高三总复习导数——专题总结归纳.
高三导数公式总结知识点

高三导数公式总结知识点一、导数定义与符号表示导数是函数在某一点处的切线斜率,表示为f'(x),也可表示为dy/dx或df(x)/dx。
二、导数的基本性质1. 可导性:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。
2. 导数的唯一性:函数f(x)在点x=a处的导数唯一。
3. 常数导数:若f(x)为常数,则f'(x)=0。
4. 乘法常数:若k为常数,则(kf(x))'=kf'(x)。
5. 和差函数:若f(x)和g(x)在点x=a处可导,则(f(x)±g(x))'=f'(x)±g'(x)。
6. 乘法函数:若f(x)和g(x)在点x=a处可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。
7. 商函数:若f(x)和g(x)在点x=a处可导且g'(a)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g^2(x)。
三、常用导数公式1. 常数函数:(k)'=0,其中k为常数。
2. 幂函数:(x^n)'=nx^(n-1),其中n为整数。
3. 指数函数:(a^x)'=a^x*ln(a),其中a为正实数且a≠1。
4. 对数函数:(log_a(x))'=1/(xln(a)),其中a为正实数且a≠1。
5. 三角函数:- (sin(x))'=cos(x)- (cos(x))'=-sin(x)- (tan(x))'=sec^2(x)- (cot(x))'=-csc^2(x)- (sec(x))'=sec(x)tan(x)- (csc(x))'=-csc(x)cot(x)6. 反三角函数:- (arcsin(x))'=1/√(1-x^2),其中-1≤x≤1。
导数知识点概念总结高中

导数知识点概念总结高中一、导数的定义导数的定义是函数变化率的极限,可以用极限的方法来定义。
给定函数y=f(x),如果在某一点x处存在极限lim Δx→0 (f(x+Δx) - f(x)) / Δx则称函数f(x)在点x处可导,该极限就是函数f(x)在点x处的导数,记作f'(x) 或 dy/dx。
导数的几何意义是函数图像在某一点处的切线斜率,也可以理解为函数曲线在该点处的局部线性近似。
导数的几何直观使得我们可以通过导数来研究函数的性质和行为。
二、导数的几何意义导数表示了函数在某一点处的切线的斜率,切线的斜率可以理解为函数在这一点的瞬时变化率。
对于一条曲线,我们可以通过切线的斜率了解函数在某点的瞬时变化情况,从而分析函数的特性。
三、导数的计算常见的函数的导数计算方法有以下几种:1. 利用导数的定义进行计算。
根据导数的定义,求出函数在某一点的导数需要利用极限的概念进行计算,这种方法较为繁琐,但是可以直观地了解导数的物理意义。
2. 利用导数的性质进行计算。
导数有一系列的运算法则,这些运算法则包括和、差、积、商的求导法则,以及复合函数求导、反函数求导等等,可以通过这些性质进行导数的计算。
3. 利用导数的几何意义进行计算。
对于一些简单的函数,可以通过函数图像的几何性质来计算导数,从而得到函数在某一点的导数值。
四、导数的应用1. 导数在函数的极值问题中的应用。
利用导数可以求解函数的极值问题,包括极大值和极小值,这对于优化问题和最优化问题是非常重要的。
2. 导数在曲线的凹凸性和拐点问题中的应用。
函数的凹凸性和拐点可以通过函数的二阶导数来判断,这对于函数曲线的形状和特性有很大的帮助。
3. 导数在变化率和速度问题中的应用。
在物理学和工程学中,导数可以用来描述物体的运动和速度,从而研究物体的运动规律和加速度问题。
4. 导数在微分方程中的应用。
微分方程是研究变化规律的重要工具,导数的概念在微分方程中有着广泛的应用,可以描述各种变化规律和动力学问题。
导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高中数学导数知识点总结

高中数学导数知识点总结高中数学导数知识点总结总结就是把一个时间段取得的成绩、存在的问题及得到的经验和教训进行一次全面系统的总结的书面材料,他能够提升我们的书面表达能力,因此十分有必须要写一份总结哦。
那么你真的懂得怎么写总结吗?以下是小编帮大家整理的高中数学导数知识点总结,仅供参考,欢迎大家阅读。
(一)导数第一定义设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f (x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第一定义(二)导数第二定义设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)—f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f (x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第二定义(三)导函数与导数如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。
这时函数y = f(x)对于区间I内的每一个确定的x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。
导函数简称导数。
(四)单调性及其应用1.利用导数研究多项式函数单调性的一般步骤(1)求f(x)(2)确定f(x)在(a,b)内符号(3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数2.用导数求多项式函数单调区间的一般步骤(1)求f(x)(2)f(x)>0的解集与定义域的'交集的对应区间为增区间;f (x)<0的解集与定义域的交集的对应区间为减区间学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。
也就是说,导数描述了函数在某一点处的变化率。
如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。
2. 导数的代数定义设函数y=f(x),在点x0处可导。
如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。
这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。
二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。
不过反之不成立。
2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。
(完整版)高三复习导数专题

导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000。
2、导数的公式: 0'=C (C 为常数) 1')(-=n n nx x (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导 数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:0()k f x '= (2)导数的物理意义:()v s t '=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x '≥⇔在[a,上递增 ()0()b]f x f x '≤⇔在[a,上递减(2)判断或证明函数的单调性; ()f x c ≠ (3)已知函数的单调性,求参数的取值范围。
导数知识点笔记总结高中

导数知识点笔记总结高中一、导数的定义导数是函数的一种特殊的变化率,描述了函数在某一点附近的局部变化情况。
导数可以通过极限的概念来定义,如果函数f(x)在点x0处可导,则其导数f'(x0)表示函数在该点处的斜率,即切线的斜率。
导数可以用来描述函数在某一点的变化趋势,其绝对值表示了函数曲线在该点的斜率大小,正负号表示了函数曲线的增减性。
二、导数的计算1. 用极限定义导数:对于函数f(x),其在点x0处的导数可以通过以下极限计算得到:\[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h)-f(x_0)}{h} \]如果该极限存在,则函数在点x0处可导,其导数即为该极限的值。
2. 使用导数的性质:导数具有一些常用的性质,如常数的导数为0,幂函数的导数为其指数乘以原函数的导数等,可以利用这些性质来简化导数的计算。
3. 使用导数的基本公式:常见函数的导数有一些基本的求导公式,例如:- f(x) = k,导数为0;- f(x) = x^n,导数为n*x^(n-1);- f(x) = e^x,导数仍为e^x;- f(x) = sin(x),导数为cos(x);- f(x) = cos(x),导数为-sin(x);- f(x) = tan(x),导数为sec^2(x)。
通过这些基本公式,可以快速求得常见函数的导数。
三、导数的应用导数在数学中有着广泛的应用,常见的应用包括:1. 描述曲线的斜率:导数可以描述函数曲线在某一点的斜率,通过导数可以了解函数在各个点的斜率,进而描绘出整个曲线的形状。
2. 确定函数的增减性:当导数大于0时,函数增加;当导数小于0时,函数减小;当导数等于0时,函数可能达到极值。
通过导数可以判断函数在某一区间上的增减性。
3. 寻找极值点:通过导数可以确定函数的极值点,即在导数等于0或不存在的点处,函数可能取得极大值或极小值。
4. 切线方程与切线问题:导数可以用来求解函数曲线在某一点的切线方程,从而描述曲线在该点的局部性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历年高考题型总结及详解——倒数内容简介:1.有关倒数考试方向及常考点.2.常考点方法总结及名师点拨.3.2014——2016各地历年高考题及解析.4.名校有关模拟题——母题.【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力.【考试方向】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等.【得分要点】1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏.2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间.3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制.4.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论:(1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论;(3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论. 5.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先);(2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.6.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.7. 求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.8. 函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.9. 导数及其应用通常围绕四个点进行命题.第一个点是围绕导数的几何意义展开,设计求曲线的切线方程,根据切线方程求参数值等问题,这类试题在考查导数的几何意义的同时也考查导数的运算、函数等知识,试题的难度不大;第二个点是围绕利用导数研究函数的单调性、极值(最值)展开,设计求函数的单调区间、极值、最值,已知单调区间求参数或者参数范围等问题,在考查导数研究函数性质的同时考查分类与整合思想、化归与转化思想等数学思想方法;第三个点是围绕导数研究不等式、方程展开,涉及不等式的证明、不等式的恒成立、讨论方程根等问题,主要考查通过转化使用导数研究函数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用;第四个点是围数性质并把函数性质用来分析不等式和方程等问题的能力,该点和第二个点一般是解答题中的两个设问,考查的核心是导数研究函数性质的方法和函数性质的应用.10. 函数的单调性问题与导数的关系(1)函数的单调性与导数的关系:设函数()y f x =在某个区间内可导,若()0f x '>,则()f x 为增函数;若/()0f x <,则()f x 为减函数.(2)用导数函数求单调区间方法求单调区间问题,先求函数的定义域,在求导函数,解导数大于0的不等式,得到区间为增区间,解导数小于0得到的区间为减区间,注意单调区间一定要写出区间形式,不用描述法集合或不等式表示,且增(减)区间有多个,一定要分开写,用逗号分开,不能写成并集形式,要说明增(减)区间是谁,若题中含参数注意分类讨论;(3) 已知在某个区间上的单调性求参数问题先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.(4)注意区分函数在某个区间上是增(减)函数与函数的增(减)区间是某各区间的区别,函数在某个区间上是增(减)函数中的区间可以是该函数增(减)区间的子集. 11.函数的极值与导数(1)函数极值的概念设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x <,则称0()f x 是函数()f x 的一个极大值,记作y 极大值=0()f x ;设函数()y f x =在0x 附近有定义,若对0x 附近的所有点,都有0()()f x f x >,则称0()f x 是函数()f x 的一个极小值,记作y 极小值=0()f x .注意:极值是研究函数在某一点附近的性质,使局部性质;极值可有多个值,且极大值不定大于极小值;极值点不能在函数端点处取.(2)函数极值与导数的关系当函数()y f x =在0x 处连续时,若在0x 附近的左侧/()0f x >,右侧/()0f x <,那么0()f x 是极大值;若在0x 附近的左侧/()0f x <,右侧/()0f x >,那么0()f x 是极小值.注意:①在导数为0的点不一定是极值点,如函数3y x =,导数为/23y x =,在0x =处导数为0,但不是极值点;②极值点导数不定为0,如函数||y x =在0x =的左侧是减函数,右侧是增函数,在0x =处取极小值,但在0x =处的左导数0(0)(0)lim x x x-∆→-+∆--∆=-1,有导数0(0)(0)lim x x x+∆→+∆-∆=1,在0x =处的导数不存在. (3)函数的极值问题①求函数的极值,先求导函数,令导函数为0,求出导函数为0点,方程的根和导数不存在的点,再用导数判定这些点两侧的函数的单调性,若左增由减,则在这一点取值极大值,若左减右增,则在这一点取极小值,要说明在哪一点去极大(小)值;②已知极值求参数,先求导,则利用可导函数在极值点的导数为0,列出关于参数方程,求出参数,注意可导函数在某一点去极值是导函数在这一点为0的必要不充分条件,故需将参数代入检验在给点的是否去极值;③已知三次多项式函数有极值求参数范围问题,求导数,导函数对应的一元二次方程有解,判别式大于0,求出参数的范围.12.最值问题(1)最值的概念对函数()y f x =有函数值0()f x 使对定义域内任意x ,都有()f x ≤0()f x (()f x ≥0()f x )则称0()f x 是函数()y f x =的最大(小)值.注意:①若函数存在最大(小)值,则值唯一;最大值可以在端点处取;若函数的最大值、最小值都存在,则最大值一定大于最小值.②最大值不一定是极大值,若函数是单峰函数,则极大(小)值就是最大(小)值. (2)函数最问题①对求函数在某一闭区间上,先用导数求出极值点的值和区间端点的值,最大者为最大值,最小者为最小值,对求函数定义域上最值问题或值域,先利用导数研究函数的单调性和极值,从而弄清函数的图像,结合函数图像求出极值;②对已知最值或不等式恒成立求参数范围问题,通过参变分离转化为不等式()f x ≤(≥)()g a (x 是自变量,a 是参数)恒成立问题,()g a ≥max ()f x (≤min ()f x ),转化为求函数的最值问题,注意函数最值与极值的区别与联系.1.(2016高考山东理数)已知()221()ln ,R x f x a x x a x-=-+∈. (Ⅰ)讨论()f x 的单调性;(II )略考点:应用导数研究函数的单调性【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性、分类讨论思想.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.2.(2016高考天津理数)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(Ⅰ)求)(x f 的单调区间;(II)略;(Ⅲ)略错误!未找到引用源。
.【答案】(Ⅰ)当0≤a 时,单调递增区间为),(+∞-∞;当0>a 时,单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a . 【解析】(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('.下面分两种情况讨论:【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数)(x f 的定义域(定义域优先);(2)求导函数()f x ';(3)在函数)(x f 的定义域内求不等式()0f x '>或()0f x '<的解集.(4)由()0f x '>(()0f x '<)的解集确定函数)(x f 的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数)(x f 在(,)a b 上的单调性,求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,要注意“=”是否可以取到.2016高考真题及名校模拟题——母题【母题1】(Ⅰ)讨论函数x x 2f (x)x 2-=+e 的单调性,并证明当0x >时,(2)20x x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2x =(0)x e ax a g x x -->()有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域.【答案】(Ⅰ)详见解析;(Ⅱ)21(,].24e .考点: 函数的单调性、极值与最值. 【名师点睛】求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间.注意:求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.【母题2】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值; (2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞.【解析】(1)因为bx xe x f x a +=-)(,所以b e x x f x a +-='-)1()(.依题设,⎩⎨⎧-='+=,1)2(,22)2(e f e f 即⎩⎨⎧-=+-+=+--,1,222222e b e e b e a a 解得e b a ==,2;(2)由(Ⅰ)知ex xex f x +=-2)(. 由)1()(12--+-='x x e x e x f 即02>-x e 知,)(x f '与11-+-x e x 同号.令11)(-+-=x e x x g ,则11)(-+-='x e x g .所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减;当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增.故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值,从而),(,0)(+∞-∞∈>x x g .综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞.考点:导数的应用.【名师点睛】用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.【母题3】设函数f (x )=ax 2-a -ln x ,其中a ∈R.(Ⅰ)讨论f (x )的单调性;(Ⅱ)确定a 的所有可能取值,使得11()x f x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.【母题4】已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),23()23,1()3,(+∞--∞ ,求c 的值. 【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增; 当0a >时, ()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.(2) 1.c =【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间内的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.【母题5】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(s i n)]'(2s i n )f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值.【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用. 【母题6】已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥. (I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+-【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式. 【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.【母题7】已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >.(1)设()g x 是()f x 的导函数,评论()g x 的单调性;(2)证明:存在(0,1)a ∈,使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解.【答案】(1)当104a <<时,()g x 在区间)+∞上单调递增,在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.(2)详见解析.【考点定位】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.【考点定位】本题考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、分类与整合,化归与转化等数学思想.【名师点睛】本题作为压轴题,难度系数应在0.3以下.导数与微积分作为大学重要内容,在中学要求学生掌握其基础知识,在高考题中也必有体现.一般地,只要掌握了课本知识,是完全可以解决第(1)题的,所以对难度最大的最后一个题,任何人都不能完全放弃,这里还有不少的分是志在必得的.解决函数题需要的一个重要数学思想是数形结合,联系图形大胆猜想. 在本题中,结合待证结论,可以想象出()f x 的大致图象,要使得()0f x ≥在区间∞(1,+)内恒成立,且()0f x =在∞(1,+)内有唯一解,则这个解0x 应为极小值点,且极小值为0,当0(1,)x x ∈时,()f x 的图象递减;当0(,)x x ∈+∞时,()f x 的图象单调递增,顺着这个思想,便可找到解决方法.【母题8】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n +=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(Ⅱ)计算11b a ,1212b b a a ,123123b b b a a a ,由此推测计算1212n nb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a = ,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:n n eS T <.【考点定位】导数的应,数列的概念,数学归纳法,基本不等式,不等式的证明. 【名师点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.运用数学归纳法应注意以下三点:(1)n =n 0时成立,要弄清楚命题的含义.(2)由假设n =k 成立证n =k +1时,要推导详实,并且一定要运用n =k 成立的结论.(3)要注意n =k 到n =k +1时增加的项数.【母题9】设1a >,函数a e x x f x-+=)1()(2. (1) 求)(x f 的单调区间 ;(2) 证明:)(x f 在(),-∞+∞上仅有一个零点;(3) 若曲线()y f x =在点P 处的切线与x 轴平行,且在点(,)M m n 处的切线与直线OP 平行(O 是坐标原点),证明:123--≤ea m . 【答案】(1)(),-∞+∞;(2)见解析;(3)见解析.【解析】(1)依题()()()()()222'1'1'10x xx f x x e xe x e =+++=+≥,∴ ()f x 在(),-∞+∞上是单调增函数;(2)∵ 1a >,∴ ()010f a =-<且()()22110a f a a e a a a =+->+->,【考点定位】导数与函数单调性、零点、不等式,导数的几何意义等知识.【名师点睛】本题主要考查导数与函数单调性、零点、不等式恒成立,导数的几何意义等基础知识,属于中高档题,解答此题关键在于第(1)问要准确求出()f x 的导数,第(2)问首先要说明()0,a 内有零点再结合函数在(),-∞+∞单调性就易证其结论,第(3)问由导数的几何意义易得()221m m e a e+=-对比要证明的结论后要能认清1m e m ≥+的放缩作用并利用导数证明1m e m ≥+成立,则易证1m ≤. 【母题10】设函数()()23xx axf x a R e+=∈ (1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在[)3,+∞上为减函数,求a 的取值范围。