1-2-1-1等差数列的认识与公式运用学生版

合集下载

2021版新高考数学:等差数列及其前n项和含答案

2021版新高考数学:等差数列及其前n项和含答案

(对应学生用书第103页)考点1等差数列基本量的运算解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a1和公差d,通常利用已知条件及通项公式或前n项和公式列方程(组)求解,等差数列中包含a1,d,n,a n,S n五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a1,d表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程.又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )A .23B .32C .35D .38C [由题意可知年龄构成的数列为等差数列,其公差为-3,则9a 1+9×82×(-3)=207,解得a 1=35,故选C.]确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .考点2 等差数列的判定与证明等差数列的4个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.2.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[解](1)证明:由题设知a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1,由于a n+1≠0,所以a n+2-a n=λ.(2)由题设知a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2,因此存在λ=4,使得数列{a n}为等差数列.考点3等差数列的性质及应用B [数列{a n }为等差数列,则a m -1+a m +1=2a m ,则a m -1+a m +1-a 2m -1=0可化为2a m -a 2m -1=0,解得a m =1.又S 2m -1=(2m -1)a m =39,则m =20.故选B.]2.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意的n ∈N *,都有Sn Tn =2n -34n -3,则a2b3+b13+a14b5+b11的值为( ) A .2945 B .1329 C .919 D .1930C [由题意可知b 3+b 13=b 5+b 11=b 1+b 15=2b 8,∴a2b3+b13+a14b5+b11=a2+a142b8=a8b8=S15T15=2×15-34×15-3=2757=919.故选C.] 考点4 等差数列前n 项和的最值问题求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎨⎧am≥0,am +1≤0的项数m 使得S n 取得最大值为S m ; ②当a 1<0,d >0时,满足⎩⎨⎧am≤0,am +1≥0的项数m 使得S n 取得最小值为S m .。

等差数列的概念及通项公式第一课时高二下学期数学人教A版(2019)选择性必修第二册

等差数列的概念及通项公式第一课时高二下学期数学人教A版(2019)选择性必修第二册
所以当d=0时,an=a1是常值函数;
当d≠0时,an是一次函数f(x)=dx+(a1-d) (x∈R)
当x=n, (n∈N*)时的函数值,即an=f式
问题7 等差数列{an}的图象
与一次函数f(x)=dx+(a1-d)
的图象有什么关系?
f(x)
f(x)=dx+(a1-d)
解得15.6≤d≤17.1 .
课堂小结
等差数列
等差数列
的概念
等差数列的通
项公式
等差数列
的判断与
证明
等差数列
通项公式
的应用
令-3n+11=-289,得n=100,
所以-289是该数列中的第100项.
典例精析
题型二:等差数列通项公式的应用
反思与感悟
等差数列通项公式的求法与应用技巧
(1)等差数列的通项公式可由首项与公差确定,所以要求等
差数列的通项公式,只需求出首项与公差即可.
(2)等差数列{an}的通项公式an =a1 +(n-1)d中共含有四个
(2)等差中项法:证明对任意正整数n都有2an+1=an+an+2.
典例精析
题型五:等差数列通项公式实际应用
例5 在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某
一个固定数值.如果1 km高度的气温是8.5℃,5 km高度的气温是-17.5℃,求
2 km,4 km,8 km高度的气温.
典例精析
题型二:等差数列通项公式的应用
例2 求等差数列8,5,2,… 的通项公式an和第20项,并判断
-289是否是数列中的项,若是,是第几项?
解 由已知条件,得d=5-8=-3.
把a1=8,d=-3代入an=a1+(n-1)d,

【课件】第1课时等差数列的概念与通项公式说课课件高二上学期数学人教A版(2019)选择性必修第二册

【课件】第1课时等差数列的概念与通项公式说课课件高二上学期数学人教A版(2019)选择性必修第二册
个从0-9的刻度的转盘,要求把四个转盘分别转到指定数字,
门才能打开。门上还有四组数字,如下:
1)1,3,5,( ),9
2)15,12,( ),6,3
3)48,53,58,( )3,68
4)8,( ),8,8,8
创设学生比较感兴趣的情景,可以激发学生对本节课的学习兴趣,在游戏
中加入等差数列,让学生初步感知等差数列的特点。同时培养学生观察、
三 、 教 学 分 析 - - - ( 二 ) 教 学 程 序 设 计
巩固练习: 在等差数列中,已知 = , = ,求 .
问1:还有没有其他做法?
师根据学生回答适时给出公式: = + ( − )
问2:从结果来看 , , , 之间有怎样的关系?
中项。
问1:等差中项A与a、b之间又怎样的关系?
问2:下列两个数的等差中项分别是什么?
(1)2 ,( ) ,4 (2)-12,( ) ,0
问3:是不是任意两数都存在等差中项?存在几个?
师点评:任意两数的等差中项即为两数的平均值。
问4:等差数列{ }中, 与− , + 之间有怎样的关系?为什么?
(4)-8,-6,-4.
学生对刚学习的概念理解还不够深刻,通过概念的辨析,强化学生对
等差数列概念的理解,看清“等差”的本质特征,培养学生抽象概括
能力和严密的数学学习态度。
三 、 教 学 分 析 - - - ( 二 ) 教 学 程 序 设 计
2、等差中项的定义:
如果在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做a与b的等差
教学目标:通过数字规律小游戏情境引入,经历观察,分析,
归纳,推理论证,理解并掌握等差数列的概念,了解等差数列

等差数列(课时1 等差数列的概念及通项公式)高二数学课件(人教A版2019选择性必修第二册)

等差数列(课时1 等差数列的概念及通项公式)高二数学课件(人教A版2019选择性必修第二册)

情境设置
问题2:观察等差数列的通项公式,你认为它与我们熟悉的哪一类函数有关?
[答案] 由于 ,故 是函数 当 时的函数值,即 ,点 则是函数 图象上的均匀分布的孤立的点,而 是直线 的斜率,记为 ,实际上,如果已知直线上任意两点 , ,由斜率的公式可知 ,公差 的符号决定了数列的单调性,当 时,数列 为递增数列,当 时,数列 为常数列,当 时,数列 为递减数列.
已知数列 中, , .
(1) 证明:数列 是等差数列.
[解析] 由已知得, , , 所以数列 是以2为首项,2为公差的等差数列.
(2) 求数列 的通项公式.
[解析] 由(1)知, ,所以 .
巩固训练
1.若数列 满足 ,则数列 是( ).A.公差为1的等差数列 B.公差为 的等差数列C.公差为 的等差数列 D.不是等差数列
2.熟练掌握等差数列是关于 的一次函数这一结构特征,并且公差 是一次项系数,它的符号决定了数列的单调性,当 时,数列 为递增数列,当 时,数列 为常数列,当 时,数列 为递减数列.
1.设 是等差数列,下列结论中正确的是( ).A.若 ,则 B.若 ,则 C.若 ,则 D.若 ,则
情境设置
问题2:问题1的结论可给我们什么样的启示?
[答案] 可以用等差中项的定义来证明一个数列是等差数列,即证明: .
问题3:若数列 的通项公式 ,则该数列是等差数列吗?
[答案] 是.因为 ,所以数列 是等差数列.
新知生成
等差数列的判定方法有以下三种:
(1)定义法: 为等差数列.
问题4:由等差数列的定义可知,如果 , , 这三个数是等差数列,你能求出 的值吗?
[答案] 由定义可知 ,即 ,解得 .
新知生成

等差数列的概念与应用

等差数列的概念与应用

4.2.1 等差数列的概念(1)导学案【学习目标】1.理解等差数列的概念2.掌握等差数列的通项公式及应用3.掌握等差数列的判定方法【学习重难点】重点:等差数列概念的理解、通项公式的应用难点:等差数列通项公式的推导及等差数列的判定【学习过程】1.等差数列的概念(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是3.从函数角度认识等差数列{a}n Array若数列{a n}是等差数列,首项为a1,公差为d,则a n=f (n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加三、典例解析例1.(1)已知等差数列{}的通项公式为,求{}公差和首项;(2)求等差数列8,5,2…的第20项。

求通项公式的方法(1)通过解方程组求得a 1,d 的值,再利用a n =a 1+(n -1)d 写出通项公式,这是求解这类问题的基本方法.(2)已知等差数列中的两项,可用d =直接求得公差,再利用a n =a m+(n -m )d 写出通项公式.(3)抓住等差数列的通项公式的结构特点,通过a n是关于n 的一次函数形式,列出方程组求解.跟踪训练1.(1)在等差数列{a n }中,已知a 5=10,a 12=31,求首项a 1与公差d .(2)已知数列{a n }为等差数列,a 15=8,a 60=20,求a 75.例2 (1)已知m 和2n 的等差中项是8,2m 和n 的等差中项是10,则m 和n 的等差中项是________.(2)已知1a ,1b ,1c 是等差数列,求证:b +c a ,a +c b ,a +b c也是等差数列.等差中项应用策略1.求两个数x ,y 的等差中项,即根据等差中项的定义得A =x +y 2. 2.证三项成等差数列,只需证中间一项为两边两项的等差中项即可,即若a ,b ,c 成等差数列,则有a +c =2b ;反之,若a +c =2b ,则a ,b ,c 成等差数列.跟踪训练2.在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.当堂检测1.数列{a n}的通项公式为a n=5-3n,则此数列()A.是公差为-3的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n的等差数列2.等差数列{a n}中,已知a2=2,a5=8,则a9=()A.8B.12C.16D.243.已知a=13+2,b=13-2,则a,b的等差中项为______.4.在等差数列{an }中,已知a5=11,a8=5,则a10=____.5.若等差数列{a n}的公差d≠0且a1,a2是关于x的方程x2-a3x+a4=0的两根,求数列{a n}的通项公式.。

三年级奥数专题 等差数列的认识与计算提高(学生版)

三年级奥数专题 等差数列的认识与计算提高(学生版)

学科培优数学等差数列的认识和计算提高学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。

要求学生熟记等差数列各个公式,并在公式中找出对应的各个量进行计算。

知识梳理一、等差数列的定义:若干个数排成一列,称为数列。

数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:等差数列:3、6、9……96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

注:一般情况下,等差数列是按照从小到大进行排列的,有时会出现从大到小排列顺序,此时可以改变数列顺序,从而让数列变为从小到大,并避免出现公差小于零的情况。

二、等差数列的相关公式:通项公式:末项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2=平均数×项数平均数公式:平均数=(首项+末项)÷2注:第一个公式中,有时会遇到求中间项、而非末项,此时可以截取一个新的数列,把该项作为“新的末项”,即可继续用此公式。

三、重点难点解析1.找出题目中首项、末项、公差、项数。

2.必要时调整数列顺序。

四、竞赛考点挖掘1.找到数列规律。

2.适当调整数列顺序。

例题精讲【试题来源】【题目】2,5,8,11,14……是按照规律排列的一串数,第21项是多少?【试题来源】【题目】计算1+2+3+4+5+6+7+8+9+10+11+12【试题来源】【题目】计算11+12+13+14+15+16+17+18+19【试题来源】【题目】计算100+99+98+97+96+95+94+93+92+91+90【试题来源】【题目】把比100大的奇数从小到大排成一列,其中第21个是多少?【试题来源】【题目】已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【试题来源】【题目】体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

等差数列-学生版

等差数列-学生版

等差数列㈠求等差数列的通项公式1、已知数列{a n }为等差数列,且a 5=11,a 8=5,则a n =__________.2、已知{a n }是等差数列,a 5=10,d =3,求a 10.3、已知{a n }是等差数列,a 5=10,a 12=31,求a 20,a n .4、等差数列2,5,8,…,107共有多少项?5、在-1与7之间顺次插入三个数a 、b 、c 使这五个数成等差数列,试求出这个数列.6、成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.7、设数列{a n }是等差数列,a p =q,a q =p(p ≠q),求a p+q .8、两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?㈡等差数列的判断1、已知数列{a n }的通项公式为a n =pn+q,其中p 、q 为常数,且p≠0,问这个数列一定是等差数列吗?2、数列{a n }的通项公式a n =2n+5,则此数列( )A.是公差为2的等差数列B.是公差为5的等差数列C.是首项为5的等差数列D.是公差为n 的等差数列 3、在数列{a n }中,a 1=2,2a n+1=2a n +1则a 101的值为( ) A.49 B.50 C.51 D.52㈢等差数列的性质1、等差数列{a n }中,若a 1+a 2+a 3=3,a 4+a 5+a 6=9,则a 10+a 11+a 12=______________.2、等差数列{a n }中,已知a 2+a 3+a 10+a 11=36,则a 5+a 8=___________________.3、已知等差数列{a n }中,a 5+a 6+a 7=15,a 5·a 6·a 7=45,求数列{a n }的通项公式.4、设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-375、已知方程(x 2-2x+m)(x 2-2x+n)=0的四个根组成一个首项为41的等差数列,则|m-n|的值为 A.1B.43C.21D.83㈣等差数列的前n 项和1、求下列数列的和(1)1+2+3+…+n ; (2)1+3+5+…+(2n -1);(3)2+4+6+…+2n ; (4)1-2+3-4+5-6+…+(2n -1)-2n .2、已知一个等差数列{}n a 前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n 项和的公式吗?3、已知数列{}n a 的前n 项和为212n S n n =+,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?4、在等差数列{}n a 中,若34567450a a a a a ++++=,则28a a +的值等于( ) A.90 B.100 C.180 D.2005、如果一个等差数列中,S 10=100,S 100=10,则S 110=( ) A .90 B.-90 C.110 .D -1106、在等差数列{a n }中,S 4=1,S 8=4,则a 17+a 18+a 19+a 20的值是( )A.7B.8C.9D.10 7、若一个等差数列前3项和为34,最后3项和为146,且所有项和为390,则这个数列的项数是 ( ) A .13 B .12 C .11 D .10 8、在等差数列{}n a 中,a 2+a 5=19,S 5=40,则a 10为( )A .27 B.28 C.29 D.309、已知一个等差数列的前四项和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A.24 B.26 C.27 D.2810、已知等差数列{a n }的通项公式为a n =2n+1,其前n 项和为S n ,则该数列{nS n }的前10项的和为( )A.120B.70C.75D.100 11、在等差数列中,154567405S S =-=,,则30S =( )A.68 B.189 C.78 D.12912、等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .26013、等差数列的前m 项和是25,前2m 项和是100,则前3m 项和是 。

人教A版高中数学选择性必修第二册4.2.1第一课时等差数列的概念及通项公式课件

人教A版高中数学选择性必修第二册4.2.1第一课时等差数列的概念及通项公式课件

()
答案:(1)× (2)√ (3)√ (4)√
2.[多选]下列各组数列能构成等差数列的为( ) A.2,2,2,2,2 B.cos 0,cos 1,cos 2,cos 3 C.3m,3m+a,3m+2a,3m+3a D.a-1,a+1,a+3 解析:A.∵2-2=2-2=2-2=2-2=0,∴该数列是等差数列.B.∵cos 1 -cos 0≠cos 2-cos 1,∴该数列不是等差数列.C.∵(3m+a)-3m=(3m+ 2a)-(3m+a)=(3m+3a)-(3m+2a)=a,∴该数列是等差数列.D.∵(a+1) -(a-1)=(a+3)-(a+1)=2,∴该数列是等差数列. 答案:ACD
[对点练清] 1.在等差数列{an}中,已知a5=10,a12=31,求a20,an.
解:法一:∵a5=10,a12=31, ∴aa11++411dd==1301,, ∴ad1==3-,2. ∴an=a1+(n-1)d=3n-5,∴a20=3×20-5=55. 法二:∵a12=a5+7d,即 31=10+7d,∴d=3, ∴an=a12+(n-12)d=3n-5, ∴a20=a12+8d=31+8×3=55.
这表明已知等差数列中的任意两项即可求得其公差,进而求得其通项公式.
[典例1] 在等差数列{an}中, (1)已知a5=-1,a8=2,求a1与d; (2)已知a1+a6=12,a4=7,求a9. [解] (1)∵a5=-1,a8=2, ∴aa11++74dd==2-,1, 解得ad1==1-. 5, (2)设数列{an}的公差为 d. 由已知得,aa11+ +a31d+=57d,=12, 解得ad1==21., ∴an=1+(n-1)×2=2n-1, ∴a9=2×9-列,求证:b+a c,a+b c,a+c b也成等差数列.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。

要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。

一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >()② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=知识点拨教学目标等差数列的认识与公式运用项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++L11002993985051=++++++++L 1444444442444444443共50个101()()()()101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++LL L和=1+和倍和即,和(1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=L (),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=L (),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】 下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

①6,10,14,18,22,…,98; ②1,2,1,2,3,4,5,6; ③ 1,2,4,8,16,32,64; ④ 9,8,7,6,5,4,3,2; ⑤3,3,3,3,3,3,3,3; ⑥1,0,1,0,l ,0,1,0;【例 2】 小朋友们,你知道每一行数列各有多少个数字吗?(1)3、4、5、6、……、76、77、78 (2)2、4、6、8、……、96、98、100 (3)1、3、5、7、……、87、89、91 (4)4、7、10、13、……、40、43、46【例 3】 把比100大的奇数从小到大排成一列,其中第21个是多少?例题精讲【巩固】2,5,8,11,14……是按照规律排列的一串数,第21项是多少?【例 4】已知一个等差数列第9项等于131,第10项等于137,这个数列的第1项是多少?第19项是多少?【巩固】一个数列共有13项,每一项都比它的前一项多7,并且末项为125,求首项是多少?【巩固】在下面12个方框中各填入一个数,使这12个数从左到右构成等差数列,其中10、16已经填好,这12个数的和为。

 ‍‍‍‍ ‍‍‍‍ ‍‍‍‍ ‍‍‍‍ ‍‍‍‍16 ‍‍‍‍ ‍‍‍‍10 ‍‍‍‍ ‍‍‍‍ ‍‍‍‍【例 5】从1开始的奇数:1,3,5,7,……其中第100个奇数是_____。

【例 6】观察右面的五个数:19、37、55、a、91排列的规律,推知a =________ 。

等差数列公式的简单运用【例 7】2、4、6、8、10、12、L是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最小的一个.【巩固】1、3、5、7、9、11、L是个奇数列,如果其中8个连续奇数的和是256,那么这8个奇数中最大的数是多少?【巩固】1、4、7、10、13、…这个数列中,有6个连续数字的和是159,那么这6个数中最小的是几?【例 8】在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.【巩固】5、8、11、14、17、20、L,这个数列有多少项?它的第201项是多少?65是其中的第几项?【巩固】对于数列4、7、10、13、16、19……,第10项是多少?49是这个数列的第几项?第100项与第50项的差是多少?【巩固】已知数列0、4、8、12、16、20、…… ,它的第43项是多少?【巩固】聪明的小朋友们,PK一下吧.⑴3、5、7、9、11、13、15、…… ,这个数列有多少项?它的第102项是多少?⑵0、4、8、12、16、20、…… ,它的第43项是多少?⑶已知等差数列2、5、8、11、14…… ,问47是其中第几项?⑷已知等差数列9、13、17、21、25、…… ,问93是其中第几项?【例 9】⑴如果一个等差数列的第4项为21,第6项为33,求它的第8项.⑵如果一个等差数列的第3项为16,第11项为72,求它的第6项.【巩固】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是多少?【巩固】如果一等差数列的第4项为21,第10项为57,求它的第16项.等差数列的求和【例 10】一个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【巩固】有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【巩固】求首项是13,公差是5的等差数列的前30项的和.【例 11】15个连续奇数的和是1995,其中最大的奇数是多少?【巩固】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 12】小马虎计算1到2006这2006个连续整数的平均数。

在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1。

小马虎求和时漏掉的数是。

模块二、等差数列的运用(提高篇)【例 13】已知数列:2,1,4,3,6,5,8,7,L,问2009是这个数列的第多少项?【巩固】已知数列2、3、4、6、6、9、8、12、L,问:这个数列中第2000个数是多少?第2003个数是多少?【例 14】已知有一个数列:1、1、2、2、2、2、3、3、3、3、3、3、4、L,试问:⑴ 15是这样的数列中的第几个到第几个数?⑵这个数列中第100个数是几?⑶这个数列前100个数的和是多少?【例 15】有一列数:l,2,4,7,1l,16,22,29,37,L,问这列数第1001个数是多少?【例 16】已知等差数列15,19,23,……443,求这个数列的奇数项之和与偶数项之和的差是多少?【巩固】求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。

【例 17】100个连续自然数(按从小到大的顺序排列)的和是8450,取出其中第1个,第3个…第99个,再把剩下的50个数相加,得多少?【巩固】有20个数,第1个数是9,以后每个数都比前一个数大3.这20个数相加,和是多少?【例 18】把248分成8个连续偶数的和,其中最大的那个数是多少?【巩固】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 19】在1~100这一百个自然数中,所有能被9整除的数的和是多少?【巩固】在1~100这一百个自然数中,所有不能被9整除的数的和是多少?【巩固】在1~200这二百个自然数中,所有能被4整除或能被11整除的数的和是多少?【巩固】在11~45这35个数中,所有不被3整除的数的和是多少?【例 20】求100以内除以3余2的所有数的和.【巩固】从401到1000的所有整数中,被8除余数为1的数有_____个?【例 21】从正整数1~N中去掉一个数,剩下的(N一1)个数的平均值是15.9,去掉的数是_____。

等差数列找规律找规律计算【例 22】1只青蛙1张嘴,2只眼睛4条腿;2只青蛙2张嘴,4只眼睛8条腿;……只青蛙张嘴,32只眼睛条腿。

【例 23】如图2,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,按这种方式摆下去,当N=5时,共需要火柴棍根。

【例 24】观察下面的序号和等式,填括号.序号等式1 1236++=3 35715++=5 581124++=7 7111533++=L L L L()7983++=()()()【巩固】有许多等式:2461353++=+++;81012147911134+++=++++;161820222415171921235++++=+++++;⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅那么第10个等式的和是_______【巩固】观察下列算式:2+4=6=2×3,2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100=。

【例 25】将一些半径相同的小圆按如下所示的规律摆放:第1个图形中有6个小圈,第2个图形中有10个小圈,第3个图形中有16个小圈,第4个图形中有24个小圈,…,依此规律,第6个图形有___________个小圈。

相关文档
最新文档