壳聚糖甲壳素应用

合集下载

壳 聚 糖

壳 聚 糖
杀虫剂/杀线虫剂
农药载体和农药缓释剂
THANK YOU
最终确定了 chitin的化学结 构
甲壳素:又称甲壳质、几丁质,英文名 Chitin,是地球上第二大天然多糖,仅 次于纤维素
自然界中的甲壳素
甲壳素的结构
已知甲壳素是无毒、可生物降解、可食用 、 生物相容、热稳定,并具有抗氧化、抗微生 物和抗癌作用。
不溶于水和几乎所有常用的有机溶剂,它只 能溶于一些氟醇(六氟丙酮、六氟异丙醇),碱 性冰水混合物,CaCl2·2H2O 的饱和甲醇溶液, N,N-二甲基乙酰胺氯化锂 、 (LiCl-DMAc)和低 共熔溶剂以及咪唑基离子液体。
3):壳聚糖的有效基团NH3可以与细菌细胞膜上的类脂、蛋白质复合物反应, 使蛋白质变性,改变了微生物细胞膜的通透性,引起微生物细胞死亡。
4):壳聚糖作为一种螯合剂,能有选择性地螯合对微生物生长起关键作用的 金属离子,尤其是酶的辅助因子,从而抑制微生物的生长和繁殖。
壳聚糖在植保上的应用
植物生长调节剂 用来处理农作物或其种子,可激发种子提早萌芽,促进作物生长,提高产量 和品质。
1):高分子链密集于在微生物细胞表面,形成一层高分子膜,影响细菌对营 养物质的吸收,阻止代谢废物的排泄,导致菌体的新陈代谢紊乱,从而起到 杀菌和抑菌作用。
2):分子量小于5000的壳聚糖可以透过细胞膜,破坏细胞质中内含物的胶体 状态,使其絮凝、变性、无法进行正常的生理活动,导致微生物死亡。
壳聚糖抑菌机理
壳聚糖的结构
壳聚糖的一个糖基中,C3-OH与 相邻的糖基形成氢键
一个糖基的C3-OH与相邻的糖基 的呋喃环上的氧形成氢键
壳聚糖的结构
C3-OH也可以与相邻的另 一条壳聚糖分子链的糖基 形成氢键

甲壳素与壳聚糖

甲壳素与壳聚糖
壳聚糖
壳聚糖具有良好的水溶性、生物相容性和生物活性,能够 被生物体内的酶降解。
总结
甲壳素和壳聚糖在性质上的差异主要表现在水溶性和生物降解 性上,甲壳素不易溶于水且不易被生物降解,而壳聚糖具有良
好的水溶性和生物降解性。
应用比较
甲壳素
甲壳素在医学、环保、农业等领域有广泛应用,如制备人工皮肤、药物载体和生物材料 等。
食品工业
02
03
环保领域
甲壳素和壳聚糖在食品工业中的 应用将更加广泛,如食品添加剂、 保鲜剂、食品包装材料等。
甲壳素和壳聚糖在环保领域的应 用将得到发展,如污水处理、土 壤修复等。
甲壳素与壳聚糖的环境影响
减少环境污染
随着提取技术的发展,甲壳素和壳聚糖的生产过程将 更加环保,减少对环境的污染。
资源化利用
甲壳素和壳聚糖的废弃物将得到有效利用,实现资源 化利用,减少浪费。
生态平衡
合理利用甲壳素和壳聚糖资源将有助于维护生态平衡, 促进可
抗菌性
壳聚糖具有广谱抗菌活性,能够抑制多种细菌的 生长繁殖。
生物降解性
壳聚糖可被微生物分解为低分子物质,最终分解 为水和二氧化碳,具有良好的生物降解性。
壳聚糖的应用
食品添加剂
壳聚糖可用于食品保鲜、增稠、稳定等功能, 提高食品品质和口感。
医疗领域
壳聚糖在医疗领域可用于制作止血纱布、药 物载体、组织工程支架等。
02 壳聚糖简介
壳聚糖的来源
甲壳素
壳聚糖是甲壳素经过脱乙酰化反应后 得到的,甲壳素广泛存在于虾、蟹等 甲壳动物的外壳以及菌类、昆虫等节 肢动物的外骨骼中。
提取过程
通过酸碱处理、脱钙、脱蛋白等步骤 ,将甲壳素脱去乙酰基,得到壳聚糖 。

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用

壳聚糖的改性研究进展及其应用壳聚糖是一种天然高分子材料,由于其具有良好的生物相容性、生物活性和生物降解性,因此在工业、生物医学等领域得到了广泛的应用。

然而,壳聚糖也存在一些不足之处,如水溶性差、稳定性低等,因此需要对壳聚糖进行改性研究,以提高其性能和应用范围。

壳聚糖的改性方法主要包括化学改性和物理改性。

化学改性是通过化学反应改变壳聚糖的分子结构,从而提高其性能。

例如,通过引入疏水基团可以改善壳聚糖的水溶性和生物相容性。

物理改性则是通过物理手段改变壳聚糖的形态、结构等因素,以达到提高性能的目的。

例如,通过球磨法可以制备壳聚糖纳米粒子,从而提高其在生物医学领域的应用效果。

目前,壳聚糖的改性研究已经取得了显著的进展。

然而,仍存在一些问题和挑战。

其中,如何保持壳聚糖的生物活性是改性过程中面临的重要问题。

改性后的壳聚糖可能会出现新的毒性问题,因此需要进行深入的毒性研究。

未来,随着壳聚糖改性技术的不断发展,相信这些问题将逐渐得到解决。

壳聚糖在工业、生物医学等领域有着广泛的应用。

在工业领域,壳聚糖可用于制备环保材料、化妆品添加剂、印染助剂等。

例如,通过接枝共聚将壳聚糖与聚丙烯酸制成高分子复合材料,可用于制备可生物降解的塑料袋等环保材料。

在生物医学领域,壳聚糖可用于药物传递、组织工程、生物传感器等方面。

例如,利用壳聚糖制备的药物载体能够实现药物的定向传递,提高药物的疗效并降低毒副作用。

在生物医学领域,壳聚糖还可用于组织工程。

通过将壳聚糖与胶原等生物活性物质结合,可以制备出具有良好生物相容性和生物活性的组织工程支架。

这些支架可为细胞生长提供适宜的微环境,促进组织的再生和修复。

壳聚糖还可用于制备生物传感器,用于检测生物分子和有害物质。

例如,将壳聚糖与酶或抗体结合制成生物传感器,可实现对血糖、胆固醇等生物分子和有害物质的快速、灵敏检测。

壳聚糖作为一种天然高分子材料,具有良好的生物相容性、生物活性和生物降解性,在工业、生物医学等领域得到了广泛的应用。

甲壳素与壳聚糖综述

甲壳素与壳聚糖综述

二、壳聚糖的制备方法
二步碱液法 ( 传统法)
改进碱液法
该工艺具有制备周期短、节约能源; 节约烧碱用量, 降低成本, 省去漂白, 确保产品质量的优点。
微波法
该工艺的特点不仅作用时间短, 能耗低, 而且比常 规加热碱液处理效率提高 11 倍多, 同时反应重复性好。
三、甲壳素、壳聚糖的应用
功能 材料
存在状态:
甲壳素的结构因氢键类型不同而有 三种结晶体: ➢α-甲壳素,由两条反向平行的糖链组成 ➢β-甲壳素,由两条同向平行的糖链组成 ➢γ-甲壳素,由三条糖链组成,其中两条 同向,一条反向。
壳聚糖: 也称几丁聚糖(chitosan),它是由甲壳素在 碱性条件下加热,脱去N—乙酰基后生成的。其学名为(1, 4)—2—氨基—2—脱氧—β—D—葡聚糖。壳聚糖外观是 白色或淡黄色半透明状固体,略有珍珠光泽。
8.在功能材料中的应用
膜材料:
(1)反渗透膜:具有较高的脱盐率和透水率,还 具有强耐碱性,交链后的膜有耐酸性。 (2)渗透蒸发膜:用甲壳素制成的分离水和乙醇 的高性能功能分离膜,与蒸馏法分离水和乙醇相 比,能耗降低。 (3)超过滤膜:甲壳素制成的壳质膜,改变成膜 温度及用丙酮等有机溶剂浸处理,可调整分离膜 的强度及透过性能,可用作超过滤膜。
1.在农业上的应用
植物病害的防治:
壳聚糖可诱导植物产生广谱抗性, 增强植物自身的防卫能力,抑制多种 病源微生物的生长。
低聚壳聚糖可以诱导植物产生抗 性蛋白,具有明显的抗微生物活性, 在体外抑制真菌的生长。
2.在化妆品原料上的应用
1)洗发香波、头发调理剂:甲壳素粉沫比表面积 大,孔隙率高,吸收皮脂类油脂远大于淀粉或其 他活性物质,是洗发剂理想的活性物质。
一是通过电荷中和而使胶体颗粒脱稳并形成细小 的絮凝体;

甲壳素及壳聚糖的制备与利用

甲壳素及壳聚糖的制备与利用

甲壳素及壳聚糖的制备与利用
甲壳素和壳聚糖是生物多糖,具有广泛的应用。

它们主要来源于海洋生物,如海藻、海参、单细胞藻类等,也可以从非海洋生物中分离纯化而来,如硅藻中的甲壳素,以及禾谷科植物的壳聚糖。

甲壳素和壳聚糖的制备方法包括离子交换法、溶剂萃取法、乳化-凝胶法、气相法、水解法等,但以水解法为主,因其简便性、成本低廉、效率高、成品纯度高等优势。

在水解中,一般采用酶进行水解,如α-葡萄糖苷酶、β-葡萄糖苷酶等,也可以采用酸性碱性溶液进行水解。

利用甲壳素和壳聚糖可以制备各种复合材料,如复合膜、复合无纺布、复合涂料等,具有良好的抗水蚀性能、抗紫外线性能、耐腐蚀性能等,可用于食品包装、水处理、生物医学等领域。

此外,它们还可以用于制备含有药物的纳米粒子、纳米复合材料、纳米纤维素以及药物输送体系等,以及制备生物活性物质、抗菌剂、抗炎剂、抗癌剂等。

甲壳素及壳聚糖在畜禽饲养业中的应用

甲壳素及壳聚糖在畜禽饲养业中的应用
是 以 B— l ,4 糖 苷 键连 接 的直 链状 多糖 。其广 泛 存 在于 甲壳 动物 虾 蟹等 的外壳 和蝇 蛆 、 甲虫 、蝉 、蝗虫 、螳 螂 、蚕 蛹 等 昆虫 的表 皮 或蛹 壳 、牡 蛎蜗 牛 乌贼 等 软体 动物 的 骨骼 、菌类 藻类 微 生物 的 细 胞 、高 等植 物 的细 胞壁 等 。 甲壳 素结 构类 似 纤维 素 ,是 稍少 于 纤 维素 的第二 大天 然 生物 资 源 。 甲壳 素 低毒 害 ,由于 大分 子 间氢 键 作用 极 强 , ,其 不溶 性 限制 了其 应 用 范 围 ,通 常 大多 数 是用 甲 壳 素的衍 生物 壳聚 糖 。 壳聚糖【 1 】 ,化 学 名 为 ( 1 ,4) 一 2 一 氨基 一 2 一 脱 氧一 8 一 D 一 葡 聚 够 吸 附氢 离子 H ,结 合 相 当数 量 的酸 性 物 质 ,可 抑 制 中和 胃酸 分泌 ,从 而保 护 胃黏 膜 ; 由于对H + 的吸 附 ,可 以使 体 液 的p H 值 倾 向碱性 ;能够促 进肠 道 内双歧杆 菌 的生 长 ,改 变生 长环 境 I 。
壳聚糖也能渗进细菌细胞里和细菌细胞质通过絮凝作用从而搅扰细菌生理活动的进行杀死细菌14122壳聚糖可以调节畜禽体内脂肪代谢壳聚糖能降低畜禽的血脂胆固醇和甘油三酯其的铵离子可以结合带负电荷的胆汁酸阻挠胆汁酸参与乳化脂肪且它可抑制消化道内容物中脂肪酶的活性从而降低脂肪的消化吸收增加粪便中中脂肪的排出量减少畜禽产品体脂的沉积14123甲壳素及壳聚糖可以提高免疫功能甲壳素及其衍生物可以活化巨噬细胞提高巨噬细胞溶菌酶的活性使其吞噬能力增强并能活化t淋巴细胞促进其释放各种淋巴因子124甲壳素及壳聚糖能保护消化道粘膜甲壳素及其衍生物能够吸附氢离子h结合相当数量的酸性物质可抑制中和胃酸分泌从而保护胃黏膜

甲壳素∕壳聚糖及衍生物在水处理中的应用

甲壳素∕壳聚糖及衍生物在水处理中的应用

甲壳素∕壳聚糖及衍生物在水处理中的应用摘要:甲壳素具吸附及螯合性,可以和重金属离子形成错合物,再加上其生物可分解特性,不致于造成二次公害,因此为一良好的环境友好型水处理材料。

本文主要介绍了甲壳素∕壳聚糖及衍生物在水处理中的应用研究进展。

关键词: 壳聚糖;螯合; 水处理一.壳聚糖简介甲壳质是1811年由法国学者布拉克诺(Braconno)发现,1823年由欧吉尔(odier)从甲壳动物外壳中提取,并命名为CHITIN,译名为几丁质。

外观及性质:淡米黄色至白色,溶于浓盐酸/磷酸/硫酸/乙酸,不溶于碱及其它有机溶剂,也不溶于水。

甲壳质的脱乙酰基衍生物(Chitosan derivatives)可溶于水。

甲壳素具有抗癌抑制癌、瘤细胞转移,提高人体免疫力及护肝解毒作用。

尤其适用于糖尿病、肝肾病、高血压、肥胖等症,有利于预防癌细胞病变和辅助放化疗治疗肿瘤疾病。

因此,甲壳素/壳聚糖越来越多地被国内外研究者所重视,对它的研究也日益深入,现在,甲壳素/壳聚糖的应用领域已覆盖环保、食品、生物医用材料、生物农药等诸多方面。

甲壳素的化学名称为(1,4)-2-乙酰氨基-2-脱氧-β-D-葡萄糖,是线型多糖类聚合物,简称为N-乙酰-D-葡糖胺。

二.1、壳聚糖的制备壳聚糖是许多低等动物,特别是节肢类动物(如昆虫、甲壳类动物等)外壳的主要成分,主要以无机盐及蛋白质结合形式存在.但其中尤以虾蟹壳中含量最高,因此通常以是虾蟹壳为原料。

(1)传统工艺[1]以虾蟹壳为原料,常温下用稀释盐酸分解无机盐,用稀碱脱除蛋白质得甲壳素,甲壳素再经浓碱脱乙酰基得壳聚糖。

其简易流程如下:虾蟹壳——清洗、去杂质、烘干(加稀HCL)——脱无机盐(加稀NaOH)——脱蛋白质(加浓NaOH)——脱乙酰基——烘干得壳聚糖壳聚糖的主要质量指标是粘度及胺基含量,在制备壳聚糖过程中,用稀盐酸分解虾蟹壳无机盐的同时,壳聚堂的链也会发生不同程度的水解作用,因此在分解无机盐的过程中盐酸的浓度、处理时间及温度对壳聚糖制品的粘度、胺基含量均有影响。

农用甲壳素的功效与作用

农用甲壳素的功效与作用

农用甲壳素的功效与作用农用甲壳素(chitosan),也被称为壳聚糖,是一种天然生物聚合物,由脱乙酰壳聚糖(chitin)经过酸碱处理而得到。

作为一种生物功能材料,农用甲壳素在农业领域发挥着重要的作用。

它具有多种功能,包括抗病虫害、提高植物抗逆性、增强植物生长、改善土壤质量等。

本文将对农用甲壳素的功效与作用进行介绍。

一、抗病虫害作用农用甲壳素具有良好的抗病虫害作用,可以用于预防和控制多种农作物病虫害。

研究表明,农用甲壳素可以通过调节植物自身抵御能力,提高植物对病原菌的抵抗性。

农用甲壳素对于多种病原真菌和细菌均具有抑制作用,例如对于大米纹枯病、水稻白叶枯病、黄瓜炭疽病等具有显著的防治效果。

此外,农用甲壳素还可以抑制多种昆虫、螨类等害虫的生长和繁殖,对于多种农作物害虫的防治也具有一定的效果。

二、提高植物抗逆性植物在生长发育过程中会受到各种逆境的影响,例如高温、低温、干旱、盐碱等。

农用甲壳素可以增加植物对逆境的耐受性,提高植物的生长和产量。

研究表明,农用甲壳素可以通过激活植物的防御系统,提高植物的抗逆性。

在高温胁迫下,农用甲壳素可以减轻植物叶片的损伤,提高光合作用效率,并降低氧化胁迫。

在干旱胁迫下,农用甲壳素可以增加植物根系的活力,提高植物对水分的利用效率。

在盐碱胁迫下,农用甲壳素可以降低土壤的盐碱度,改善土壤环境,从而提高植物对盐碱的适应性。

三、增强植物生长农用甲壳素可以促进植物的生长和发育,增加作物的产量和品质。

研究表明,农用甲壳素可以促进植物的根系和叶片的生长,增加植物的光合作用效率,提高植物对养分和水分的吸收利用效率。

此外,农用甲壳素还可以提高植物的免疫力,减少植物叶片的病害发生。

农用甲壳素还可以促进植物的开花结果,增加作物的花果实数量和质量。

四、改善土壤质量农用甲壳素可以改善土壤的物理性、化学性和生物性,提高土壤的保水保肥能力。

研究表明,农用甲壳素可以改善土壤的结构,增加土壤的团粒结构和渗透性,减少土壤的压实度和泥化度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

涂依
戊二醛为交联剂, 以涂覆的方法制备了壳聚糖 /羧甲基壳聚糖双层复合 膜, 羧甲基壳聚糖的分子量不同, 研究对比不同分子量羧甲基壳聚糖 双层复合膜的创伤修复效果。实验结果表明: 制备的双层复合膜对创伤 都有一定的修复效果,但是羧甲基壳聚糖的分子量越小,创伤修复效 果越好
余丕军
2021/3/10
通过观察胶原蛋白 - 壳聚糖( 80: 20) 复合纳米纤维膜修复 SD 大鼠背部全层皮
营养药物载体
针对壳聚糖微球作为药物载体的研究已经有很多,但其作为营养药物载体的研究则比较少。目前, 壳聚糖微球在营养物运送方面的研究主要是作为维生素载体。
2021/3/10
8
甲壳素生物质转化为高附加值化合物
随着全球石油、天然气等传统化石资源逐渐枯竭,人们正在努力寻求新的替代能源。生物质是 一种天然可再生资源,数量巨大,价格低廉,丰富的生物质资源有望成为未来获取燃料和高附加值 化学品的主要来源。新加坡国立大学的颜宁教授等提出了甲壳素生物质精炼的概念,同时指出甲壳 素生物质来源丰富,应该像纤维素生物质一样被充分利用,使其转化成为具有较高价值的化学品。
对骨损伤的修复
对神经干细胞的修复
对皮肤创面的修复
2021/3/10
3
1.对骨损伤的修复
将多碳纳米管通过冷冻干燥法与壳聚糖复合制成支架,实验表明有利于骨样细胞黏附 在支架上,加速细胞增殖并向成骨细胞分化。纳米羟基磷灰石/壳聚糖三维多孔支架植入到 大鼠颅顶骨缺损处,通过组织学观察,在2周时骨缺损区边缘及支架中心发现有新骨形成, 在5周时骨缺损区已有明显的新骨形成
通过化学改性的方法将琥珀酸引入到壳聚糖中合成水溶性壳聚糖衍生物 ( NSC),在 L929 细胞中研究NSC 的细胞毒性,并通过抑制区方法和细菌生 长曲线分析评价其抗菌活性。结果表明,与壳聚糖相比,NSC 的溶解度显着 提高,NSC 是无毒的,具有良好的抗菌性能。动物伤口愈合试验表明 NSC 相比壳聚糖可以显著减少愈合时间。
肤缺损创面的作用, 修复后14d 实验组创面已经基本对合; 而仅用油纱及干纱布
包扎并在创伤外缘打包固定的对照组创面对合不整齐, 创面较实验组大。证实
了胶原蛋白 - 壳聚糖复合纳米纤维膜具有优异的生物力学性能,比普通纱布能
更好的促进创伤修复、愈合。
6
壳聚糖微球在药物载体中的应用
壳聚糖因其具有良好的生物学特性而成为药物载体研究的热点。药物经壳聚糖负载后,不仅能够 达到缓释控释的目的,还能够改变药物的给药方式,降低药物不良反应,提高药物生物利用度。 其药物释放机制包括以下3种:表面释放、扩散释放、溶蚀释放,如图所示
软骨细胞通过组织工程技术的支架共同培养, 将构建软骨组织移植是目前有望治疗 受损软骨的方法。壳聚糖与其他材料复合制作组织工程支架可以促进细胞的黏附, 从而 使得软骨与骨的形成。
2021/3/10
石国华等在下颌骨缺损的家兔做动物实验,使用的是壳聚糖 /羟磷灰石纳米复合材料, 结果表明: 具有三维孔洞网络结构的壳聚糖 /羟磷灰石纳米聚合物可以与骨直接结合, 并且具有很好的生物相容性和骨引导能力, 可降解且降解后的产物无毒性,移植 10 周 便可完全修复骨缺损。
HMF 的最高产率达到 12.1%。
2021/3/10
SAVITRI 等在体积分数0.5%的低浓度乙酸溶 液中超声降解壳聚糖,发现原本部分溶解的壳聚 糖全部溶解在乙酸溶液中, 60℃条件下超声 30min 后,可溶性壳聚糖组分中检测到较高浓 度的 5-HMF。
11
甲壳素生物质转化为高附加值化合物
石国华等在下颌骨缺损的家兔做动物实验,使用的是壳聚糖 /羟磷灰石纳米复合材料,结果 表明: 具有三维孔洞网络结构的壳聚糖 /羟磷灰石纳米聚合物可以与骨直接结合, 并且具 有很好的生物相容性和骨引导能力, 可降解且降解后的产物无毒性,移植 10 周便可完全 修复骨缺损。
5
3.对皮肤创面的修复
Fengling Tang
4
2.对神经干细胞的修复
几年,利用组织工程化神经修复是科学家越来越重视的问题,由于神经系统的复 杂性, 要找到一种能够代替人体神经的材料是最需要解决的问题。壳聚糖及其化学改 性产物在组织工程化神经修复当中是研究得比较早, 也比较广泛的一种具有潜在发展 的人工神经导管材料
2021/3/10
通过引入壳聚糖膜到壳聚糖神经导管中, 可以增强缺损坐骨神经的轴突再生和功能恢复 能力。朱奇等在壳聚糖中插入聚乳酸羟基乙酸纤维制备神经导管, 发现再生神经当中伴 有新生的小血管和神经纤维,同时证实了该神经导管在体内具有生物活性、生物相容性, 降解产物与体内无不良反应, 可诱导神经细胞的生长。
表面释放
壳聚糖微球 溶蚀释放
2021/3/10
扩散释放
7
壳聚糖微球在药物载体中的应用
普通药物载体 壳聚糖微球作为普通药物的载 体,能提高药 物稳定性,保持药物长期活性。目前已有多种药物可通
过壳聚糖微球缓释,如四环素、奈普生、阿司匹林等。药物经过壳聚糖微球负载后缓释作用十分明显, 释放时间与原药相比都显著地延长。
壳聚糖、甲壳素应用
L/O/G/O
2021/3/10
1
一、壳聚糖在创伤修复中应用 二、壳聚糖微球在药物载体中的应用 三、甲壳素生物质转化为高附加值化合物
2021/3/10
2
壳聚糖在创伤修复中应用的研究进展
伤口感染可能产生许多有毒物质以阻止伤口的修复, 在严重的情况下,被感染的伤 口很有可能导致死亡。然而, 目前大多数市售的伤口敷料不具有活性抗菌剂的能力, 这将增加溃疡的形成和提高感染率。由于壳聚糖本身高效抗菌、快速止血、促进伤口愈 合和生物相容性好等优点, 因此被广泛应用血管支架、创伤敷料当中。目前壳聚糖在创 伤敷料中取得巨大成功,在医用和化妆品领域得到广泛应用
1.甲壳素生物质转化为含氮化合物
2021/3/10
甲壳素生物质转化为 3-乙酰氨基-5-乙酰基呋喃
9
甲壳素生物质转化为高附加值化合物
2021/3/10
10
甲壳素生物质转化为高附加值化合物
2.甲壳素生物质转化为不含氮呋喃衍生物
LEE 等在低温热液条件下催化转化天
然高分子壳聚糖,使用2.2%的H2SO4 作为 催化剂,174℃条件下反应 36.9min,5-
12
生物大分子药物载体 用 壳聚糖微球作为多肽、蛋白质类药物的载体,不仅可以保护药物免受消化道酶的破坏及pH值的
影响,还能将药物缓慢释放并靶向送达体内的作用部位,从而达到长效缓释和靶向目的。
抗癌药物的载体 壳聚糖是一种阳离子多糖材料,而通常肿瘤细胞具有比正常细 胞表面更多的负电荷,因此,壳聚糖
微球对肿瘤细胞表面具有选择性吸附和电中和作用,还具有一定的直接抑制肿瘤细胞的作用,通过活化 免疫系统显示具有抗癌活性,与现有的抗癌药物合用可增强药物的抗癌效果。
3.甲壳素生物质转化为有机酸
OMARI等0.24mmol SnCl4 5H2O 为催 化剂,4mL水为溶剂,在密闭体系中微波 加热壳聚糖溶液至200℃,反应 30min, 得到乙酰丙酸的产率为 23.9%。
2021/3/10
SAVITRI 等在体积分数0.5%的低浓度乙酸溶 液中超声降解壳聚糖,发现原本部分溶解的壳聚 糖全部溶解在乙酸溶液中, 60℃条件下超声 30min 后,在可溶性壳聚糖组分中检测到较高浓 度的 5-HMF。
相关文档
最新文档