函数极值的几种求法
高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法高中学生可以体会
1.极值的定义
极值(extremum)是指函数在其中一区间的最大值或最小值。
也就是说,当函数在一定范围内取得最大(或最小)值时,该值称为該函数在该范围上的极值。
2.求极值的六种方法
(1)最值法
即直接从函数的图形上来确定函数最大值和最小值,只要找到这样的定义域点,使它是图的最高点或最低点,那么该点就是函数的极大值或极小值点。
(2)十字法
即使用十字观测的方法,通过求解相邻两点的切线的斜率,搭配图形定义域,确定函数的极值点,进而确定函数的最大值和最小值。
(3)观察法
即对函数进行全面性的观察,然后根据函数的规律,用数值验证的方法,确定该函数的最大值和最小值。
(4)求导数法
即通过求解函数的导数,然后观察函数的单调性,从而求得函数的极值点,进而确定函数的最大值和最小值。
(5)二分法
即把定义域分成二份,根据函数的单调性,确定极值点,从而确定函数的最大值和最小值。
(6)逐段求和法
即把定义域分成多份,根据函数的单调性,对每一点分段求解,确定极值点,从而确定函数的最大值和最小值。
求极值的三种方法

求极值的三种方法一、直接法。
先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值二、导数法(1)、求导数f'(x);(2)、求方程f'(x)=0的根;(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
举例如下图:该函数在f'(x)大于0,f'(x)小于0,在f'(x)=0时,取极大值。
同理f'(x)小于0,f'(x)大于0时,在f'(x)=0时取极小值。
扩展资料:寻求函数整个定义域上的最大值和最小值是数学优化的目标。
如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
1、求极大极小值步骤:求导数f'(x);求方程f'(x)=0的根;检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
f'(x)无意义的点也要讨论。
即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。
2、求极值点步骤:求出f'(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
上述所有点的集合即为极值点集合。
扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。
函数极值点求解方法

函数极值点求解方法引言函数的极值点是指函数在某个区间内取得最大值或最小值的点。
求解函数的极值点是数学中的一个重要问题,具有广泛应用价值。
本文将介绍几种常见的函数极值点求解方法。
二次函数的极值点求解方法当函数是一个二次函数时,可以使用求导法来求解极值点。
具体步骤如下:1. 将函数表示为二次函数的标准形式:$f(x)=ax^2+bx+c$。
2. 求导函数:$f'(x)=2ax+b$。
3. 令导数等于0,解方程得到极值点的横坐标:$2ax+b=0$,解得$x=-\frac{b}{2a}$。
4. 将横坐标代入原函数中,求得纵坐标。
高阶函数的极值点求解方法对于高阶函数,求解极值点可以依靠计算机算法进行近似求解。
其中,一种常用的方法是牛顿法。
具体步骤如下:1. 初始化变量,设初始点$x_0$。
2. 使用公式:$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,进行迭代,直到满足终止条件。
3. 最终迭代得到的$x_n$就是函数的极值点。
数值优化算法求解极值点除了上述方法外,还可以使用数值优化算法来求解函数的极值点。
常见的数值优化算法有梯度下降法、粒子群优化等。
这些算法一般适用于函数复杂、无法用解析方法求解的情况。
结论本文介绍了几种常见的函数极值点求解方法。
对于简单的二次函数,我们可以使用求导法求解极值点;对于复杂的高阶函数,可以采用牛顿法进行近似求解;而对于更加复杂的函数,可以使用数值优化算法来求解。
在实际应用中,选择合适的求解方法可以提高求解效率,为问题的解决提供有效的支持。
高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法求极值是高考数学中常考的一个重要知识点。
掌握求极值的方法能够帮助我们解决一些实际问题,也能够在高考中拿到高分。
下面我们来分析一下求极值的六种方法。
一、函数图象法通过观察函数的图象,我们可以找到函数的极大值和极小值。
要找到函数的极值,首先我们需要画出函数的图象。
然后观察图象,找到曲线上最高点和最低点,这些点就是函数的极大值和极小值。
二、导数法借助导数的性质,我们可以求出函数的极值点。
求极值点的过程分为两步:一是求出函数的导数;二是令导数等于零,解方程求出极值点。
极大值和极小值点都是函数导数等于零的点,但是需要注意导数为零的点不一定都是极值点,还需通过二阶导数判断。
三、拉格朗日乘数法拉格朗日乘数法是一种求极值的常用方法,它可以用来求解具有约束条件的极值问题。
当我们需要在一定条件下最大化或最小化一个函数时,可以利用拉格朗日乘数法。
在解题过程中,我们需要设置一个拉格朗日函数,通过求偏导数找到极值点。
需要注意的是,拉格朗日乘数法的求解过程较为繁琐,需要较强的数学功底。
四、几何法有些极值问题通过几何方法可以得到比较简单的解法。
例如,其中一函数的值随着其中一个变量的增大而增大,那么这个函数的最大值一定在这个变量的取值范围的边界上取到。
同理,这个函数的最小值也在这个变量的取值范围的边界上取到。
五、代数方法有时候,我们可以通过巧妙地构造一个代数式来求解极值问题。
可以使用变量代换、平方等技巧,将原问题转化为一个更容易求解的问题。
例如,利用平方差公式可以将一个含有平方项的多项式转化为一个差的平方的形式,从而更容易求得极值点。
六、综合运用方法有些问题的求极值过程比较复杂,需要综合运用上述多种方法来求解。
在解题过程中,我们可以根据题目的要求和条件,灵活地选择合适的方法来求解。
以上是求极值的六种方法的解析。
在高考复习中,我们需要理解这些方法的原理和应用场景,并通过大量的练习来提高解题的能力。
函数极值的求解方法

函数极值的求解方法函数极值是许多数学问题中的关键,它们可以帮助我们确定函数的最大值或最小值。
在现实生活的许多场景中,寻找函数的极值可以帮助我们做出更好的决策。
然而,函数极值的求解方法并不是那么容易的事情。
在本文中,我们将探讨一些常见的函数极值求解方法。
一. 常数法常数法是最简单的寻找函数极值的方法。
这个方法认为,如果一个函数在某一个点处取得了最大值或最小值,那么这个点的一阶导数应该等于零。
因此,我们只需要求出函数的一阶导数,然后令它等于零,就可以求出函数的极值点。
常数法的优点在于其简单和直观,而且可以用于多种函数形式。
然而,这个方法也有缺点,因为函数可能在极值点处不连续,或者在这些点处存在重复的极值。
此外,它也无法处理高次导数。
二. 二分法二分法是另一个寻找函数极值的方法。
这个方法认为,如果一个函数在某个区间内单调递增,那么它在这个区间的左端点处取得最小值,在右端点处取得最大值。
因此,我们可以通过二分法来不断缩小区间,直到确定函数的极值。
二分法的优点在于其简单和直观,而且可以用于多种函数形式。
此外,它也可以处理高次导数和函数不连续的情况。
然而,这个方法需要反复迭代,所以运算速度可能不够快。
三. 牛顿法牛顿法是一种迭代算法,用于逼近函数的极值点。
这个方法认为,如果一个函数在某个点上有极值,那么它在这个点的一阶导数应该等于零。
我们可以通过不断迭代来逼近函数的极值点。
牛顿法的优点在于其快速收敛和可以处理高次导数的能力。
然而,这个方法有一些缺点。
首先,它需要一个初始点。
如果初始点不好选择,那么该算法可能会失败。
其次,当函数有多个极值点时,牛顿法可能只能找到其中一个。
最后,这个方法可能会遭遇数值上的问题,如数值不稳定、迭代过程崩溃等。
综上所述,常数法、二分法和牛顿法都是常见的函数极值求解方法。
每种方法都有优缺点,需要根据具体情况选择最适合的方法。
对于某些特定的函数形式,可能还需要使用更复杂的方法,如拉格朗日乘数法、约束条件下极值法等。
计算函数极值的方法

计算函数极值的方法
计算函数极值的方法,主要有几种:一是微分法;二是关联函数法;三是拉格朗日法,以及常用的圆锥法。
1、微分法:
即将函数的参数进行调整,并根据函数的导数相等或为0的原理,来求得函数的极值点。
具体来说,可以计算出函数f(x)的导数f '(x),并设置f'(x)= 0,求解出f(x),因此即可找出极值点。
2、关联函数法:
通过把函数的极值问题重新定义为某种关联函数的极值的搜索问题,然后借助关联函数的性质求得变量的极值。
这是一种特殊的求极值方法,只有当函数可以重新定义为关联函数时,才能使用此方法。
3、拉格朗日法:
这是一种优化算法,即把求极值问题转化为一个最优化问题,通过求解最优点,来求得函数的极值点。
4、圆锥法:
圆锥法也称为泰勒-展开式法,是在函数f(x)的某一点处对f (x)做一次二阶导数的展开。
展开后的表达式可以用圆的形
式表示,因此这种方法称为圆锥法。
以上是求取函数极值的方法,可以根据函数的特性,选择合适的方法来计算函数的极值点。
求函数最值极值的方法

求函数最值极值的方法
1、配方法:形如的函数,根据一次函数的极值点或边界点的取值确定函数的最值。
2、判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程。
由于,.≥0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
3、利用函数的单调性:首先明确函数的定义域和单调性,再求最值。
4、利用均值不等式,形如的函数,及≥s,注意正,定,等的应用条件,即:a,b均为正数,是定值,a=b的等号是否成立。
5、换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
还有三角换元法,参数换元法。
6、数形结合法形:如将式子左边看成一个函数,右边看成一个函数,在同-坐标系作出它们的图象,观察其位置关系,利用解析几何知识求最值。
求利用直线的斜率公式求形如的最值。
7、利用导数求函数最值:首先要求定义域关于原点对称然后判断f(x)和f(x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。
求极值的方法

求极值的方法在数学中,求极值是一个非常重要的问题,它涉及到函数的最大值和最小值,对于优化问题和实际应用都具有重要意义。
本文将介绍一些常见的求极值的方法,帮助读者更好地理解和掌握这一数学概念。
一、导数法。
求极值的常见方法之一是利用导数。
对于给定的函数,我们可以通过求导数来找到函数的极值点。
具体来说,我们首先求出函数的导数,然后令导数等于零,解出方程得到极值点的横坐标,再代入原函数求得纵坐标,就可以得到函数的极值点。
二、二阶导数法。
除了利用一阶导数来求极值外,我们还可以利用二阶导数。
对于函数的极值点,其一阶导数为零,而且二阶导数的符号可以告诉我们这个极值点是极大值还是极小值。
当二阶导数大于零时,函数在该点取得极小值;当二阶导数小于零时,函数在该点取得极大值。
三、拉格朗日乘数法。
对于带有约束条件的极值问题,我们可以使用拉格朗日乘数法。
这种方法适用于多元函数的极值求解,通过引入拉格朗日乘数,将带有约束条件的极值问题转化为无约束条件的极值问题,然后利用导数或者其他方法求解。
四、牛顿法。
牛顿法是一种迭代求解的方法,可以用来求函数的零点,同时也可以用来求函数的极值点。
通过不断迭代,我们可以逼近函数的极值点,从而得到极值的近似解。
五、凸优化方法。
对于凸函数的极值问题,我们可以使用凸优化方法来求解。
凸优化是一类特殊的优化问题,其解具有良好的性质和稳定性,因此在实际问题中有着广泛的应用。
六、遗传算法。
除了传统的数学方法外,我们还可以利用遗传算法来求解极值问题。
遗传算法是一种模拟生物进化过程的优化方法,通过不断迭代和选择,可以得到函数的极值点。
综上所述,求极值的方法有很多种,不同的方法适用于不同的问题,我们可以根据具体情况选择合适的方法来求解。
希望本文对读者有所帮助,能够更好地理解和掌握求极值的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极值的几种求法──针对高中生所学知识摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。
极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。
本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。
关键词:函数;单调性;导数;图像;极值Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school.Key words: function; monotonicity; derivative; image; extreme value“函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。
之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。
就这样“函数”这词逐渐盛行。
在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者李善兰给出的定义是:“凡式中含天,为天之函数”。
显然,在李善兰的这个定义中的函数就是:凡是公式中含有变量x,则该式子叫做x的函数。
这样,在中国“函数”是指公式里含有变量的意思。
从1775年欧拉对函数定义之后,又有法国数学家柯西、俄国数学家罗巴契夫斯基等数学家不断对函数定义进行改进和完善。
最后德国数学家黎曼引入了函数的新定义:“对于x 的每一个值,y 总有完全确定了的值与之对应,而不拘建立x ,y 之间的对应方法如何,均将y 称为x 的函数”。
虽然函数的定义在不断变化但它的本质属性都是一样的。
变量y 称为x 的函数,只须有一个法则存在,那就是这个函数取值范围中的每一个值,有一个唯一确定的y 值和它对应,不管这个法则是公式、图象、表格或其他形式。
对中学生来说常见的函数类型有一次函数、二次函数、指数函数、对数函数、三角函数,及由这几类函数中两类或多类形成的复合函数。
中学生一般不采用定义法去求函数的极值,中学生常用的是图像法和求导法。
本文首先简单介绍高中数学常见的函数类型和常用的求函数极值的方法,继而通过具体实例阐述求极值方法和函数类型如何匹配。
1 预备知识定义1.1[]2 函数的极值设函数()f x 在0x 附近有定义,如果对0x 附近的所有的点,都有()()0f x f x <,则()0f x 是函数()f x 的一个极大值。
如果附近所有的点,都有()()0f x f x >,则()0f x 是函数()f x 的一个极小值,极大值与极小值统称为极值。
定义1.2 一次函数在某一变化过程中,设有两个变量x 和y ,如果可以写成b kx y +=(k 为一次项系数0≠k ,b 为常数)的形式,那么我们就说y 是x 的一次函数,其中x 是自变量,y 是因变量。
定义1.3[]3 二次函数把形如c bx ax y ++=2(其中c b a ,,是常数,0≠a )的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项。
定义1.4[]4 指数函数把形如)10(y ≠>=a a x a 且的函数叫做指数函数,其中x 是自变量。
定义1.5[]4 对数函数把形如)10(log ≠>=a a y x a 且的函数叫做对数函数,其中自变量是x 。
2 求极值方法在各种函数类型中的应用函数是高中数学重要的内容,而函数的性质是高考命题的重点,又是高考命题的热点之一,利用导数方法研究函数的单调性,确定单调区间,研究函数的极值问题比传统的方法要简捷得多,因此在求极值时应把导数法作为主要研究方法[]5。
除了求导法另一种常见的方法就是图像法。
图像法适合简单的可以画出图像的一些函数,对于中学生来说遇到的函数80%都可以画出图像。
函数图像画出后我们可以根据图像所表示的纵坐标再结合极值的定义观察函数的极值。
求导法是先求出所求函数的导数,然后根据导数与零的大小关系判断函数的单调性,继而判断极值,求导法对一些复杂的函数特别是复合函数非常的适用。
下面我们通过具体实例阐述方法和函数类型如何匹配。
2.1 一次函数b kx y +=(b k ,0≠为常数) 一次函数比较简单在整个定义域内是整体单调递增或整体单调递减。
对形如b kx y +=的一次函数的导数为k y =',由此可知一次函数的单调性主要和k 值有关,0>k 则函数单调递增,0<k 函数单调递减。
例2.1 求函数52y +=x 的极值法一 求导法52y +=x 这个函数的k 值为2,显然02>也就是说该函数单调递增,现在函数的极值就和其定义域有关。
当自变量x 最大时函数有极大值,当自变量x 最小是函数有极小值,若自变量无最大值最小值则函数没有极值。
①我们假设该函数的定义域是[]40,3-,那么当3x -=时函数有极小值()1-53-2=+⨯=极小值y ,当40=x 时函数有极大值855402y =+⨯=极大值。
②假设该函数的定义域为[]∞+∞,-则函数无极大值极小值。
③若函数的定义域位[]40-,∞函数无极小值,在40=x 时取得极大值855402y =+⨯=极大值④若定义域为[]∞+,3-函数无极大值,有极小值()1-53-2=+⨯=极小值y 。
法二 图像法一次函数b kx y +=的图像都是一条直线。
函数52y +=x 的图像如下:图2-1 52y +=x 图像通过察我们发现函数值y 随自变量x 的值增大而增大,也就是说x 最大时函数有极大值,x 最小时函数有极小值。
一次函数相对来说比较简单,我认为求极值最好的方法是看k 值。
当0> k 时自变量x 最大时函数有极大值,自变量x 最小时函数有极小值。
当0<k 时自变量x 最大时函数有极小值,自变量x 最小时函数有极大值,若自变量x 无最值则函数无极值。
在此还有一点要提醒的就是通常所说的正比例函数,反比例函数都属于一次函数,故其极值的求法可用一次函数的方法。
2.2 二次函数c bx ax y ++=2(其中c b a ,,是常数,0≠a )二次函数较一次函数复杂的多,但其极值的求法和一次函数大同小异,最常见的也是求导法和图像法。
当用求导法来求极值时,需先求出导数然后判断导函数在那个区间范围内大于(等于)零,在那个区间范围内小于(等于)零,当导数大于等于零时原来的二次函数在该区间单调递增,当导数小于零时原来的二次函数在该区间单调递减,知道了单调性再来求极值就轻而易举了。
图像法就是画出函数的图形,根据图形结合极值定义求出函数极值。
下面我针对具体函数7-822x x y +=其定义域为]2,4-(这个二次函数来详细阐述这两种方法。
例2.2 求函数7-822x x y +=]2,4-(∈x 的极值法一 求导法通过计算我们知道该函数的导数为84'+=x y 我们令其导函数大于等于零即084≥+x 解得2-≥x 也就是说函数7-822x x y +=在[]2,2-∈x 上单调递增,当2-=x 时y有最小值,当x=2时y 有最大值。
同理我们可以知道函数7-822x x y +=在()2-4-,(由于在递增区间上已经取过-2,所以此处的-2不能再取,只能用圆括号)上单调递减,因为-4和-2前为圆括号,也就是说自变量x 不能等于-4和-2,所以函数在上()2-4-,无最小值也无最大值。
综上所诉函数7-822x x y +=在]2,4-(上有最小值()()15-7-2-82-22=*+*=最小值y ,最大值177-28222=*+*=最大值y .因为该函数在]2,4-(上连续所以其最小值等于其极小值,最大值等于其极大值。
所以此函数在]2,4-(上有极小值-15,极大值17。
法二 图像法二次函数的图像为一条抛物线函数7-822x x y +=]2,4-(∈x 的图像如下图所示:图2-2 7-822x x y +=]2,4-(∈x 图像通过观察可知,函数在点B 取得极小值-15,在点A 取得极大值17。
2.3 指数函数)1a 0(≠>=且a a y x此类函数比较简单,单调性在定义域内是整体的,无论是求导还是画图都很容易发现函数的单调性与a 值得大小有关。
在1>a 时函数在整个定义域内单调递增,和一次函数像似自变量x 取最大值时函数有极大值,自变量x 取最小值时函数有极小值,自变量x 取最小值时函数有极大值。
下面我们通过一个具体的函数来操作一下。
例2.3 求函数x y 21=和x y ⎪⎭⎫ ⎝⎛=212(x 取值范围是]3,2[-)的极值对1y 这个函数来说其2=a ,1>a ,根据上面结论我们知道函数在整个定义域内单调递增,当2-=x 是函数1y 有极小值41,当3=x 时函数1y 有极大值8。