缺陷可以用肉眼就能 够清晰观察。 体缺陷有很多种类,常见的有包裹体、气泡、空洞、微沉淀等。这些缺陷 区域在宏观上与晶体其他位置的晶格结构、晶格常数、材料密度、化学成 分以及物理性质有所不同,好像是在整个晶体中的独立王国。 比如,空洞是在晶体中包含的较大的空隙区,微沉淀是指在晶体中出现的 分离相,是由某些超浓度的杂质所形成的,包裹体则是在晶体中包裹了其 他状态的成分,多为生长时原来的液体。
晶体缺陷
晶体缺陷定义:指各种偏离晶体结构的周期重复排列的现象
缺陷产生的原因:各种能够造成晶体的点阵结构的周期势场 畸变的因素 缺陷类型: 按照缺陷的维度,可以分为以下几种缺陷 点缺陷、线缺陷、面缺陷、体缺陷等, 从具体表现形式上看 包裹体、开裂、色芯、空洞、气泡、位错等。 研究意义: 研究缺陷的产生、扩散、消失等机理不仅能够使我们在晶 体生长时可以更好地对它们进行控制,而且有助于我们更好地 理解晶体学的客观规律,甚至找出其中可能有的应用价值。
KABO晶体中的缺陷
KBBF单晶中的包裹物
五、其它缺陷
按照晶体内缺陷维度和尺寸来进行划分,分成点缺陷、线缺 陷、面缺陷以及体缺陷等。 针对于生长晶体的原料组分的偏差,也可以有阴离子空位、 间隙阳离子、阳离子空位、间隙阴离子等缺陷。 按照缺陷的形成方式来命名缺陷,比如说生长条纹等。
晶体生长条纹
KBBF晶体表面显微镜观察
明显的缺陷
添晶
解理开裂
无规则开裂
一、点缺陷
点缺陷是发生在一个或若干个格点范围内所形成的晶格缺陷。 最常见的点缺陷主要有以下几种: 热缺陷(晶格位置缺陷):在晶体晶格中应有质点占据的位置 因缺失质点而造成空位,或者不该有质点的位置出现了质点 (间隙质点,也称填隙)。 杂质缺陷:杂质成分的质点代替了晶体中本身固有成分的质点, 并占据了被替代的质点的晶格位置。由于替位与被替位的质点 之间的半径,电价等方面存在差异,因而可造成形式不同,程 度不同的晶格畸变。 电荷缺陷:由于某种原因,晶体中某些质点的某些电子受到激 发而离开原来质点形成自由电子,产生了电子空穴。
由于物质是不断运动的,因此,缺陷也是不可避免的。只要晶 体温度高于绝对零度,晶体中的原子就会不断运动,并与周围 原子之间的相互作用达到平衡。随着温度升高,原子运动动能 也相应增加,从而有一定几率离开平衡位置,在原来的位置上 留下一个空位而形成缺陷,这就是由于热运动而产生的点缺 陷——热缺陷。 热缺陷两种基本形式:弗仑克尔缺陷和肖特基缺陷。 点缺陷的存在,是半导体发挥作用的机理之一,研究缺陷可以 帮助我们进行材料制备以及应用拓展。
二、线缺陷
线缺陷是指晶体内部结构中沿着某条线(行列)方向 上的周围局部范围内所产生的晶格缺陷。它的表现形 式主要是位错。位错是实际晶体中广泛发育的一种微 观到亚微观的线状晶体缺陷,与点缺陷不同,点缺陷 只扰乱了晶体局部的短程有序,位错则扰乱了晶体面 网的规则平行排列,位错周围的质点排列偏离了长程 有序的周期重复规律,即指:在晶体中的某些区域内, 一列或数列质点发生有规律的错乱排列现象。