温度传感器发展史
传感器发展历程

传感器发展历程传感器是一种能够感知和检测环境中特定物理量的装置或设备。
它们在现代科技发展中起着至关重要的作用。
随着科技的不断进步,传感器的发展也不断演进。
传感器的发展可以追溯到古代,人们早在公元前4世纪就开始使用简单的传感器,如罗盘和温度计等。
然而,真正革命性的发展发生在19世纪末和20世纪初。
在这个时期,科学家们开始探索电子技术和以电为基础的传感器。
例如,电子温度计和光电传感器等。
在20世纪40年代,随着微电子技术的出现,传感器的发展进入了一个新的阶段。
微电子技术的出现使得传感器可以更小、更便宜、更灵敏和更可靠。
这些技术的发展为传感器的广泛应用开辟了道路。
20世纪60年代和70年代,随着计算机技术的进步,传感器得到了进一步的发展。
计算机的出现使得传感器可以更好地与其他系统集成,从而实现更可靠和精确的测量和控制。
到了20世纪80年代和90年代,传感器的应用进一步拓展。
随着信息技术的进步,人们开始将传感器应用于各种领域,如环境监测、工业自动化、医疗诊断等。
同时,传感器的种类也越来越多样化,如压力传感器、流量传感器、气体传感器等。
进入21世纪,传感器的发展进一步加速。
随着物联网技术的出现,人们开始将传感器应用于智能家居、智能交通、智能城市等领域。
传感器不仅可以感知环境中的物理量,还可以通过无线通信技术与其他设备进行数据交互,实现智能化的控制和管理。
如今,传感器已经成为了现代社会不可或缺的一部分。
从智能手机中的陀螺仪和指纹识别传感器,到汽车中的碰撞传感器和自动驾驶传感器,传感器的应用几乎无处不在。
传感器的发展不仅促进了科技的进步和社会的发展,也为人们带来了更便捷和安全的生活。
然而,传感器的发展仍然面临一些挑战。
例如,一些传感器仍然存在着尺寸过大、功耗过高、价格昂贵等问题。
同时,一些新兴的领域,如人工智能和生物传感器等,也需要更先进和灵敏的传感器来支持其发展。
总的来说,传感器的发展已经经历了一个漫长而精彩的历程。
温度传感器的发展应用综述

温度传感器的发展应用综述温度传感器是工业生产中最常见的传感器类型。
它将物体的温度转换成电信号输出,具有结构简单、测量范围广、稳定性好、精度高的优点。
温度传感器主要有热敏电阻、热电偶和集成形,且他们的制造方法各不相同。
总的来说,它的发展已经从模拟分离和集成阶段过渡到智能阶段。
今天,温度传感器不仅仅是温度输出信号,而是综合的湿度测量信号,且其信号输出也由原来的单一信号变成多样化的输出形式,可以进行远距离通信,可以根据需要对测量的温度进行记录、设置上限报警和自控控制等多种功能。
以下介绍温度传感器的发展与应用。
1 溫度传感器的发展情况1.1温度传感器的发展历程温度传感器的发展大致经历了以下三个阶段:(1)传统的分立式温度传感器(含敏感元件);(2)模拟集成温度传感器/控制器;(3)智能温度传感器。
国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向,以及开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。
1.2温度测量的最新进展目前,虽然主要温度传感器的技术,如热电偶、热电阻温度传感器和辐射温度计等技术已经发展的相当成熟了,但它只可用于在传统的应用并不能满足现有要求的许多领域,尤其是在高科技领域。
因此,各国专家正在竞争开发新型温度传感器,自己特殊实用的温度测量技术。
热电偶是一种传统的温度传感器,用途广泛。
近年来,一种新的温度测量技术被开发出来,其在火灾报警中具有独特的应用。
这种新型的温度传感器被称为特种测温热敏电缆,又被称为连续热电偶(或寻热式热电偶)。
2 温度传感器在生产生活中的应用2.1温度传感器在军工业制造中的应用在军工业中,用到温度传感器的有:军用的,大炮,导弹,火箭,无人探测机,消防坦克,航空航天等一系列军用物资。
工业用的有:火电核电、制造业、机械制造、玻璃陶瓷、塑料橡胶、酿酒、制药、食品、烟草、冶金冶炼、石油化工、轻工纺织、水处理、等工业行业。
2.2温度传感器在日常生活中的应用在日常生活中主要有人体测温、空调、微波炉、烤箱、热水器等等一些生活用品。
温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。
最后,文章对温度传感器的未来发展方向做出了说明。
关键词:温度传感器,IC温度传感器,CMOS集成温度传感器一、背景介绍1.1绪言人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。
为适应这种情况,就需要传感器。
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。
它是实现自动测量和自动控制的首要环节。
[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。
早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。
[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。
[4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。
[5]因此,人类离不开温度传感器。
传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。
[6]1.2温度传感器的发展历史和主要分类人们研究温度测量的历史已经相当的久远了。
公元1600年,伽利略研制出气体温度计。
[7]一百年后,酒精温度计[8]和水银温度计[9]问世。
到了1821年,德国物理学家赛贝发明了热电偶传感器[10],人类真正的第一次把温度变成了电信号。
传感器的发展历程

传感器的历史及现状传感器是能够感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
传感器的种类很多,按照不同的功能,不同的适用领域可以划分多种类型。
其中,温度传感器是最早开发、应用最广的一类传感器。
从17世纪初,人们就开始利用温度计进行测量,而真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。
在半导体得到充分发展以后,相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
我国的传感器发展已经经历了50多个春秋,20世纪80年代,改革开放给传感器行业带来了生机与活力。
90年代,在党和国家关于“大力加强传感器的开发和在国民经济中普遍应用”的决策指引下,传感器行业进入了新的发展时期。
目前来看,传感器的应用已经遍及到工业生产、海洋探测、环境保护、医学诊断、生物工程等多方面的领域,几乎所有的现代化的项目都离不开传感器的应用。
在我国的传感器市场中,国外的厂商占据了较大的份额,虽然国内厂商也有了较快的发展,但仍然无法跟上国际传感器技术的步伐。
近年来,由于国家的大力支持,我国建立了传感器技术国家重点实验室、微米/纳米国家重点实验室、机器人国家重点试验室等研发基地,初步建立了敏感元件和传感器产业,目前我国已有1,688家从事传感器的生产和研发的企业,其中从事MEMS研发的有50多家。
在经济全球化趋势下,随着我国的投资环境的改善已经对传感器技术的大力支持,各国传感器厂商纷纷涌进我国的传感器市场,使得国内的传感器领域的竞争日趋激烈。
于此同时,强烈的技术竞争必然会导致技术的飞速发展,促进我国传感器技术的快速进步。
未来的传感器会向着小型化、多功能化、智能化、集成化、系统化的方向发展,由微传感器、微执行器及信号和数据处理器总装集成的系统越来越引起人们的关注。
温度传感器发展史

温度传感器,使用范围广,数量多,居各种传感器之首。
温度传感器的发展大致经历了以下3个阶段:1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。
2.模拟集成温度传感器/控制器。
3.智能温度传感器。
目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。
温度传感器的分类温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。
接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。
这种测温方法精度比较高,并可测量物体内部的温度分布。
但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。
非接触测温的测温元件与被测对象互不接触。
常用的是辐射热交换原理。
此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。
温度传感器的发展1.传统的分立式温度传感器——热电偶传感器热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。
2.模拟集成温度传感器集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。
模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。
模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。
2.1光纤传感器光纤式测温原理光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。
传感器的发展历程

传感器的发展历程从传统机械式传感器到现代电子式传感器,传感器发展历程呈现出以下几个阶段:第一阶段:机械式传感器最早出现的传感器是机械式的,如温度计、压力表等。
这些传感器的工作原理基于物理性质的变化,通过机械结构将物理量转化为可测量的机械位移或力。
机械式传感器简单可靠,但精度受限并且易受外部环境影响。
第二阶段:电磁式传感器电磁式传感器是在机械式传感器的基础上引入电磁感应原理的一类传感器,如电压互感器、电流互感器等。
这些传感器利用电磁感应的原理,将被测量物理量转化为电磁信号,能够在电路中进行进一步处理。
电磁式传感器具有更高的灵敏度和精度,能够实现非接触式测量。
第三阶段:光电式传感器随着激光技术和光电器件的发展,光电式传感器成为一类重要的传感器。
光电式传感器利用光的物理性质进行检测,如光电传感器、光纤传感器等。
这些传感器具有快速响应、高精度、非接触式等优点,在自动化控制、测量、检测等领域得到广泛应用。
第四阶段:微电子式传感器随着微电子技术的快速发展,微电子式传感器得到了重大突破。
微电子式传感器采用集成电路技术,将传感器和信号处理电路集成在一个芯片上,实现了传感器的微型化、智能化和多功能化。
微电子式传感器具有体积小、功耗低、抗干扰能力强等优势,被广泛应用于汽车、消费电子、医疗设备等领域。
第五阶段:智能化传感器当前,随着人工智能和物联网等技术的发展,智能化传感器逐渐成为发展趋势。
智能化传感器具备自主感知、自适应、自学习的能力,能够对环境进行动态感知和智能判断,实现更精确、实时的测量和检测。
智能化传感器将应用于智能家居、智能交通等领域,推动传感器技术迈向新的高度。
机械工程测试技术作业__传感器发展史

机械工程领域传感器的发展史1 传感器发展历史传感器是一种物理装置,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置。
传感器国家标准GB7665—87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。
”对于传感器的从什么时候发展起来的至今没有一个确切的时间,但是温度传感器是最早开发,应用最广的一类传感器。
从1593年伽利略发明了第一支空气温度计开始,人们开始利用温度进行测量。
真正把温度变成电信号的传感器是1821年由德国物理学家赛贝发明的,这就是后来的热电偶传感器。
五十年以后,另一位德国人西门子发明了铂电阻温度计。
在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。
所以我们可以说传感器在世界历史上的发展经历了将近400多年的历程。
传感器不像计算机那样复杂多样,美国一份数据显示,1990年,温度传感器的市场需求量远远高于其他类型的传感器。
17世纪初伽利略发明了温度计,人们就开始依靠温度来测量一些数据。
是1821年德国物理学家赛贝在真正意义上实现了把温度变成电信号的传感器技术,随后诞生的就是热电偶传感器。
铂电阻温度计在50年之后被另一个德国人创造。
科学家在半导体技术的支持下发明了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
与之相应,根据波与物质的相互作用规律,声学温度传感器、红外传感器和微波传感器也都被发明出来。
未来传感器的会变得更小,更集成,功能更多,更智能。
总而言之人们对于微传感器、微执行器及信号和数据处理器总装集成的系统的关注度正在不断提升。
2 传感器研究现状我国传感器行业虽起步较早,但直到1986年“七五”开始才正式将传感器技术列入国家重点攻关项目,展开以机械敏、力敏、气敏、温敏、生物敏为主的5大敏研究。
温度测量的发展历史和研究现状

温度测量的发展历史和研究现状传感器属于电子信息系统的感知部分,是整个电子系统获取外部信息的渠道,相当于人类的视觉、触觉等等,传感器是整个智能电子系统中不可缺少的部分【6】。
在我们的生产生活中一直离不开对温度的把握和测量,传感器开始出现后,温度传感器的种类和数量一直领先于各类传感器。
近百年来,温度传感器的发展大致经历了以下三个阶段【6】。
1传统的分立式温度传感器。
主要是将温度转换成电信号,便于电子系统的感知和测量。
如热电偶,测温范围大,耐高温可达数千度。
使用寿命长,结构和原理简单,至今在很多场合还发挥着不可替代的作用。
使用时注意要进行非线性校准。
303782单片集成温度传感器。
主要的特点是,采用集成电路工艺,在硅基底上集成温度测量专用的集成电路。
整体形成一片专用温度测量IC。
主要是将非线性校准电路集成和热敏元件集成化。
使用时,可以直接把温度和电量值当成线性关系,使用简便。
代表有LM35。
论文网3智能数字温度传感器。
主要特点是进一步集成化,内部集成有温度传感器,AD转换电路,存储器结构,接口电路,甚至有的产品还带有CPU、RAM和ROM。
智能化温度传感器的特点是,可以以数字形式输出温度量,甚至基于温度的控制量。
智能温度传感器通过MCU进行控制,MCU 中软件的不同,可以通过不同的方式对其进行使用,功能实现了可选择。
目前,国际上新型温度传感器正从模拟式向数字式、集成化向智能化及网络化的方向发展【6】。
另外非接触式的温度传感器也是目前研究的热点,例如红外温度传感器,由于不接触物体,所以可以进行超高的温度测量。
:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度传感器,使用范围广,数量多,居各种传感器之首。
温度传感器的发展大致经历了以下3个阶段:1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。
2.模拟集成温度传感器/控制器。
3.智能温度传感器。
目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。
温度传感器的分类温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。
接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。
这种测温方法精度比较高,并可测量物体内部的温度分布。
但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。
非接触测温的测温元件与被测对象互不接触。
常用的是辐射热交换原理。
此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。
温度传感器的发展1.传统的分立式温度传感器——热电偶传感器热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。
2.模拟集成温度传感器集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。
模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。
模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。
2.1光纤传感器光纤式测温原理光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。
光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。
因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。
目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等 2.1.1 全辐射测温法全辐射测温法是测量全波段的辐射能量,由普朗克定律: 测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。
同时辐射率也很难预知。
但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。
该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。
2.1.2 单辐射测温法由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。
在常用温度与波长范围内,单色辐射亮度用维恩公式表示: 2.1.3 双波长测温法双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。
两路信号的比值由下式给出: 际应用时,测得R(T)后,通过查表获知温度T。
同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。
这种方法响应快,不受电磁感应影响,抗干扰能力强。
特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。
但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。
该类仪器测温范围一般在600~3000℃,准确度可达2℃。
2.1.4 多波长辐射测温法多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。
考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为: 将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。
Coates[8,9]在1988年讨论了式(9)、(10)假设下多波长高温计数据拟合方法和精度问题。
1991年Mansoor[10]等总结了多波长高温计数据拟合方法和精度问题。
该方法有很高的精度,目前欧共体及美国联合课题组的Hiernaut等人已研究出亚毫米级的6波长高温计(图4),用于2000~5000K真温的测量[11]。
哈尔滨工业大学研制成了棱镜分光的35波长高温计,并用于烧蚀材料的真温测量。
多波长高温计在辐射真温测量中已显出很大潜力,在高温,甚高温,特别是瞬变高温对象的真温测量方面,多波长高温计量是很有前途的仪器。
该类仪器测温范围广,可用于600~5000℃温度区真温的测量,准确度可达±1%。
2.1.5 结论光纤技术的发展,为非接触式测温在生产中的应用提供了非常有利的条件。
光纤测温技术解决了许多热电偶和常规红外测温仪无法解决的问题。
而在高温领域,光纤测温技术越来越显示出强大的生命力。
全辐射测温法是测量全波段的辐射能量而得到温度,周围背景的辐射、介质吸收率的变化和辐射率εT的预测都会给测量带来困难,因此难于实现较高的精度。
单辐射测温法所选波段越窄越好,可是带宽过窄会使探测器接收的能量变得太小,从而影响其测量准确度。
多波长辐射测温法是一种很精确的方法,但工艺比较复杂,且造价高,推广应用有一定困难。
双波长测温法采用波长窄带比较技术,克服了上述方法的诸多不足,在非常恶劣的条件下,如有烟雾、灰尘、蒸汽和颗粒的环境中,目标表面发射率变化的条件下,仍可获得较高的精度 2.2半导体吸收式光纤温度传感器是一种传光型光纤温度传感器。
所谓传光型光纤温度传感器是指在光纤传感系统中,光纤仅作为光波的传输通路,而利用其它如光学式或机械式的敏感元件来感受被测温度的变化。
这种类型主要使用数值孔径和芯径大的阶跃型多模光纤。
由于它利用光纤来传输信号,因此它也具有光纤传感器的电绝缘、抗电磁干扰和安全防爆等优点,适用于传统传感器所不能胜任的测量场所。
在这类传感器中,半导体吸收式光纤温度传感器是研究得比较深入的一种。
半导体吸收式光纤温度传感器由一个半导体吸收器、光纤、光发射器和包括光探测器的信号处理系统等组成。
它体积小,灵敏度高,工作可靠,容易制作,而且没有杂散光损耗。
因此应用于象高压电力装置中的温度测量等一些特别场合中,是十分有价值的。
B 半导体吸收式光纤温度传感器的测温原理半导体吸收式光纤温度传感器是利用了半导体材料的吸收光谱随温度变化的特性实现的。
根据的研究,在20~972K 温度范围内,半导体的禁带宽度能量Eg 与温度T 的关系为" 3.智能温度传感器智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。
它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶。
目前,国际上已开发出多种智能温度传感器系列产品。
智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。
有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。
智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。
3.1数字温度传感器。
随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。
其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理1 、DS1722的主要特点DS1722是一种低价位、低功耗的三总线式数字温度传感器,其主要特点如表1所示。
2、DS1722的内部结构数字温度传感器DS1722有8管脚m-SOP 封装和8管脚SOIC封装两种,其引脚排列如图1所示。
它由四个主要部分组成:精密温度传感器、模数转换器、SPI/三线接口电子器件和数据寄存器,其内部结构如图2所示。
开始供电时,DS1722处于能量关闭状态,供电之后用户通过改变寄存器分辨率使其处于连续转换温度模式或者单一转换模式。
在连续转换模式下,DS1722连续转换温度并将结果存于温度寄存器中,读温度寄存器中的内容不影响其温度转换;在单一转换模式,DS1722执行一次温度转换,结果存于温度寄存器中,然后回到关闭模式,这种转换模式适用于对温度敏感的应用场合。
在应用中,用户可以通过程序设置分辨率寄存器来实现不同的温度分辨率,其分辨率有8位、9位、10位、11位或12位五种,对应温度分辨率分别为1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,温度转换结果的默认分辨率为9位。
DS1722有摩托罗拉串行接口和标准三线接口两种通信接口,用户可以通过SERMODE管脚选择通信标准。
3、DS1722温度操作方法传感器DS1722将温度转换成数字量后以二进制的补码格式存储于温度寄存器中,通过SPI或者三线接口,温度寄存器中地址01H和02H中的数据可以被读出。
输出数据的地址如表2所示,输出数据的二进制形式与十六进制形式的精确关系如表3所示。
在表3中,假定DS1722 配置为12位分辨率。
数据通过数字接口连续传送,MSB(最高有效位)首先通过SPI传输,LSB(最低有效位)首先通过三线传输。
4、DS1722的工作程序DS1722的所有的工作程序由SPI接口或者三总线通信接口通过选择状态寄存器位置适合的地址来完成。
表4为寄存器的地址表格,说明了DS1722两个寄存器(状态和温度)的地址。
1SHOT是单步温度转换位,SD是关闭断路位。
如果SD位为“1”,则不进行连续温度转换,1SHOT位写入“1”时,DS1722执行一次温度转换并且把结果存在温度寄存器的地址位01h(LSB)和02h(MSB)中,完成温度转换后1SHOT自动清“0”。
如果SD位是“0”,则进入连续转换模式,DS1722将连续执行温度转换并且将全部的结果存入温度寄存器中。
虽然写到1SHOT位的数据被忽略,但是用户还是对这一位有读/写访问权限。
如果把SD改为“1”,进行中的转换将继续进行直至完成并且存储结果,然后装置将进入低功率关闭模式。
传感器上电时默认1SHOT位为“0”。