(完整版),圆锥曲线与方程知识点详细,推荐文档

合集下载

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。

这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。

注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。

2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。

如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。

3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。

5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。

如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。

如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。

6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。

在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。

1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。

(完整word版)圆锥曲线知识点总结,推荐文档

(完整word版)圆锥曲线知识点总结,推荐文档

圆锥曲线的方程与性质1.椭圆(1)椭圆概念的焦点,两焦点的距离2c 叫椭圆的焦距。

若 M为椭圆上任意一点,则有|MF 1 I |MF 2 I 2a 。

0的条件,要分清焦点的位置,只要看 X 2和y 2的分表示焦点在y 轴上的椭圆。

(2)椭圆的性质方程也不变,则曲线关于原点对称。

所以,椭圆关于X 轴、y 轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心 叫椭圆的中心;X 0,得y b ,则B 1(0, b ), B 2(0,b )是椭圆与y 轴的两个交点。

同理令 y 0得X a ,即A ( a,0),A 2(a,0)是椭圆与X 轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

平面内与两个定点 F 1、F 2的距离的和等于常数2a (大于IF 1F 2I )的点的轨迹叫做椭圆。

这两个定点叫做椭圆上)。

椭圆的标准方程为:22Xy22a b0)(焦点在 x 轴上)2y a 2XP 1 ( a b 0 )(焦点在y 轴b 2注:①以上方程中 a,b 的大小 a b 0,其中b 2母的大小。

例如椭圆2y nn )当m n 时表示焦点在X 轴上的椭圆;当 m n 时1两个方程中都有aX 2①范围:由标准方程a1知|X| a ,|y| b ,说明椭圆位于直线 X a ,b 所围成的矩形里; ②对称性:在曲线方程里, 若以 y 代替y 方程不变,所以若点(X, y )在曲线上时,(X, y )也在曲线上, 所以曲线关于X 轴对称,同理,以X 代替X 方程不变,则曲线关于 y 轴对称。

若同时以X 代替X , y 代替y③ 顶点:确定曲线在坐标系中的位置,常需要求出曲线与X 轴、y 轴的交点坐标。

在椭圆的标准方程中,令焦距。

(2)双曲线的性质同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

(完整版)圆锥曲线方程知识点总结

(完整版)圆锥曲线方程知识点总结
N的轨迹是椭圆
⑵①i.
焦点在x轴上:
二、双曲线方程.
顶点:
(a,0),( a,0)焦点:
准线方程
ii.
焦点在y轴上:
顶点:
(0,a),(0,a).焦点:
(0,c),(0,c).
准线方程:
x a sec亠

y b tan
②轴x, y为对称轴,实轴长为2a,虚轴长为2b,焦距
参数方程:
x b tan
y a sec
0),代入(3,
3
3
2
y- 1.
2
2条;
0、2、3、4条.
“”法与渐近线求
b.
2:P到焦点的距离为m = n,贝U P到两准线的距离比为
m:n.简证:
d1
d2
PF1
_e_
pf!
e
椭圆一
2
a
.坐标:
2
71(a
b0)的离心率也是
2
葺1上的点.F1,F2为焦点,若
b
余弦定理与PFj|PF22a可得).
ex
ey
左加右减”.
0)的离心率是e -(c -a2b2),方程
a
-我们称此方程为共离心率的椭圆系方程
a
F1PF2
若是双曲线,则面积为b2
a ex
a ey
,贝U PF1F2的面积为b2tan?(用
cot —
2
|PFi
1 1
PF22a
F1F2方程为双曲线
1.双曲线的第疋乂:|pf1
1 1
PF22a
F1F2无轨迹
PF1
1 1
PF22a
F1F2以F1,F2的一个端点的一条射线

圆锥曲线的方程知识点总结

圆锥曲线的方程知识点总结

同学们,咱们在高中数学里,圆锥曲线的方程可是个重要的家伙!今天就来给大家好好唠唠。

先说椭圆,它的方程就像一个温柔的“大胖子”。

比如说,椭圆方程$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$($a>b>0$),这里的$a$和$b$可重要啦,决定了椭圆的形状和大小。

就像一个大西瓜,$a$是长半轴,$b$是短半轴。

再看双曲线,那可是个“调皮鬼”。

双曲线方程$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,它有两支,一支向左跑,一支向右跑。

比如说,火箭发射的轨道,有时候就像双曲线。

还有抛物线,它是个“急性子”,总是一条线冲出去。

比如投篮的时候,篮球在空中划过的轨迹,就可能是抛物线,它的方程$y^2 =2px$($p>0$),$p$决定了抛物线的开口大小和方向。

怎么样,同学们,圆锥曲线的方程是不是没那么可怕啦?多做几道题,咱们就能把它们拿下!圆锥曲线方程,你真的懂了吗?亲爱的小伙伴们,今天咱们来聊聊圆锥曲线的方程。

想象一下,椭圆就像一个压扁的圆,比如我们常见的操场跑道,有一部分就是椭圆形状的。

它的方程$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$,告诉你怎么画出这个“压扁的圆”。

双曲线呢,像是两个背靠背的滑梯。

比如一些建筑的设计,就会用到双曲线的形状。

它的方程$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,让我们能算出滑梯的样子。

抛物线就简单啦,像喷泉水柱往上喷,然后落下来的轨迹。

家里的手电筒照出的光,也近似抛物线。

它的方程$y^2 = 2px$,帮我们描述这个美丽的曲线。

好好琢磨琢磨这些例子,圆锥曲线方程就不再神秘啦!圆锥曲线方程:数学世界的奇妙之旅小伙伴们,让我们一起踏上圆锥曲线方程的奇妙之旅吧!先说椭圆,它的方程就像一个神奇的密码。

比如我们看太阳系里行星的轨道,很多就是近似椭圆的。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:| PF1 | | PF2 | 2a 与| PF2 | | PF1 | 2a ( 2a | F1F2 | )表示双曲线的一支。
2a | F1F2 | 表示两条射线; 2a | F1F2 | 没有轨迹;
(2)双曲线的标准方程、图象及几何性质:
3、 离心率
例 3、椭圆
x2 a2
y2 b2
1(a
b
0) 的左右焦点分别是 F1、F2,过点 F1 作 x 轴的垂线交椭圆于 P 点。
若∠F1PF2=60°,则椭圆的离心率为_________ 4、 最值问题

4、椭圆
x2 4
y2
1 两焦点为
F1、F2,点
P
在椭圆上,则|PF1|·|PF2|的最大值为_____,最小值为_____
PF1 PF2 e
PM 1
PM 2
x2
5、椭圆
y2
1

y 2 x 2 1 (a b 0) 的区别和联系
a2 b2
a2 b2
标准方程
x 2 y 2 1 (a b 0) a2 b2
y 2 x 2 1 (a b 0) a2 b2
图形
焦点
F1 (c,0) , F2 (c,0)
焦距
2
()
A. x 2 y 2 1
12 24
B. y 2 x 2 1
12 24
C. y 2 x 2 1
24 12
D. x 2 y 2 1
24 12
4.过点(1,3)且渐近线为 y 1 x 的双曲线方程是 2
4.几何
1.设 P
为双曲线
x2
y2 12
1上的一点, F1,F2 是该双曲线的两个焦点,若 |
F1F2 2c
范围
x a, y b
F1 (0,c) , F2 (0, c) F1F2 2c x b, y a
对称性
关于 x 轴、 y 轴和原点对称
顶点
性质 轴长
(a,0) , (0,b) 长轴长= 2a ,短轴长= 2b
(0,a) , (b,0)
离心率
e c (0 e 1) a
准线方程
x a2 c
p |PF|=-x0+2
p |PF|=y0+2
p |PF|=-y0+2
【典型例题】
例 1 设 P 是抛物线 y2=4x 上的一个动点. (1)求点 P 到点 A(-1,1)的距离与点 P 到直线 x=-1 的距离之和的最小值; (2)若 B(3,2),求|PB|+|PF|的最小值.
1.将直线方程与椭圆方程联立,消元后得到一元二次方程,然后通过判别式 来判断直线和椭圆是否
相交、相切或相离。 2.消元后得到的一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,通常是写成两根之和与两根之
积的形式,这是进一步解题的基础。 7.椭圆方程的求解方法
1.要学会运用待定系数法来求椭圆方程,即设法建立 a, b 或者 e, c 中的方程组,要善于抓住条件列方程。
P 是双曲线
a2
y2 b2
1(a
0,b
0) 左支上的一点,F1、F2 分别是左、右焦点,且焦距为 2c,则
PF1F2 的内切圆的圆心的横坐标为( )
(A) a (B) b (C) c (D) a b c 2.求双曲线的标准方程
x2 y2 1.已知双曲线 C 与双曲线 - =1 有公共焦点,且过点(3 2 ,2).求双曲线 C 的方程.
更方便。
2
但是需要注意的是 m 和 n(或者 1 和 1 )谁代表 a2 ,谁代表 b2 要分清。不要忘记隐含条件和方程,例如: mn
a2
b2
c2 , e
c a
等等。不同的圆锥曲线有不同的隐含条件和方程,切勿弄混。
2.求解与椭圆几何性质有关的问题时要结合图形分析,即使画不出图形,思考时也要联想图形,注意数
1 (a b 0) 与坐标轴的四
个交点即为椭圆的四个顶点,坐标分别为 A1 (a,0) , A2 (a,0) , B1 (0,b) , B2 (0, b) 。 ③线段 A1 A2 ,
B1B2 分别叫做椭圆的长轴和短轴, A1 A2 2a , B1B2 2b 。 a 和 b 分别叫做椭圆的长半轴长和短半
16 4
2.已知双曲线的渐近线方程是 y x ,焦点在坐标轴上且焦距是 10,则此双曲线的方程为
2

3.与渐近线有关的问题
5
x2
1 若双曲线
y2
1(a 0, b 0) 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为


a2 b2
A. 2
B. 3
C. 5
D. 2
3.焦点为(0,6),且与双曲线 x 2 y 2 1 有相同的渐近线的双曲线方程是
形结合法的使用,切勿漏掉一种情况。
【典型例题】
1、 椭圆的定义
例 1、已知 F1(-8,0),F2(8,0),动点 P 满足|PF1|+|PF2|=16,则点 P 的轨迹为( )
A圆
B 椭圆
C 线段
D 直线
2、 椭圆的标准方程
例 2、求满足以下条件的椭圆的标准方程
(1)长轴长为 10,短轴长为 6; (2)长轴是短轴的 2 倍,且过点(2,1); (3) 经过点(5,1),(3,2)
知识点 1.抛物线的定义 满足以下三个条件的点的轨迹是抛物线:
(1)在平面内; (2)动点到定点 F 距离与到定直线 l 的距离相等; (3)定点不在定直线上.
知识点 2.抛物线的标准方程和几何性质
标准方程
y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p 的几何意义:焦点 F 到准线 l 的距离
P 的轨迹无图形.
2、椭圆的标准方程
1).当焦点在 x 轴上时,椭圆的标准方程: x 2 y 2 1 (a b 0) ,其中 c 2 a 2 b2 ; a2 b2
2).当焦点在 y 轴上时,椭圆的标准方程: y 2 x 2 1 (a b 0) ,其中 c 2 a 2 b2 ; a2 b2
x2
注意:椭圆
a2
y2 b2
1的图像中线段的几何特征(如下图):
假设已知椭圆方程 x2 y 2 1( a 0, b 0 ),且已知
a2 b2
椭圆的准线方程为 x a2 ,试推导出下列式子:(提示:用三 c
PF1
角函数假设 P 点的坐标
PF2
e
PM 1
PM 2
1
4、椭圆的另一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。即上图中有
注意:①在两种标准方程中,总有 a>b>0,并且椭圆的焦点总在长轴上;
x2
②两种标准方程可用一般形式表示:
y2
1
或者
mx2+ny2=1 。
mn
3、椭圆: x 2 y 2 1 (a b 0) 的简单几何性质 a2 b2
(1)对称性:对于椭圆标准方程 x 2 y 2 1 (a b 0) :是以 x 轴、 a2 b2
椭圆
1、椭圆的第一定义:平面内一个动点 P 到两个定点 F1 、 F2 的距离之和等于常数 ( PF1 PF2 2a F1F2 ) ,这个动点 P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆
的焦距。.
注意:若 ( PF1 PF2 F1F2 ) ,则动点 P 的轨迹为线段 F1F2 ;若 ( PF1 PF2 F1F2 ) ,则动点
PF1
|:|
PF2
|
3 : 2 ,则
△PF1F2 的面积为( ) A. 6 3
B. 12
D. 24 5.求弦
1.双曲线 x 2 y 2 1 的一弦中点为(2,1),则此弦所在的直线方程为 (
C.12 3

A. y 2x 1
B. y 2x 2
C. y 2x 3
D. y 2x 3
6
抛物线
图形
顶点 对称轴
焦点
离心率
准线方程
范围 开口方向 焦半径(其中 P(x0,y0)
O(0,0)
y=0
x=0
( )p ,0 F2
( )p
- ,0 F2
( )p
0, F2
( )p
0,- F2
e=1
p
p
p
p
x=-2
x=2
y=-2
y=2
x≥0,y∈R
x≤0,y∈R
y≥0,x∈R
y≤0,x∈R
向右
向左
向上
向下
p |PF|=x0+2
B1 (0,a), B2 (0, a)
x 轴, y 轴;虚轴为 2b ,实轴为 2a
F1 (c,0), F2 (c,0)
F1 (0,c), F2 (0, c)
| F1F2 | 2c(c 0) c 2 a 2 b 2
离心率
e c (e 1) (离心率越大,开口越大)
a
渐近线
ybx a
yax b
的.

y
P
C
A
O
Bx
2.如图 2 所示, F 为双曲线 C : x 2 y 2 1 的左 9 16
焦点,双曲线 C 上的点 Pi 与 P7i i 1,2,3关于 y 轴对称,
则 P1F P2 F P3 F P4 F P5 F P6 F 的值是(

A.9 B.16 C.18
D.27
3.
x2
中心在原点,焦点在 x 轴上
标准方程
x 2 y 2 1(a 0, b 0) a2 b2
相关文档
最新文档