AlN陶瓷金属化研究进展
北京科技大学科技成果——燃烧合成氮化铝基先进陶瓷

北京科技大学科技成果——燃烧合成氮化铝基先进陶瓷项目简介氮化铝(AlN)陶瓷具备优异的综合性能,是近年来受到广泛关注的新一代先进陶瓷,在多方面都有广泛的应用前景。
例如高温结构材料、金属溶液槽和电解槽衬里,熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料等。
尤其因其导热性能良好,并且具备低的电导率和介电损耗,使之成为高密度集成电路基板和封装的理想候选材料,同时氮化铝-聚合物复合材料也可用作电子器材的封装材料、粘结剂、散热片等。
氮化铝在微电子领域应用的市场潜力极其巨大。
氮化铝还是导电烧舟的主要成分之一,导电烧舟大量地用于喷涂电视机的显像管等器件、超级市场许多商品包装用的涂铝薄膜,有着广泛的市场。
但是影响氮化铝基陶瓷的推广的主要因素之一,是采用传统方法合成氮化铝粉末,耗能高,生产周期长,生产成本高。
本项目采用具有自主知识产权的创新技术,采用燃烧合成技术制取优质的氮化铝陶瓷粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的推广价值。
燃烧合成(Combustion Synthesis,CS),又名自蔓延高温合成(Self-Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。
自1994年以来,本项目负责人等针对燃烧合成氮化铝陶瓷产业化的一系列关键问题,在气-固体系氮化铝基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。
本项目来源于国家教委高校博士点专项科研基金项目(1994.3-1997.3)。
本项目以应用基础研究成果“燃烧合成氮化铝基陶瓷的应用基础研究”已于1999年通过专家函审。
采用本项目的技术,可以生产符合制作先进陶瓷要求的氮化铝粉末,还可根据用户要求,用此技术生产氮化铝基陶瓷粉末。
AlN材料的研究现状与进展

AlN材料的研究现状与进展一:AlN颗粒和AlN电子基片的研究现状与进展理论上,AlN的热导率为320W·m-1•K-1,工业上实际制备的多晶氮化铝的热导率也可达100 ~150W·m-1·K-1,该数值是传统基片材料一氧化铝热导率的5~8倍。
与其它陶瓷材料制备工艺相同,氮化铝陶瓷的制备包括粉体的合成、成形、烧结3个工艺进程。
氮化铝的导热性能受杂质含量和微观结构阻碍严峻,而杂质含量和微观结构与制备工艺密不可分。
1:粉末的制备AlN粉末是制备AlN陶瓷的原料。
它的纯度、粒度、氧含量及其它杂质含量对制备出的氮化铝陶瓷的热导率和后续烧结、成形工艺有重要阻碍。
一样以为:要取得性能优良的AlN陶瓷材料,必需第一制备出高纯度、细粒度、窄粒度散布和性能稳固的AlN粉末。
目前,氮化铝粉末的合成方式要紧有6种。
铝粉直接氮化法、碳热还原法、自蔓延高温合成法、化学气相沉积法、含Al-N键的有机物裂解法和复分解反映法。
其中,前2种方式已应用于工业化大规模生产,自蔓延高温合成法和化学气相沉积法也开始在工业生产中应用,而含Al-N键的有机物裂解法和复分解反映法还处于实验室时期。
铝粉直接氮化法直接氮化法确实是在高温氮气气氛中,铝粉直接与氮气化合生成氮化铝粉末。
反映温度一样在800~1200℃之间。
化学反映式为:→AlNAl+N2铝粉直接氮化法优势是原料丰硕、工艺简单、适宜大规模生产。
目前已经应用于工业生产。
可是该方式也存在明显不足。
由于铝粉氮化反映为强放热反映,反映进程不易操纵,放出的大量热量易使铝形成融块,阻碍氮气的扩散,造成反映不完全,反映产物往往需要粉碎处置,因此难以合成高纯度、细粒度的产品AlN。
为了提高反映速度和铝粉的转化,Komeya [1]研究了添加剂Li、Ca和Y对铝粉氮化的阻碍。
研究结果发觉:Li、Ca和Y可明显提高氮化速度,其中Li的作用最明显。
1. 2碳热还原法碳热还原法是将氧化铝粉末和碳粉的混合粉末在高温下(1 400~1800 ℃)的流动氮气或NH3中发生还原氮化反映生成AlN粉末,反映式为:Al2O3+3C+N2→2AlN+3CO为了提高反映速度和转化率,一样要求加入过量的碳,反映后过量的碳可在600 ~700℃的空气中氧化除去。
氮化铝陶瓷的研究和应用进展

氮化铝陶瓷的研究和应用进展摘要从氮化铝陶瓷的实际应用领域进行了氮化铝陶瓷应用现状及前景的介绍;从其制备工艺介绍了氮化铝陶瓷的研究状况,并指出了低成本的粉末制备工艺和氮化铝陶瓷的复杂形状成形技术是目前很有价值的氮化铝陶瓷的研究方向。
关键词氮化铝陶瓷;高热导率;应用领域;制备工艺中图分类号 o614文献标识码 a文章编号1674-6708(2010)14-0052-02氮化铝(aln)是一种综合性能优良新型陶瓷材料,具有优良的热传导性,可靠的电绝缘性,低的介电常数和介电损耗,无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集程度半导体基片和电子器件封装的理想材料,受到了国内外研究者的广泛重视.在理论上,aln的热导率为320w/(m),工业上实际制备的多晶氮化铝的热导率也可达100~250 w/(m),该数值是传统基片材料氧化铝热导率的5倍~10倍,接近于氧化铍的热导率,但由于氧化铍有剧毒,在工业生产中逐渐被停止使用。
与其它几种陶瓷材料相比较,氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。
1 aln陶瓷的直接应用1.1 aln作为基板材料高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求。
封装用基片还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本等特点和一定的力学性能。
大多数陶瓷是离子键或共价键极强的材料,具有优异的综合性能,是电子封装中常用的基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高。
长期以来,绝大多数大功率混合集成电路的基板材料一直沿用a1203和beo陶瓷,但a1203基板的热导率低,热膨胀系数和si不太匹配;beo虽然具有优良的综合性能,但其较高的生产成本和剧毒的缺点限制了它的应用推广。
因此,从性能、成本和环保等因素考虑,二者已不能完全满足现代电子功率器件发展的需要。
【精品文章】一文了解AlN陶瓷表面金属化技术

一文了解AlN陶瓷表面金属化技术
AlN陶瓷具有优异的热传导性、高温绝缘性、低介电常数以及与Si相近的热膨胀系数等性能,其作为基片材料,广泛应用于航空、航天及其它智能功率系统,被认为是新一代高集程度半导体基片和电子器件封装的理想材料,受到了国内外广泛重视。
AlN作为基片材料用于微电子系统封装中,在其表面进行金属化是非常必要的。
下面小编就AlN陶瓷表面金属化技术进行简要介绍。
一、AlN陶瓷表面金属化技术
目前,AlN陶瓷金属化的方法主要有薄膜法、厚膜法、直接敷铜法、化学镀法等。
1、薄膜法
薄膜法是采用真空蒸镀、离子镀、溅射镀膜等真空镀膜法将膜材料和AlN陶瓷表面结合在一起。
在AlN陶瓷表面金属化过程中,金属膜层与陶瓷基板的热膨胀系数应尽量一致,以提高金属膜层的附着力。
AlN陶瓷薄膜金属化主要是依靠固态置换反应使金属层和陶瓷基片连接在一起,对于Ti、Zr等活性金属,其反应吉布斯自由能为负值,反应容易实现。
目前,研究最多的是Ti浆料系统,Ti层一般为几十纳米,对于多层薄膜,则在Ti 层上沉积Ag、Pt、Ni、Cu等金属后进行热处理。
AlN陶瓷基片材料
薄膜法优点是:金属层均匀,结合强度高。
缺点是:设备投资大,制作困难,难以形成工业化规模。
2、直接敷铜法。
2024年氮化铝(ALN)陶瓷市场前景分析

2024年氮化铝(ALN)陶瓷市场前景分析引言氮化铝(ALN)陶瓷作为一种特殊的陶瓷材料,具有许多优良特性,例如高热导率、低热膨胀系数以及优异的机械强度等。
这使得氮化铝(ALN)陶瓷在各种应用领域都表现出巨大的潜力。
本文将对氮化铝(ALN)陶瓷市场前景进行深入分析,并探讨其在各个行业中的应用。
市场概述随着人们对高性能材料需求的不断增加,氮化铝(ALN)陶瓷市场呈现出良好的发展前景。
根据市场研究报告,氮化铝(ALN)陶瓷市场在过去几年中保持了稳定增长的态势。
预计在未来几年内,氮化铝(ALN)陶瓷市场将进一步扩大。
应用领域电子行业氮化铝(ALN)陶瓷在电子行业中具有广泛应用。
由于其优异的导热性能、电绝缘性以及优良的机械强度,氮化铝(ALN)陶瓷常被用作散热材料和绝缘材料。
例如,在LED照明领域,氮化铝(ALN)陶瓷被用作散热基板,可以有效地提高LED的寿命和亮度。
此外,氮化铝(ALN)陶瓷还被广泛应用于半导体制造和电子设备领域。
热管理随着技术的不断进步和应用领域的不断拓展,热管理成为一个核心问题。
氮化铝(ALN)陶瓷由于其出色的导热性能成为热管理领域的关键材料。
氮化铝(ALN)陶瓷可以用于制造高效的散热器和散热模块,广泛应用于电子设备、电力电子、航空航天等领域。
汽车工业氮化铝(ALN)陶瓷在汽车工业中具有重要的应用价值。
随着电动汽车的普及,汽车电子器件的散热需求日益增长。
氮化铝(ALN)陶瓷被广泛应用于汽车电子设备、电动汽车电池散热系统等关键领域,提高了汽车的性能和可靠性。
其他领域除了以上提到的领域,氮化铝(ALN)陶瓷还在航空航天、光电子、通信等领域得到广泛应用。
例如,在航空航天领域,氮化铝(ALN)陶瓷可用于制造高性能的发动机零件和热屏障材料,提高了发动机的效能和耐久性。
市场竞争情况目前,氮化铝(ALN)陶瓷市场存在着一些竞争压力。
许多公司投入到氮化铝(ALN)陶瓷的研发和生产中,使得市场竞争愈发激烈。
透明AlON陶瓷研究现状及应用

陶瓷透明AlON陶瓷研究现状及应用田庭燕杜洪兵孙峰姜华伟陈广乐刘妍彭珍珍(北京中材人工晶体有限公司北京100018)摘要主要介绍透明氮氧化铝(Al()N)陶瓷的研究进展。
对Al()N的制备方法和应用傲了综述翱介绍‘.并对其发展前景和存在的问题作了展望与分析。
关键词透明陶瓷AI()N制备应用TheResearchStatusQuooftheTransparentAIONCerami缁andItsApplication【TianTingyan,DuHongbing,SunFeng,JiangHuawei.ChenGuangle。
LiuYan.PcngZhenzhen(BeijingSinomaSyntheticCrysracsCo,Ltd,Beijing,100018)Abstract:ThispaperreviewedtheresearchprogressintransparentAluminumoxynitride(AI()N)ceramics,ineludingoflhefabricationsandapplicationsofAI()N..AndtheprospectsofAIONalsodiscussed.Keywords:“Fransparentceramics;Aluminumoxynitride;Fabrication;Application1980年美国Raytheon公司在军方资助下研制出透明AlON陶瓷材料,作为一种日益引起人们广泛重视的新兴透明陶瓷材料,AloN具有很好的光学透明性,从近紫外(O.2肛m)到中红外(5.0弘m)的平均光学透过率大予80%;在毫米波频段,具有优良的介电性能(介电常数小于10),损耗角正切小(在1mnl波长处为0.0002);男外还具有优良的抗渣侵蚀性和抗渣渗透性[J一;良好的耐高温性,抗热震性和抗侵蚀性能。
所以在导弹窗口和头罩材料等领域获得日益广泛的应用。
AlON透明陶瓷研究进展

AlON透明陶瓷研究进展作者:石坚波来源:《江苏陶瓷》2015年第02期摘要透明氮氧化铝(AlON)陶瓷具有优异的光学、力学、热学综合性能,在国防和商业众多领域内具有广阔的应用前景。
本文对AlON陶瓷的性能、合成方法和制备工艺、应用等方面的研究进展进行了综述,并对其未来的研究发展方向进行了展望。
关键词氮氧化铝(AlON);透明陶瓷;制备进展;0 引言氮氧化铝(γ-AlON,简称AlON)是一种透明多晶陶瓷,它是一种全新的多晶红外材料,在可见光至中红外具有高的光学透过性能[1]。
它最大的优点是具有光学各向同性,且在中红外波段具有良好的透光率(在波长0.2 ~6.0 μm范围内透光率80%以上),且具有良好的物理、机械和化学性质,因而透明AlON陶瓷是导弹整流罩、红外窗口材料和防弹装甲材料的优选材料[2-3]。
基于AlON陶瓷在军事领域及商业领域中巨大的应用前景,AlON陶瓷材料开发研究已成为透明陶瓷材料研究开发的热点之一,美国已将AlON多晶陶瓷列为二十一世纪重点发展的光功能透明材料之一。
1 AlON陶瓷的性能AlON、蓝宝石(sapphire)和尖晶石(MgAl2O4)三种常用的中红外材料的性能对比如表1所示,可以看出,AlON陶瓷的光学性能与蓝宝石、尖晶石、氧化钇相当(中红外透光率>80%),而抗弯强度与蓝宝石接近(300MPa),明显高于尖晶石(190MPa)和氧化钇(160MPa)。
由于蓝宝石单晶窗口材料的制备成本非常高,且大尺寸很难制备,而AlON陶瓷则可以通过先进陶瓷制备方法实现大尺寸及复杂样品的制备,并具有光学各向同性的优点,因此AlON陶瓷已成为高性能双模天线罩和中红外窗口的首选材料。
剂通常有C、Al、NH3和H2,而Al2O3碳热还原氮化法制备AlON粉末是一种最常用方法,其化学反应式如式(2)所示:Al2O3(s)+C(s)+N2→AlON(s)+CO (2)Zheng J[6]和Maguire[7]选用合适的氧化铝与碳的配比,通过两步法升温合成了纯相AlON 粉体。
氮化铝陶瓷的研究和应用进展

氮化铝陶瓷的研究和应用进展作者:胡友静燕晓艳来源:《科技传播》2010年第05期摘要从氮化铝陶瓷的实际应用领域进行了氮化铝陶瓷应用现状及前景的介绍;从其制备工艺介绍了氮化铝陶瓷的研究状况,并指出了低成本的粉末制备工艺和氮化铝陶瓷的复杂形状成形技术是目前很有价值的氮化铝陶瓷的研究方向。
关键词氮化铝陶瓷;高热导率;应用领域;制备工艺中图分类号 O614文献标识码 A文章编号 1674-6708(2010)14-0052-02氮化铝(AlN)是一种综合性能优良新型陶瓷材料,具有优良的热传导性,可靠的电绝缘性,低的介电常数和介电损耗,无毒以及与硅相匹配的热膨胀系数等一系列优良特性,被认为是新一代高集程度半导体基片和电子器件封装的理想材料,受到了国内外研究者的广泛重视.在理论上,AlN 的热导率为320W/(m),工业上实际制备的多晶氮化铝的热导率也可达100~250 W/(m),该数值是传统基片材料氧化铝热导率的5倍~10倍,接近于氧化铍的热导率,但由于氧化铍有剧毒,在工业生产中逐渐被停止使用。
与其它几种陶瓷材料相比较,氮化铝陶瓷综合性能优良,非常适用于半导体基片和结构封装材料,在电子工业中的应用潜力非常巨大。
1 AlN陶瓷的直接应用1.1 AlN作为基板材料高电阻率、高热导率和低介电常数是集成电路对封装用基片的最基本要求。
封装用基片还应与硅片具有良好的热匹配、易成型、高表面平整度、易金属化、易加工、低成本等特点和一定的力学性能。
大多数陶瓷是离子键或共价键极强的材料,具有优异的综合性能,是电子封装中常用的基片材料,具有较高的绝缘性能和优异的高频特性,同时线膨胀系数与电子元器件非常相近,化学性能非常稳定且热导率高。
长期以来,绝大多数大功率混合集成电路的基板材料一直沿用A1203和BeO陶瓷,但A1203基板的热导率低,热膨胀系数和Si不太匹配;BeO虽然具有优良的综合性能,但其较高的生产成本和剧毒的缺点限制了它的应用推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AlN陶瓷金属化研究进展纪成光,杨德安天津大学材料科学与工程学院,天津(300072)E-mail:sdjcg2008@摘要:本文论述了AlN陶瓷表面金属化技术的进展,介绍了金属化的主要方法及其基本原理,比较了各种方法的优缺点,并扼要阐述了AlN陶瓷的金属化机理。
关键词:AlN陶瓷,金属化,气密性,结合强度1. 引言近年来,随着大规模集成电路以及电子设备向着高速化、多功能、小型化、高功率的方向发展,各种应用对高性能、高密度电路的需求日益增加[1~4]。
然而,电路密度和功能的不断提高导致电路工作温度不断上升,为了防止元件因热聚集和热循环作用而损坏,对基板材料的低介电常数、低热膨胀系数、高热导率等方面提出的要求越来越严格。
目前,市场上高热导率材料主要有BeO、SiC和AlN。
BeO作为封装材料性能优良,遗憾的是,BeO是一种有毒物质,目前许多国家已将BeO 列入禁用材料,对含有BeO的元件或系统的使用也有诸多限制;SiC导热率虽然高达270W/m·K,但其介电常数大(约40,1MHz),大大限制了其在高频领域的应用,不宜作基板材料;AlN不仅有高的热导率(约为Al2O3的10倍),单晶AlN高达320 W/m·K,而且具有优异的高温绝缘性、低介电常数以及与Si相近的热膨胀系数(4.5×10-6/℃,可以减少因热应力作用引起的元件/基片界面的剥离故障),另外,从结构上看,A1N陶瓷基片在简化结构设计、降低总热阻、提高可靠性、增加布线密度、使基板与封装一体化以及降低封装成本等方面均具有更大的优势。
因而,随着航空、航天及其它智能功率系统对大功率耗散要求的提高,A1N基片已成为大规模集成电路及大功率模块的一种重要的新型无毒基片材料,以加强散热、提高器件的可靠性[4~9]。
AlN作为基片材料用于微电子系统封装中,在其表面进行金属化是必要的。
但是,AlN 瓷是由强共价键化合物烧结而成,与其他物质的反应能力低,润湿性差,金属化存在一定的困难[4,10,11]。
近年来,随着研究的不断深入,AlN陶瓷金属化取得了一定的成效。
目前,应用于AlN陶瓷金属化的方法主要有薄膜法、厚膜法、直接敷铜(DBC)法、化学镀法等。
2. 薄膜法薄膜法是采用真空蒸镀、离子镀、溅射镀膜等真空镀膜法将膜材料和AlN瓷结合在一起。
由于为气相沉积,原则上讲无论任何金属都可以成膜,无论对任何基板都可以金属化。
但是,金属膜层与陶瓷基板的热膨胀系数应尽量一致,以设法提高金属膜层的附着力。
目前,研究最多的是Ti浆料系统,Ti层一般为几十纳米,对于多层薄膜,则在Ti层上沉积Ag、Pt、Ni、Cu等金属后进行热处理。
鲁燕萍[12]等人针对AlN陶瓷在微波管中的应用特点,采用磁控溅射镀膜方法在AlN陶瓷表面溅射不同的金属薄膜,并与无氧铜焊接,测试焊接体的抗拉强度并对陶瓷-金属接合界面用EDX谱进行了微观分析。
研究发现:在真空度优于2×10-3Pa的条件下,溅射Ti,Cu,Mo和Ni层会发生不同程度的氧化,影响了焊接强度和气密性。
采用Ti/Au双层膜金属化可以起到防止Ti膜氧化的作用,但不能阻止焊料对Ti膜的溶解粘附,因而虽保证了焊接气密性,但强度较低;Ti/Ag金属化可以阻止焊料对Ti层的侵蚀,但其本身和Ti膜作用较差。
电镀Ni层可以起到很好的防氧化保护作用,甚至不需Cu,Mo等第二金属化层,直接镀Ni即可同时保证气密性和高焊接强度。
对于Ti/电镀Ni样品,焊接强度随Ni层厚度增加而增加,电镀Ni(50 min)层可以覆盖A1N陶瓷的表面缺陷,起到表面改性的作用。
安本恭章[13]等认为基片与金属间的界面对结合强度起着重要作用,选用Ti/AlN、Ta/AlN、和Ni/AlN系统,在氩气氛中于700~950℃范围内热处理,运用XRD和XPS等分析手段进行分析,结果表明:Ti和AlN的结合强度最高,并有Al的金属化合物生成,Ta和AlN结合强度较高,但没有铝化物生成,而Ni和AlN间既没有高的结合强度,也没有铝化物层。
用反应的自由能解释:2Ti+AlN = TiAl+TiN -23.1 kJ/g atom4Ti+AlN = Ti3Al+TiN -19.2 kJ/g atom2Ta+AlN = TaAl+TaN -2.30 kJ/g atom29Ta+17AlN = Ta12Al17+17TaN +11.9 kJ/g atom4Ni+AlN = NiAl+Ni3N +26.2 kJ/g atom10Ni+3AlN = NiAl3+3Ni3N +44.4 kJ/g atom11Ni+3AlN = Ni2Al3+3Ni3N +38.4 kJ/g atom由此可以看出,AlN陶瓷薄膜金属化主要是依靠固态置换反应使金属层和陶瓷基片连接在一起,对于Ti、Zr等活性金属,其反应吉布斯自由能为负值,反应容易实现。
此外,Ti 和AlN对氧的亲合能力强,在沉积Ti膜时,氧很可能溶于Ti中,或AlN表面被氧化,在界面生成Al2O3和钛的氧化物(Ti x O y),影响结合强度。
薄膜法的主要优点是金属层均匀,结合强度高,但设备投资大,制作困难,难以形成工业化规模。
3. 直接敷铜(DBC)法在AlN基片上采用直接敷铜(Direct Bonded Copper,简称DBC)法金属化,是通过Cu-O 共晶液相与Al2O3发生化学键合反应而实现的。
在制备AlN-DBC基板之前,必须对AlN陶瓷表面进行热处理,以使其表面形成Al2O3薄层,然后将铜箔贴于基板上,在1065℃左右形成Cu-O系共晶溶液,与Al2O3薄层发生键合反应,从而使AlN和Cu结合在一起[14~16]。
Nobuo Iwase[16]等人研究了DBC的键合机制,发现在AlN-Cu界面上形成Cu2O层,而不是CuO,指出Cu2O层的存在提高了DBC基板的剥离强度。
Anazai[17]等人研究了氧化层厚度对结合强度的影响,提出氧化层的适宜厚度为1~2µm,太厚,因Al2O3和AlN的热膨胀系数不匹配,产生残余应力,导致结合强度下降。
因此,无论是铜箔还是AlN基片在预氧化时都要严格控制氧化的温度、气氛和时间,以使铜氧化生成Cu2O,在界区与Al2O3反应(Cu2O +Al2O3→2(CuAl)O2),提高AlN和Cu的结合强度。
DBC法结合温度低(1065~1075℃),导热性好,附着强度高,机械性能优良,便于刻蚀,绝缘性及热循环能力高,有着广阔的应用前景。
不过,DBC法有一个缺点是对AlN 进行表面热处理形成的氧化物层降低了AlN基板的热导率。
4. 厚膜法厚膜金属化技术一般采用含玻璃料的糊剂或印色,在陶瓷基板上通过丝网印刷形成封接用金属层、导体(电路布线)及电阻等,经烧结形成钎焊金属层、电路及引线接点等。
根据以往的研究,金属化厚膜导体浆料在电子封装工业互联技术方面起着至关重要的作用,厚膜浆料一般由粒度为1-5µm的金属粉末,添加百分之几的玻璃粘结剂,再加有机载体(包括有机溶剂、增稠剂和表面活性剂等)经球磨混练而成,厚膜浆料不仅要有低的电阻,而且要与基片有良好的键合强度。
Enokido[18]指出基片和金属层界面处玻璃相的存在对于获得高的结合强度是十分必要的。
但是,玻璃相的存在却增加了AlN基板的热阻[22]。
并且,已经商业化的应用于Al2O3基片的厚膜浆料体系通常不能直接用于AlN基片,Yamaguchi 和ageyama 等已经证实[19]:如果直接应用,厚膜导体浆料中的氧化物玻璃黏结剂,在高温下容易与AlN反应,产生N2,使得界面产生气泡,降低了金属化结合强度和封接的气密性。
为此,近来人们大量的研究了无玻璃的厚膜导体浆料系统。
Zongrong Liu[20]用TiCu合金、锡、银、锌等金属替代玻璃料研究了空气烧结无玻璃金属电子厚膜导体浆料,发现添加少量(<0.5wt.%)锌可以增强结合强度,Ti组分含量在0.3-0.4wt.%时具有低电阻和高键合强度。
Kuninori Okamoto[21]在AlN基片上印刷银粉+ZrB2+有机载体的厚膜化合物,并在850℃左右的空气中烧结10min,然后用SEM、EDXA、DTA/TGA等现代分析手段进行分析,研究发现:在Ag-AlN的界面上生成了ZrO2和2Al2O3·B2O3,其最高结合强度可达24MPa,并且具有较好的抗热震性,证实了在烧结阶段ZrB2对AlN有蚀刻效应,指出对于黏结强度起作用的是ZrO2和AlOZr而不是2Al2O3·B2O3。
反应机理如下:ZrB2+O2→ ZrO2+B2O3B2O3+AlN+O2→2Al2O3·B2O3+NO x用金属硼化物(ZrB2)作为玻璃料的替代黏性增强剂,性能优异,并且,AlN基片不需要预氧化处理。
Adlabnig[22]用Cu-Ag合金掺杂Ti作为金属化系统,以萜品醇和磷酸二丁酯(DBP)作有机载体,用丝网印刷工艺对AlN瓷进行金属化。
印刷后的AlN基板在850℃氩气氛下烧结,采用TEM、SEM-EDX等现代分析手段对金属化层和AlN瓷界面进行分析,发现结合强度与包含有Ti富集的界面结构以及形貌有关。
Wieslsw[23]在AlN基片上印刷金粉并在850℃的空气中进行热处理,用EMS、XPS等现代表面分析手段进行界面分析。
结果发现:在Au-AlN瓷的界面上生成了Al2O3,并且在Au 层内始终有Al、O元素,指出Au元素沿着AlN颗粒边界向基板扩散是Au能够附着在基片上的主要原因。
厚膜法的优点是工艺简单,适于自动化和多品种小批量生产,且导电性能好,但结合强度尚不够高,特别是高温结合强度低,且受温度影响大。
厚膜法是近来人们研究的热点。
5. 化学镀法化学镀法是指在没有外电流通过,利用还原剂将溶液中的金属离子还原在呈催化活性的物体表面,使之形成金属镀层。
化学镀法金属化机理主要是机械联锁结合[24~26],结合强度很大程度上依赖于基体表面的粗糙度,在一定范围内,基体表面的粗糙度越大,结合强度越高。
Tetsuya Osaka[24,27]在陶瓷表面化学镀Ni-P合金,先将AlN基片用超声波清洗,去除表面杂质,置于NaOH溶液中腐蚀,再置于含镍盐的镀液中进行化学镀,研究发现:当表面粗糙度值为1.24µm时结合强度高达30MPa,其黏附机理是NaOH有选择性的在大颗粒之间腐蚀,Ni-P膜则镶嵌在腐蚀掉的这些缝隙及孔洞中。
化学镀设备简单,成本低廉,无需二次高温处理,易于大规模生产。
其不足之处是结合强度不高。
6. 结语AlN陶瓷金属化要求膜层的电导率高,热阻率低,具有高的结合强度和良好的气密性等,各种物理化学性能要满足使用要求。