多元函数的极值及其求法
多元函数的极值及其求法

定理 设A是一个n n对称矩阵,
A正定 所有顺序主子式大于0
a11 a12 L a1k
a21 a22 L a2k
MM
M
所有特征值大于0 .
ak1 ak 2 L akk
(即特征方程 | E - A | 0的根大于0)
以 2 2 矩阵为例: A a11 a12 a21 a22
证: 由二元函数的泰勒公式, 并注意
则有
若 H f (P0 )正定, 则由引理知存在m 0使得
(h, k)H f (P0)(h, k)' m2.
故对充分小的U(P0), 只要(x, y) x0 h, y0 k U(P0), 就有
f (x, y)
f ( x0 ,
y0
)
(
m 2
o(1))
设函数z f ( x, y)在点 P0 ( x0 , y0 )的某邻域U(P0 )内 有一阶及二阶连续偏导数,且 P0是 f 的驻点,
则当H f (P0 )是正定矩阵时, f 在 P0取得极小值;
当H f (P0 )是负定矩阵时, f 在 P0取得极大值; 当H f (P0 )是不定矩阵时, f 在 P0不取极值.
极大值和极小值
x
例1. 已知函数
A 则( )
的某个邻域内连续, 且
(D) 根据条件无法判断点(0, 0)是否为f (x,y) 的极值点. 提示: 由题设
(2003 考研)
定理1 (必要条件) 函数
存在
偏导数, 且在该点取得极值 ,
则有
证:
取得极值 ,
故
取得极值 取得极值
据一元函数极值的必要条件可知定理结论成立.
(h2
多元函数极值

提示: 当(x, y)=(0, 0)时, z=0, 而当(x, y)≠(0, 0) 时, z>0. 因此z=0是函数的极小值.
首页 上页 返回 下页 结束 铃
一,多元函数的极值及最大值,最小值
极值的定义 设函数z=f(x, y)在点(x0, y0)的某个邻域内有定义, 如果对 于该邻域内任何异于(x0, y0)的点(x, y), 都有 f(x, y)<f(x0, y0)(或f(x, y)>f(x0, y0)), 则称函数在点(x0, y0)有极大值(或极小值)f(x0, y0). 例2 函数z = x2 + y2 在 (0, 0)处有极大值 点 .
首页
上页
返回
下页
结束
铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 有时可以把条件极值问题化为无条件极值问题. 例如, 求V=xyz在条件2(xy+yz+xz)=a2下的最大值.
a2 2xy 由条件2(xy+ yz + xz)=a2 , 解得z = 得 , 于是 2(x+ y) xy a2 2xy V= ( ). 2 (x+ y) 这就把求条件极值问题转化成了求无条件极值问题.
首页 上页 返回 下页 结束 铃
二,条件极值 拉格朗日乘数法
条件极值 对自变量有附加条件的极值称为条件极值. 求条件极值的方法 (1)将条件极值化为无条件极值 (2)用拉格朗日乘数法 在多数情况下较难把条件极值转化为无条件极值, 需要 用一种求条件极值的专用方法, 这就是拉格朗日乘数法. 下面导出函数z=f(x, y)在条件(x, y)=0下取得的极值的必 要条件. 假定f(x, y)及(x, y)有各种所需要的条件.
多元函数的极值及其求法

多元函数的极值及其求法
多元函数的极值是指函数在其定义域内取得最大值或最小值的点。
要求一个多元函数的极值可以通过以下方法求解:
1. 求解偏导数,并令其等于0,得到一系列方程组。
2. 解出这些方程组,得到所有可能的极值点。
3. 对这些点进行极值的判断,即求出它们对应的函数值,并比较大小。
具体的求解过程中需要注意以下几点:
1. 当偏导数为0时,不能直接得出极值点,还需要进一步的判断。
2. 极值点可能不在定义域内,需要对所有可能的情况进行考虑。
3. 函数可能存在多个极值点,需要将它们全部找出来,并进行比较判断。
综合以上要点,在求解多元函数的极值时需要仔细分析问题,严格按照求解步骤进行操作,避免出现错误。
9(8)多元函数的极值及其求法

函数的极大值与极小值统称为函数的 极值.
函数的极大值点与极小值点统称为函数的 极值点.
注 多元函数的极值也是局部的, 是与P0的邻域
内的值比较. 一般来说:极大值未必是函数的最大值. 极小值未必是函数的最小值.
有时, 极小值可能比极大值还大.
函数
存在极值, 在简单的情形下是 椭圆抛物面
容易判断的. 例 函数 z 3 x 2 4 y 2
例4 有一宽为 24cm 的长方形铁板 ,把它折起来做成 一个断面为等腰梯形的水槽, 问怎样折法才能使断面面 积最大. 解: 设折起来的边长为 x cm, 倾角为 , 则断面面积 1 为 ( 24 2 x 2 x cos ) x sin 2
24 x sin 2 x sin x cos sin ( D : 0 x 12 , 0 ) 2
点的偏导数必然为零: f x ( x0 , y0 ) 0, f y ( x0 , y0 ) 0. 证 不妨设 z f ( x, y )在点( x0 , y0 )处有极大值, 则对于( x0 , y0 )的某邻域内任意( x , y ) ( x0 , y0 ), 都有 f ( x , y ) f ( x0 , y0 ), 故当y y0 , x x0时,
第八节 多元函数的极值及其求法
一、多元函数的极值 二、最值应用问题
三、条件极值
一、多元函数的极值和最值
1.极大值和极小值的定义 一元函数的极值: 是在一点附近(区间) 将函数值比大小. 定义 设在点P0的某个去心邻域, f ( P ) f ( P0 ), 则称 点P0为函数的极大值点. f ( P0 )为极大值. 类似可定义极小值点和极小值.
其中 为某一常数, 可由
学习_课件98多元函数的极值及其求法

例4、 求 函 数f ( x, y) x2 y2 2x 1的 极 值. 例5、 求 函 数f ( x, y) x3 y3 3x2 3 y2 9x 的 极 值.
3、多元函数的最值 (1)无即约:束寻求 最目优标化函问数题的最大(小)值.
在条件 x02 a2
y02 b2
z02 c2
1下求 V 的最小值,
令 u ln x0 ln y0 ln z0 ,
G( x0 , y0 , z0 )
ln
x0
ln
y0
ln
z0
(
x02 a2
y02 b2
z02 c2
1) ,
由
G
x0
x02 a2
0,
体积最小,求切点坐标.
解 设P( x0 , y0 , z0 )为椭球面上一点,
令F ( x,
y,
z)
x2 a2
y2 b2
z2 c2
1,
则Fx |P
2 x0 , a2
Fy |P
2 y0 , b2
Fz |P
2z0 c2
过P( x0 , y0 , z0 )的切平面方程为
x0 a2
其中1,2均为常数,可由 偏导数为零及条件解出
x, y, z, t ,即得极值点的坐标.
例 7 将正数 12 分成三个正数x, y, z 之和 使得 u x3 y2z为最大.
解 令 F ( x, y, z) x3 y2z ( x y z 12),
大学经典课件之高等数学——8-9多元函数的极值及其求法

注意:偏导数不存在的点也是可疑的极值点, 是否是极值要用定义去判断。
机动 目录 上页 下页 返回 结束
求函数 f ( x , y ) = x 3 − y 3 + 3 x 2 + 3 y 2 − 9 x 的极值. 例1.
解: 第一步 求驻点. f x′ ( x , y ) = 3 x 2 + 6 x − 9 = 0 解方程组 2 f y′ ( x , y ) = − 3 y + 6 y = 0
( 3) 考察函数
f ( x, y) = x + y
2
4
及 g( x , y ) = x 2 + y 3 .
容易验证,这两个函数都以(0,0)为驻点,且在点
(0,0)处都满足 AC − B 2 = 0 。但 f ( x , y ) 在点(0,0)
处有极小值,而 g ( x , y ) 在点(0,0)处却没有极值。
z = − x + y 在点 (0,0) 有极大值;
2 2
z z z
x x
z = x y 在点 (0,0) 无极值.
x
上页 下页 返回
y y y
结束
机动
目录
多元函数取得极值的条件
定理 1(必要条件) :设函数 z = f ( x , y ) 在点
( x0 , y0 ) 具有偏导数,且在点( x0 , y0 ) 处有极值,则
其他类似. ′′ 由(8) 式可知,当( x 0 + h, y0 + k ) ∈ U 2 ( P0 ) 时, f xx
′′ 及 f yy 都不等于零且两者同号,于是 (6) 式可写成 1 ′′ ′′ ′′ ′′ ′′ (hf xx + kf xy )2 + k 2 f xx f yy − f xy 2 . Δf = ′′ 2 f xx 当 h、k 不同时为零且 ( x 0 + h, y0 + k ) ∈ U 2 ( P0 )
8-8第八节 多元函数的极值及其求法

三 条 件 极 值
(1) 其中x,y,z须满足约束条件 xyz=2(米3) (2) 依题意,例6成为求(1)式满足条件(2)的最小值.这类附有
解条件极值问题的一个办法是化为无条件极值,即普通极值 问题.
高 等 数 学 电 子 教 案
例如由(2)得到z=2/xy,代入(1),象例6那样去解普通极值问题. 但是对于一般的条件φ(x,y,z)=0,解出其中的某个变量,有时 是复杂的,困难的,甚至是不可能的.例如,不能显化的隐函数 就是这样.下面我们介绍Lagrange乘数法是求解条件极值的 常用方法. 例如要求函数 u=f(x,y,z,t)
3
2
表面积为 6 3 4。
高 等 数 学 电 子 教 案
例7. 在已知的椭球面内一切内接的长方体(各边分别平行坐 标轴)中,求其体积最大的. 椭球面方程为
x2 y2 z2 + 2 + 2 =1 2 a b c
x2 y2 z 2 长方体体积为V = 8 xyz.而( x, y, z )必须满足 2 + 2 + 2 = 1. a b c
高 等 数 学 电 子 教 案
第八节 多元函数的极值及其求法
在实际问题中常常遇到多元函数的最值问题.在一元函 数的微分学中,我们曾经用导数求解极值和最值问题;现 在讨论如何利用偏导数来求多元函数的极值与最值,讨论 时以二元函数为例,其结论可类似地推广到三元及三元以 上的函数.
学 数
多元函数的极值及最大值,最小值 一. 多元函数的极值及最大值 最小值
高 等 数 学 电 子 教 案 二 最大值和最小值
由连续函数性质知,函数在有界闭区域D上连续,则函数在D上 一定有最大值和最小值.和一元函数一样,多元函数的最大值和 最小值可能在D内取得,也可能在D的边界上取得.因此,求可微 函数的最值的一般方法是:求出函数f(x,y)在D内所有的驻点处 的函数值及在D的边界上的最大值和最小值,把它们加以比较,
多元函数的极值及其求法

多元函数的极值及其求法
一、多元函数的极值
定理1(必要条件) 设函数()y x f z ,=在点()00,y x 具有偏导数且在点()00,y x 处有极值,则有
()()0,,0,0000==y x f y x f y x
定理2(充分条件) 设函数()y x f z ,=在点()00,y x 的某邻域内连续且有一阶及二阶连续偏导,又 ()()0,,0,0000==y x f y x f y x ,令
()()()C y x f B y x f A y x f yy xy xx ===000000,,,,,,
则()y x f ,在()00,y x 处是否取得极值的条件如下:
(1)02>-B AC 时具有极值,且当0<A 时有极大值,当0>A 时有极小值;
(2)02<-B AC 时没有极值(在()00,y x 处不取极值);
(3)02=-B AC 时可能有极值,也可能没有极值,还需另作讨论。
二、条件极值 拉格朗日乘数法
拉格朗日乘数法 要找函数()y x f z ,=在条件()0,=y x ϕ下的可能极值点,可先作拉格朗日函数
()()()y x y x f y x L ,,,λϕ+=,
其中λ为参数。
()()()()()0,0,,0
,,==+=+y x y x y x f y x y x f y y x x ϕλϕλϕ
解出y x ,及λ,这样得到的()y x ,就是函数()y x f z ,=在附加条件()0,=y x ϕ下的可能极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一讲 二元函数的极值要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。
问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题.一.二元函数的极值定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点.例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点.例2.函数2243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f .从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件.定理1(必要条件)设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为))(,())(,(0000000y y y x f x x y x f z z y x -+-=-是平行于xoy 坐标面的平面0z z =.类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要解方程组⎩⎨⎧==0),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ⋯⋯,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点.注意1.驻点不一定是极值点,如xy z =在)0,0(点. 怎样判别驻点是否是极值点呢?下面定理回答了这个问题.定理2(充分条件)设函数),(y x f z =在点),(00y x 的某邻域内连续,且有一阶及二阶连续偏导数,又0),(00=y x f x ,0),(00=y x f y ,令 A y x f xx =),(00,B y x f xy =),(00,C y x f yy =),(00,则(1)当02>-B AC 时,函数),(y x f z =在点),(00y x 取得极值,且当0<A 时,有极大值00(,)f x y ,当0>A 时,有极小值00(,)f x y ;(2)当02<-B AC 时,函数),(y x f z =在点),(00y x 没有极值;(3)当02=-B AC 时,函数),(y x f z =在点),(00y x 可能有极值,也可能没有极值,还要另作讨论.求函数),(y x f z =极值的步骤:(1)解方程组0),(00=y x f x ,0),(00=y x f y ,求得一切实数解,即可求得一切驻点),(),(),,(2211n n y x y x y x ⋯⋯;(2)对于每一个驻点),(i i y x (1,2,)i n =,求出二阶偏导数的值C B A ,,;(3)确定2B AC -的符号,按定理2的结论判定),(i i y x f 是否是极值,是极大值还是极小值;(4)考察函数),(y x f 是否有导数不存在的点,若有加以判别是否为极值点.例3.考察22y x z +-=是否有极值. 解 因为22yx x xz +-=∂∂,22yx y yz +=∂∂在0,0==y x 处导数不存在,但是对所有的)0,0(),(≠y x ,均有0)0,0(),(=<f y x f ,所以函数在)0,0(点取得极大值.注意2.极值点也不一定是驻点,若对可导函数而言,怎样? 例4.求函数x y x y x y x f 933),(2233-++-=的极值.解 先解方程组⎪⎩⎪⎨⎧=+-==-+=063096322y y f x x f y x ,求得驻点为)2,3(),0,3(),2,1(),0,1(--, 再求出二阶偏导函数66+=x f xx ,0=xy f ,66+-y f yy .在点)0,1(处,0726122>=⨯=-B AC ,又0>A ,所以函数在点)0,1(处有极小值为5)0,1(-=f ;在点)2,1(处,0722<-=-B AC ,所以)2,1(f 不是极值; 在点)0,3(-处,0722<-=-B AC ,所以)0,3(-f 不是极值;在点)2,3(-处,0722>=-B AC ,又0<A ,所以函数在点)2,3(-处有极大值为31)2,3(=-f .二.函数的最大值与最小值求最值方法:⑴ 将函数),(y x f 在区域D 内的全部极值点求出;⑵ 求出),(y x f 在D 边界上的最值;即分别求一元函数1(,())f x x ϕ,2(,())f x x ϕ的最值;⑶ 将这些点的函数值求出,并且互相比较,定出函数的最值. 实际问题求最值根据问题的性质,知道函数),(y x f 的最值一定在区域D 的内部取得,而函数在D 内只有一个驻点,那么可以肯定该驻点处的函数值就是函数),(y x f 在D 上的最值. 例4.求把一个正数a 分成三个正数之和,并使它们的乘积为最大.解 设y x ,分别为前两个正数,第三个正数为y x a --,问题为求函数 )(y x a xy u --=在区域D :0>x ,0>y ,a y x <+内的最大值.因为)2()(y x a y xy y x a y xu--=---=∂∂,)2(x y a x y u --=∂∂, 解方程组⎩⎨⎧=--=--0202x y a y x a ,得3a x =,3ay =.由实际问题可知,函数必在D 内取得最大值,而在区域D 内部只有唯一的驻点,则函数必在该点处取得最大值,即把a 分成三等份,乘积3)3(a 最大.另外还可得出,若令y x a z --=,则 33)3()3(z y x a xyz u ++=≤=即33zy x xyz ++≤. 三个数的几何平均值不大于算术平均值.三.条件极值,拉格朗日乘数法引例 求函数22y x z +=的极值.该问题就是求函数在它定义域内的极值,前面求过在)0,0(取得极小值;若求函数22y x z +=在条件1=+y x 下极值,这时自变量受到约束,不能在整个函数定义域上求极值,而只能在定义域的一部分1=+y x 的直线上求极值,前者只要求变量在定义域内变化,而没有其他附加条件称为无条件极值,后者自变量受到条件的约束,称为条件极值.如何求条件极值?有时可把条件极值化为无条件极值,如上例从条件中解出x y -=1,代入22y x z +=中,得122)1(222+-=-+=x x x x z 成为一元函数极值问题,令024=-='x z x ,得21=x ,求出极值为21)21,21(=z . 但是在很多情形下,将条件极值化为无条件极值并不这样简单,我们另有一种直接寻求条件极值的方法,可不必先把问题化为无条件极值的问题,这就是下面介绍的拉格朗日乘数法.利用一元函数取得极值的必要条件.求函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件.若函数),(y x f z =在00(,)x y 取得所求的极值,那么首先有 00(,)0x y ϕ=.假定在00(,)x y 的某一邻域内函数),(y x f z =与均有连续的一阶偏导数,且00(,)0y x y ϕ≠. 有隐函数存在定理可知,方程0),(=y x ϕ确定一个单值可导且具有连续导数的函数()y x ψ=,将其代入函数),(y x f z =中,得到一个变量的函数(,())z f x x ψ=于是函数),(y x f z =在00(,)x y 取得所求的极值,也就是相当于一元函数(,())z f x x ψ=在0x x =取得极值.由一元函数取得极值的必要条件知道000000(,)(,)0x y x x x x dz dyf x y f x y dx dx===+=,而方程0),(=y x ϕ所确定的隐函数的导数为0000(,)(,)x x x y x y dydxx y ϕϕ==-.将上式代入00000(,)(,)0x y x x dy f x y f x y dx=+=中,得00000000(,)(,)(,)0(,)x x y y x y f x y f x y x y ϕϕ-=,因此函数),(y x f z =在条件0),(=y x ϕ下取得极值的必要条件为0000000000(,)(,)(,)0(,)(,)0x x y y x y f x y f x y x y x y ϕϕϕ⎧-=⎪⎨⎪=⎩. 为了计算方便起见,我们令0000(,)(,)y y f x y x y λϕ=-,则上述必要条件变为0000000000(,)(,)0(,)(,)0(,)0x x y y f x y x y f x y x y x y λϕλϕϕ+=⎧⎪+=⎨⎪=⎩, 容易看出,上式中的前两式的左端正是函数),(),(),(y x y x f y x F λϕ+=的两个一阶偏导数在00(,)x y 的值,其中λ是一个待定常数.拉格朗日乘数法求函数),(y x f z =在条件0),(=y x ϕ下的可能的极值点. ⑴ 构成辅助函数),(),(),(y x y x f y x F λϕ+=,(λ为常数) ⑵ 求函数F 对x ,对y 的偏导数,并使之为零,解方程组⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(y x y x y x f y x y x f y y x x ϕλϕλϕ 得λ,,y x ,其中y x ,就是函数在条件0),(=y x ϕ下的可能极值点的坐标;⑶ 如何确定所求点是否为极值点?在实际问题中往往可根据实际问题本身的性质来判定.拉格朗日乘数法推广 求函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的可能的极值点. 构成辅助函数12(,,,)(,,,)(,,,)(,,,)F x y z t f x y z t x y z t x y z t λϕλψ=++其中21,λλ为常数,求函数F 对z y x ,,的偏导数,并使之为零,解方程组12121212000(,,,)0(,,,)0x x x y yy z z z t t t f f f f x y z t x y z t λϕλψλϕλψλϕλψλϕλψϕψ++=⎧⎪++=⎪⎪++=⎪⎨++=⎪⎪=⎪=⎪⎩得z y x ,,就是函数),,,(t z y x f u =在条件(,,,)0x y z t ϕ=,(,,,)0x y z t ψ=下的极值点. 注意:一般解方程组是通过前几个偏导数的方程找出,,x y z 之间的关系,然后再将其代入到条件中,即可以求出可能的极值点.例6.求表面积为2a 而体积为最大的长方体的体积. 解 设长方体的三棱长分别为z y x ,,,则问题是在条件 0222),,(2=-++=a xz yz xy z y x ϕ 下,求函数xyz v = )0,0,0(>>>z y x 的最大值.构成辅助函数)222(),,(2a xz yz xy xyz z y x F -+++=λ, 求函数F 对z y x ,,偏导数,使其为0,得到方程组⎪⎪⎩⎪⎪⎨⎧=-++=++=++=++02220)(20)(20)(22a xz yz xy y x xy z x xz z y yz λλλ)4()3()2()1( 由)1()2(,得 z y z x y x ++=, 由 )2()3( , 得 zx yx z y ++=, 即有, ()(),x y z y x z x y +=+= ,()(),y x z z x y y z +=+=, 可得z y x ==,将其代入方程02222=-++a xz yz xy 中,得a z y x 66===. 这是唯一可能的极值点,因为由问题本身可知最大值一定存在,所以最大值就是在这可能的极值点处取得,即在表面积为2a 的长方体中,以棱长为a 66的正方体的体积为最大,最大体积为3366a v =. 例7.试在球面2224x y z ++=上求出与点(3,1,1)-距离最近和最远的点. 解 设(,,)M x y z 为球面上任意一点,则到点(3,1,1)-距离为d =但是,如果考虑2d ,则应与d 有相同的最大值点和最小值点,为了简化运算,故取 2222(,,)(3)(1)(1)f x y z d x y z ==-+-++,又因为点(,,)M x y z 在球面上,附加条件为222(,,)40x y z x y z ϕ=++-=.构成辅助函数(,,)F x y z 222(3)(1)(1)x y z =-+-++222(4)x y z λ+++-. 求函数F 对z y x ,,偏导数,使其为0,得到方程组2222(3)202(1)202(1)204x x y y z z x y z λλλ-+=⎧⎪-+=⎪⎨++=⎪⎪++=⎩)4()3()2()1( 从前三个方程中可以看出,,x y z 均不等于零(否则方程两端不等),以λ作为过渡,把这三个方程联系起来,有 311x y z x y z λ--+-===或311x y z--==, 故3,x z y z =-=-,将其代入2224x y z ++=中,得 222(3)()4z z z -+-+=, 求出z =,再代入到3,x z y z =-=-中,即可得 611x =,211y =, 从而得两点(,, 对照表达式看出第一个点对应的值较大,第二个点对应的值较小,所以最近点为,最远点为(.。