编译原理课程设计报告C语言词法与语法分析器的实现

合集下载

(完整版)编译原理词法分析和语法分析报告+代码(C语言版)[1]

(完整版)编译原理词法分析和语法分析报告+代码(C语言版)[1]

词法分析一、实验目的设计、编制并调试一个词法分析程序,加深对词法分析原理的理解。

二、实验要求2.1待分析的简单的词法( 1)关键字:begin if then while do end所有的关键字都是小写。

( 2)运算符和界符:=+-*/<<=<>>>==;()#( 3)其他单词是标识符(ID )和整型常数( SUM ),通过以下正规式定义:ID = letter (letter | digit)*NUM = digit digit*( 4)空格有空白、制表符和换行符组成。

空格一般用来分隔ID 、SUM 、运算符、界符和关键字,词法分析阶段通常被忽略。

2.2各种单词符号对应的种别码:表 2.1各种单词符号对应的种别码单词符号种别码单词符号种别码bgin1:17If2: =18Then3<20wile4<>21do5<=22end6>23lettet( letter|digit ) *10>=24 dight dight*11=25 +13;26—14(27*15)28/16#02.3词法分析程序的功能:输入:所给文法的源程序字符串。

输出:二元组( syn,token 或 sum)构成的序列。

其中: syn 为单词种别码;token 为存放的单词自身字符串;sum 为整型常数。

例如:对源程序begin x:=9: if x>9 then x:=2*x+1/3; end # 的源文件,经过词法分析后输出如下序列:(1,begin)(10,x)(18,:=)(11,9)(26,;)(2,if)三、词法分析程序的算法思想:算法的基本任务是从字符串表示的源程序中识别出具有独立意义的单词符号,其基本思想是根据扫描到单词符号的第一个字符的种类,拼出相应的单词符号。

3.1主程序示意图:主程序示意图如图3-1 所示。

其中初始包括以下两个方面:⑴ 关键字表的初值。

编译原理词法分析和语法分析报告+代码(C语言版)[1]

编译原理词法分析和语法分析报告+代码(C语言版)[1]

西南交通大学编译原理课程设计报告系(院):信息科学与技术学院专业:软件工程班级:软件二班姓名:吴任杰学号:******** ****:***2012年12 月14 日词法分析一、实验目的设计、编制并调试一个词法分析程序,加深对词法分析原理的理解。

二、实验要求2.1 待分析的简单的词法(1)关键字:begin if then while do end所有的关键字都是小写。

(2)运算符和界符:= + - * / < <= <> > >= = ; ( ) #(3)其他单词是标识符(ID)和整型常数(SUM),通过以下正规式定义:ID = letter (letter | digit)*NUM = digit digit*(4)空格有空白、制表符和换行符组成。

空格一般用来分隔ID、SUM、运算符、界符和关键字,词法分析阶段通常被忽略。

2.2 各种单词符号对应的种别码:2.3 词法分析程序的功能:输入:所给文法的源程序字符串。

输出:二元组(syn,token或sum)构成的序列。

其中:syn为单词种别码;token为存放的单词自身字符串;sum为整型常数。

例如:对源程序begin x:=9: if x>9 then x:=2*x+1/3; end #的源文件,经过词法分析后输出如下序列:(1,begin)(10,x)(18,:=)(11,9)(26,;)(2,if)……三、词法分析程序的算法思想:算法的基本任务是从字符串表示的源程序中识别出具有独立意义的单词符号,其基本思想是根据扫描到单词符号的第一个字符的种类,拼出相应的单词符号。

3.1 主程序示意图:主程序示意图如图3-1所示。

其中初始包括以下两个方面: ⑴ 关键字表的初值。

关键字作为特殊标识符处理,把它们预先安排在一张表格中(称为关键字表),当扫描程序识别出标识符时,查关键字表。

如能查到匹配的单词,则该单词为关键字,否则为一般标识符。

编译原理课程设计报告C语言词法与语法分析器的实现

编译原理课程设计报告C语言词法与语法分析器的实现

编译原理课程设计报告课题名称:编译原理课程设计C-语言词法与语法分析器的实现C-词法与语法分析器的实现1.课程设计目标(1)题目实用性C-语言拥有一个完整语言的基本属性,通过编写C-语言的词法分析和语法分析,对于理解编译原理的相关理论和知识有很大的作用。

通过编写C-语言词法和语法分析程序,能够对编译原理的相关知识:正则表达式、有限自动机、语法分析等有一个比较清晰的了解和掌握。

(2)C-语言的词法说明①语言的关键字:else if int return void while所有的关键字都是保留字,并且必须是小写。

②专用符号:+ - * / < <= > >= == != = ; , ( ) [ ] { } /* */③其他标记是ID和NUM,通过下列正则表达式定义:ID = letter letter*NUM = digit digit*letter = a|..|z|A|..|Zdigit = 0|..|9注:ID表示标识符,NUM表示数字,letter表示一个字母,digit表示一个数字。

小写和大写字母是有区别的。

④空格由空白、换行符和制表符组成。

空格通常被忽略。

⑤注释用通常的c语言符号/ * . . . * /围起来。

注释可以放在任何空白出现的位置(即注释不能放在标记内)上,且可以超过一行。

注释不能嵌套。

(3)程序设计目标能够对一个程序正确的进行词法及语法分析。

2.分析与设计(1)设计思想a. 词法分析词法分析的实现主要利用有穷自动机理论。

有穷自动机可用作描述在输入串中识别模式的过程,因此也能用作构造扫描程序。

通过有穷自动机理论能够容易的设计出词法分析器。

b. 语法分析语法分析采用递归下降分析。

递归下降法是语法分析中最易懂的一种方法。

它的主要原理是,对每个非终结符按其产生式结构构造相应语法分析子程序,其中终结符产生匹配命令,而非终结符则产生过程调用命令。

因为文法递归相应子程序也递归,所以称这种方法为递归子程序下降法或递归下降法。

编译原理实验报告

编译原理实验报告

编译原理实验报告一、实验目的本次编译原理实验的主要目的是通过实践加深对编译原理中词法分析、语法分析、语义分析和代码生成等关键环节的理解,并提高实际动手能力和问题解决能力。

二、实验环境本次实验使用的编程语言为 C/C++,开发工具为 Visual Studio 2019,操作系统为 Windows 10。

三、实验内容(一)词法分析器的设计与实现词法分析是编译过程的第一个阶段,其任务是从输入的源程序中识别出一个个具有独立意义的单词符号。

在本次实验中,我们使用有限自动机的理论来设计词法分析器。

首先,我们定义了单词的种类,包括关键字、标识符、常量、运算符和分隔符等。

然后,根据这些定义,构建了相应的状态转换图,并将其转换为程序代码。

在实现过程中,我们使用了字符扫描和状态转移的方法,逐步读取输入的字符,判断其所属的单词类型,并将其输出。

(二)语法分析器的设计与实现语法分析是编译过程的核心环节之一,其任务是在词法分析的基础上,根据给定的语法规则,判断输入的单词序列是否构成一个合法的句子。

在本次实验中,我们采用了自顶向下的递归下降分析法来实现语法分析器。

首先,我们根据给定的语法规则,编写了相应的递归函数。

每个函数对应一种语法结构,通过对输入单词的判断和递归调用,来确定语法的正确性。

在实现过程中,我们遇到了一些语法歧义的问题,通过仔细分析语法规则和调整函数的实现逻辑,最终解决了这些问题。

(三)语义分析与中间代码生成语义分析的任务是对语法分析所产生的语法树进行语义检查,并生成中间代码。

在本次实验中,我们使用了四元式作为中间代码的表示形式。

在语义分析过程中,我们检查了变量的定义和使用是否合法,类型是否匹配等问题。

同时,根据语法树的结构,生成相应的四元式中间代码。

(四)代码优化代码优化的目的是提高生成代码的质量和效率。

在本次实验中,我们实现了一些基本的代码优化算法,如常量折叠、公共子表达式消除等。

通过对中间代码进行分析和转换,减少了代码的冗余和计算量,提高了代码的执行效率。

编译原理词法分析和语法分析报告+代码(C语言版)_2

编译原理词法分析和语法分析报告+代码(C语言版)_2

词法分析一、实验目的设计、编制并调试一个词法分析程序,加深对词法分析原理的理解。

二、实验要求2.1 待分析的简单的词法(1)关键字:begin if then while do end所有的关键字都是小写。

(2)运算符和界符:= + - * / < <= <> > >= = ; ( ) #(3)其他单词是标识符(ID)和整型常数(SUM),通过以下正规式定义:ID = letter (letter | digit)*NUM = digit digit*(4)空格有空白、制表符和换行符组成。

空格一般用来分隔ID、SUM、运算符、界符和关键字,词法分析阶段通常被忽略。

2.2 各种单词符号对应的种别码:输入:所给文法的源程序字符串。

输出:二元组(syn,token或sum)构成的序列。

其中:syn为单词种别码;token为存放的单词自身字符串;sum为整型常数。

例如:对源程序begin x:=9: if x>9 then x:=2*x+1/3; end #的源文件,经过词法分析后输出如下序列:(1,begin)(10,x)(18,:=)(11,9)(26,;)(2,if)……三、词法分析程序的算法思想:算法的基本任务是从字符串表示的源程序中识别出具有独立意义的单词符号,其基本思想是根据扫描到单词符号的第一个字符的种类,拼出相应的单词符号。

3.1 主程序示意图:主程序示意图如图3-1所示。

其中初始包括以下两个方面:⑴关键字表的初值。

关键字作为特殊标识符处理,把它们预先安排在一张表格中(称为关键字表),当扫描程序识别出标识符时,查关键字表。

如能查到匹配的单词,则该单词为关键字,否则为一般标识符。

关键字表为一个字符串数组,其描述如下:Char *rwtab[6] = {“begin”, “if”, “then”, “while”, “do”, “end”,};图3-1(2)程序中需要用到的主要变量为syn,token和sum3.2 扫描子程序的算法思想:首先设置3个变量:①token用来存放构成单词符号的字符串;②sum用来整型单词;③syn用来存放单词符号的种别码。

编译原理词法分析和语法分析报告+代码(C语言版)

编译原理词法分析和语法分析报告+代码(C语言版)

信息工程学院实验报告(2010 ~2011 学年度第一学期)姓名:***学号:**********班级:083词法分析一、实验目的设计、编制并调试一个词法分析程序,加深对词法分析原理的理解。

二、实验要求2.1 待分析的简单的词法(1)关键字:begin if then while do end所有的关键字都是小写。

(2)运算符和界符:= + - * / < <= <> > >= = ; ( ) #(3)其他单词是标识符(ID)和整型常数(SUM),通过以下正规式定义:ID = letter (letter | digit)*NUM = digit digit*(4)空格有空白、制表符和换行符组成。

空格一般用来分隔ID、SUM、运算符、界符和关键字,词法分析阶段通常被忽略。

2.2 各种单词符号对应的种别码:输入:所给文法的源程序字符串。

输出:二元组(syn,token或sum)构成的序列。

其中:syn为单词种别码;token为存放的单词自身字符串;sum为整型常数。

例如:对源程序begin x:=9: if x>9 then x:=2*x+1/3; end #的源文件,经过词法分析后输出如下序列:(1,begin)(10,x)(18,:=)(11,9)(26,;)(2,if)……三、词法分析程序的算法思想:算法的基本任务是从字符串表示的源程序中识别出具有独立意义的单词符号,其基本思想是根据扫描到单词符号的第一个字符的种类,拼出相应的单词符号。

3.1 主程序示意图:主程序示意图如图3-1所示。

其中初始包括以下两个方面:⑴关键字表的初值。

关键字作为特殊标识符处理,把它们预先安排在一张表格中(称为关键字表),当扫描程序识别出标识符时,查关键字表。

如能查到匹配的单词,则该单词为关键字,否则为一般标识符。

关键字表为一个字符串数组,其描述如下:Char *rwtab[6] = {“begin”, “if”, “then”, “while”, “do”, “end”,};图3-1(2)程序中需要用到的主要变量为syn,token和sum3.2 扫描子程序的算法思想:首先设置3个变量:①token用来存放构成单词符号的字符串;②sum用来整型单词;③syn用来存放单词符号的种别码。

编译原理词法分析和语法分析报告 代码(C语言版)[1]

编译原理词法分析和语法分析报告 代码(C语言版)[1]

char ch='\0';
/*从字符缓冲区读取当前字符*/
int count=0;
/*词法分析结果缓冲区计数器*/
static char spelling[10]={""}; /*存放识别的字*/
static char line[81]={""}; /*一行字符缓冲区,最多 80 个字符*/
char *pline;
scaner(); main() {p=0;
printf("\n please input a string(end with '#'):/n"); do{
scanf("%c",&ch); prog[p++]=ch; }while(ch!='#'); p=0; do{ scaner(); switch(syn)
EO
19
B or(即布尔表达式中的 B∨ )
Plus
34
“+”
Times
36
Becomes
38
Op_and
39
Op_or
40
Op_not
41
Rop
42
Lparent
48
Rparent
49
Ident
56
Intconst
57
#define sy_if
0
#define sy_then 1
#define sy_else 2
case '*': syn=15; token[m++]=ch; break;
case '/': syn=16; token[m++]=ch; break;

编译原理词法分析器语法分析器实验报告

编译原理词法分析器语法分析器实验报告

编译技术班级网络0802 学号3080610052姓名叶晨舟指导老师朱玉全2011年 7 月 4 日一、目的编译技术是理论与实践并重的课程,而其实验课要综合运用一、二年级所学的多门课程的内容,用来完成一个小型编译程序。

从而巩固和加强对词法分析、语法分析、语义分析、代码生成和报错处理等理论的认识和理解;培养学生对完整系统的独立分析和设计的能力,进一步培养学生的独立编程能力。

二、任务及要求基本要求:1.词法分析器产生下述小语言的单词序列这个小语言的所有的单词符号,以及它们的种别编码和内部值如下表:单词符号种别编码助记符内码值DIMIFDO STOP END标识符常数(整)=+***,()1234567891011121314$DIM$IF$DO$STOP$END$ID$INT$ASSIGN$PLUS$STAR$POWER$COMMA$LPAR$RPAR------内部字符串标准二进形式------对于这个小语言,有几点重要的限制:首先,所有的关键字(如IF﹑WHILE等)都是“保留字”。

所谓的保留字的意思是,用户不得使用它们作为自己定义的标示符。

例如,下面的写法是绝对禁止的:IF(5)=x其次,由于把关键字作为保留字,故可以把关键字作为一类特殊标示符来处理。

也就是说,对于关键字不专设对应的转换图。

但把它们(及其种别编码)预先安排在一张表格中(此表叫作保留字表)。

当转换图识别出一个标识符时,就去查对这张表,确定它是否为一个关键字。

再次,如果关键字、标识符和常数之间没有确定的运算符或界符作间隔,则必须至少用一个空白符作间隔(此时,空白符不再是完全没有意义的了)。

例如,一个条件语句应写为IF i>0 i= 1;而绝对不要写成IFi>0 i=1;因为对于后者,我们的分析器将无条件地将IFI看成一个标识符。

这个小语言的单词符号的状态转换图,如下图:2.语法分析器能识别由加+ 减- 乘* 除/ 乘方^ 括号()操作数所组成的算术表达式,其文法如下:E→E+T|E-T|TT→T*F|T/F|FF→P^F|Pp→(E)|i使用的算法可以是:预测分析法;递归下降分析法;算符优先分析法;LR分析法等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编译原理课程设计报告课题名称:编译原理课程设计C-语言词法与语法分析器的实现C-词法与语法分析器的实现1.课程设计目标(1)题目实用性C-语言拥有一个完整语言的基本属性,通过编写C-语言的词法分析和语法分析,对于理解编译原理的相关理论和知识有很大的作用。

通过编写C-语言词法和语法分析程序,能够对编译原理的相关知识:正则表达式、有限自动机、语法分析等有一个比较清晰的了解和掌握。

(2)C-语言的词法说明①语言的关键字:else if int return void while所有的关键字都是保留字,并且必须是小写。

②专用符号:+ - * / < <= > >= == != = ; , ( ) [ ] { } /* */③其他标记是ID和NUM,通过下列正则表达式定义:ID = letter letter*NUM = digit digit*letter = a|..|z|A|..|Zdigit = 0|..|9注:ID表示标识符,NUM表示数字,letter表示一个字母,digit表示一个数字。

小写和大写字母是有区别的。

④空格由空白、换行符和制表符组成。

空格通常被忽略。

⑤注释用通常的c语言符号/ * . . . * /围起来。

注释可以放在任何空白出现的位置(即注释不能放在标记)上,且可以超过一行。

注释不能嵌套。

(3)程序设计目标能够对一个程序正确的进行词法及语法分析。

2.分析与设计(1)设计思想a.词法分析词法分析的实现主要利用有穷自动机理论。

有穷自动机可用作描述在输入串中识别模式的过程,因此也能用作构造扫描程序。

通过有穷自动机理论能够容易的设计出词法分析器。

b.语法分析语法分析采用递归下降分析。

递归下降法是语法分析中最易懂的一种方法。

它的主要原理是,对每个非终结符按其产生式结构构造相应语法分析子程序,其中终结符产生匹配命令,而非终结符则产生过程调用命令。

因为文法递归相应子程序也递归,所以称这种方法为递归子程序下降法或递归下降法。

其中子程序的结构与产生式结构几乎是一致的。

(2)程序流程图程序主流程图:词法分析: 语法分析:3.程序代码实现整个词法以及语法的程序设计在一个工程里面,一共包含了8个文件,分别为main.cpp、parse.cpp、scan.cpp、util.cpp、scan.h、util.h、 globals.h、parse.h,其中scan.cpp和scan.h为词法分析程序。

以下仅列出各个文件中的核心代码:Main.cpp#include "globals.h"#define NO_PARSE FALSE#include "util.h"#if NO_PARSE#include "scan.h"#else#include "parse.h"#endifint lineno=0;FILE * source;FILE * listing;FILE * code;int EchoSource = TRUE;int TraceScan=TRUE;int TraceParse=TRUE;int Error = FALSE;int main(int argc,char * argv[]){TreeNode * syntaxTree;char pgm[120];scanf("%s",pgm);source=fopen(pgm,"r");if(source==NULL){fprintf(stderr,"File %s not found\n",pgm);exit(1);}listing = stdout;fprintf(listing,"\nC COMPILATION: %s\n",pgm); #if NO_PARSEwhile(getToken()!=ENDFILE);#elsesyntaxTree = parse();if(TraceParse){fprintf(listing,"\nSyntaxtree:\n");printTree(syntaxTree);}#endiffclose(source);return 0;}Parse.cpp#include "globals.h"#include "util.h"#include "scan.h"#include "parse.h"static TokenType token; /* holds current token *//* function prototypes for recursive calls */static TreeNode * declaration_list(void);static TreeNode * declaration(void);static TreeNode * params(void);static TreeNode * param_list(void);static TreeNode * param(void);static TreeNode * compound_stmt(void);static TreeNode * local_declarations(void);static TreeNode * statement_list(void);static TreeNode * statement(void);static TreeNode * expression_stmt(void);static TreeNode * if_stmt(void);static TreeNode * while_stmt(void);static TreeNode * return_stmt(void);static TreeNode * expression(void);static TreeNode * var(void);static TreeNode * simple_exp(void);static TreeNode * additive_expression(void);static TreeNode * term(void);static TreeNode * factor(void);static TreeNode * args(void);static TreeNode * arg_list(void);static void syntaxError(char * message){ fprintf(listing,"\n>>> ");fprintf(listing,"Syntax error at line %d: %s",lineno,message); Error = TRUE;}/*判断读取的字符*/static void match(TokenType expected){if(token==expected){token=getToken( );}else{syntaxError("unexpected token -> ");printToken(token,tokenString);fprintf(listing," ");}}/*进行语法分析,构建语法树*/TreeNode * declaration_list(void){TreeNode * t= declaration();TreeNode * p= t;while ((token==INT) || (token==VOID) ){TreeNode *q = declaration();if (q!=NULL) {if (t==NULL) t = p = q;else /* now p cannot be NULL either */{p->sibling = q;p = q;}}}return t;}TreeNode * declaration(void){ TreeNode * t = NULL;switch (token){case VOID :case INT :t = newStmtNode(DecK);if(token == INT)t->type =Integer;elset->type = Void;match(token);switch (token){case ID:t-> = copyString(tokenString);t->kind.stmt = VarDK;match(ID);switch (token){case LZKH:t->kind.stmt = VarDK;t->type = IntArray;match(LZKH);match(NUM);match(RZKH);match(SEMI);break;case LPAREN:t->kind.stmt = FunDK;match(LPAREN);t->child[0] = params();match(RPAREN);t->child[1] = compound_stmt();break;default: match(SEMI);break;}break;default:syntaxError("unexpected token -> ");printToken(token,tokenString);token = getToken();break;}break;default : syntaxError("unexpected token -> ");printToken(token,tokenString);token = getToken();break;} /* end case */return t;}TreeNode * params(void){TreeNode * t = NULL;if(token == VOID){match(token);t = newStmtNode(ParamList);t->child[0] = newStmtNode(ParamK);t->child[0]->type = Void;}else if(token == RPAREN)t=NULL;else{t = param_list();}return t;}TreeNode * param_list(void){TreeNode * t = newStmtNode(ParamList);int i = 1;t->child[0] = param();while(token != RPAREN){match(DOT);t->child[i] = param();i++;}return t;}TreeNode * param(void){TreeNode * t = NULL;match(INT);t= newStmtNode(ParamK);t->type=Integer;t->=copyString(tokenString);match(ID);if(token == LZKH){t->type=IntArray;match(LZKH);match(RZKH);}return t;}TreeNode * compound_stmt(void){TreeNode * t = newStmtNode(ComK);match(LDKH);t->child[0] = local_declarations();t->child[1] = statement_list();match(RDKH);return t;}TreeNode * local_declarations(void){TreeNode * t = newStmtNode(LocalDecK);int i=0;while(token == INT || token == VOID){t->child[i] = declaration();i++;}return t;}TreeNode * statement_list(void){TreeNode * t = newStmtNode(StmtList);int i=0;while(token != RDKH){t->child[i] =statement();i++;}return t;}TreeNode * statement(void){TreeNode * t ;switch (token) {case IF : t = if_stmt(); break;case WHILE : t = while_stmt(); break;case ID :case SEMI:t = expression_stmt(); break;case RETURN : t = return_stmt(); break;case LDKH : t=compound_stmt();break;default : syntaxError("unexpected token -> ");printToken(token,tokenString);token = getToken();break;} /* end case */return t;}TreeNode * expression_stmt(void){TreeNode * t = newStmtNode(ExpstmtK);if(token == SEMI)match(SEMI);else{t = expression();match(SEMI);}return t;}TreeNode * if_stmt(void){TreeNode * t = newStmtNode(IfK);if(t!=NULL){match(IF);match(LPAREN);t->child[0] = expression();match(RPAREN);t->child[1] = statement();if (token==ELSE){match(ELSE);if (t!=NULL) t->child[2] = newStmtNode(ElseK);t->child[2]->child[0] = statement();} }return t;}TreeNode * while_stmt(void){TreeNode * t = newStmtNode(WhileK);match(WHILE);match(LPAREN);if (t!=NULL) t->child[0] = expression();match(RPAREN);if (t!=NULL) t->child[1] = statement();return t;}TreeNode * return_stmt(void){TreeNode * t = newStmtNode(RetK);if(token == RETURN)match(RETURN);if(token == SEMI)match(SEMI);else{t->child[0] = expression();match(SEMI);}return t;}TreeNode * expression(void){TreeNode * t = simple_exp();return t;}TreeNode* var(void){TreeNode* t = newExpNode(IdK);if ((t!=NULL) && (token==ID))t-> = copyString(tokenString);match(ID);if(token == LZKH){match(token);t->type = ArrayUnit;t->child[0] = expression();match(RZKH);}return t;}TreeNode * simple_exp(void){TreeNode * t = additive_expression();if(t!=NULL){if (token == LT || token == LE|| token == MT || token == ME||token ==EQ||token ==NEQ){TreeNode * p = newExpNode(OpK);if(p!=NULL){p->attr.op = token;p->child[0] = t;match(token);p->child[1] = additive_expression();t=p;}}}return t;}TreeNode* additive_expression(void){TreeNode * t = term();while(token == PLUS || token == MINUS){TreeNode * p = newExpNode(OpK);p->attr.op = token;p->child[0] = t;match(token);p->child[1] = term();t = p;}return t;}TreeNode * term(void){TreeNode * t = factor();while ((token==TIMES)||(token==OVER)){TreeNode * p = newExpNode(OpK);if (p!=NULL) {p->child[0] = t;p->attr.op = token;match(token);p->child[1] = factor();t = p;}}return t;}TreeNode * factor(void){TreeNode * t = NULL;switch (token){case NUM :t = newExpNode(ConstK);if ((t!=NULL) && (token==NUM))t->attr.val = atoi(tokenString);match(NUM);break;case ID :t = var();if (token == ASSIGN){TreeNode* p = newStmtNode(AssignK);p-> = t->;match(token);p->child[0] = expression();t = p;}if (token == LPAREN ){TreeNode * p = newStmtNode(CallK);p-> = t->;t=p;match(token);p->child[0] = args();match(RPAREN);}break;case LPAREN :match(LPAREN);t = expression();match(RPAREN);break;default:syntaxError("unexpected token -> ");printToken(token,tokenString);token = getToken();break;}return t;}TreeNode * args(void){TreeNode * t = newStmtNode(ArgList);if(token != RPAREN){t->child[0] = arg_list();return t;}elsereturn NULL;}TreeNode * arg_list(void){TreeNode * t = newStmtNode(ArgK);int i = 1;if(token != RPAREN)t->child[0] = expression();while(token!=RPAREN){match(DOT);t->child[i] = expression();i++;}return t;}TreeNode * parse(void){ TreeNode * t;token = getToken();t =declaration_list();if (token!=ENDFILE)syntaxError("Code ends before file\n");return t;}scan.cpp#include "globals.h"#include "util.h"#include "scan.h"/*对扫描的字符进行匹配判断*/TokenType getToken(void){ /* index for storing into tokenString */int tokenStringIndex = 0;/* holds current token to be returned */TokenType currentToken;/* current state - always begins at START */ StateType state = START;/* flag to indicate save to tokenString */ int save;while (state != DONE){ int c = getNextChar();save = TRUE;switch (state){ case START:if (isdigit(c))state = INNUM;else if (isalpha(c))state = INID;else if (c == '=')state = INEQUAL;else if (c == '<')state = INLE;else if (c == '>')state = INME;else if ((c == ' ') || (c == '\t') || (c == '\n')) save = FALSE;else if (c== '!')state = INNEQ;else if (c == '/'){if(getNextChar()!='*'){ungetNextChar();state = DONE;currentToken = OVER;break;}else{save = FALSE;state = INCOMMENT;}}else{ state = DONE;switch (c){ case EOF:save = FALSE;currentToken = ENDFILE;break;case '+':currentToken = PLUS;break;case '-':currentToken = MINUS; break;case '*':currentToken = TIMES; break;case '(':currentToken = LPAREN; break;case ')':currentToken = RPAREN; break;case ';':currentToken = SEMI; break;case '[':currentToken=LZKH;break;case ']':currentToken=RZKH;break;case '{':currentToken=LDKH;break;case '}':currentToken=RDKH;break;case ',':currentToken=DOT;break;default:currentToken = ERROR; break;}}break;case INCOMMENT:save = FALSE;if (c == EOF){state = DONE;currentToken = ERROR;}else if(c=='*'){if(getNextChar()=='/'){state = START;}else{ungetNextChar();}}break;case INNEQ:state=DONE;if(c=='=')currentToken=NEQ;else{ungetNextChar();save=FALSE;currentToken=ERROR;}break;case INEQUAL:state = DONE;if (c == '=')currentToken = EQ;else{ /* backup in the input */ ungetNextChar();currentToken = ASSIGN;}case INNUM:if (!isdigit(c)){ /* backup in the input */ ungetNextChar();save = FALSE;state = DONE;currentToken = NUM;}break;case INID:if (!isalpha(c)){ /* backup in the input */ ungetNextChar();save = FALSE;state = DONE;currentToken = ID;}break;case INLE:state = DONE;if(c== '=')currentToken = LE;else{ /* backup in the input */ ungetNextChar();currentToken = LT;}break;case INME:state = DONE;if(c== '=')currentToken = ME;else{ /* backup in the input */ ungetNextChar();currentToken = MT;}case DONE:default: /* should never happen */fprintf(listing,"Scanner Bug: state= %d\n",state); state = DONE;currentToken = ERROR;break;}if ((save) && (tokenStringIndex <= MAXTOKENLEN))tokenString[tokenStringIndex++] = (char) c;if (state == DONE){ tokenString[tokenStringIndex] = '\0';if (currentToken == ID)currentToken = reservedLookup(tokenString);}}if (TraceScan) {fprintf(listing,"\t%d: ",lineno);printToken(currentToken,tokenString);}return currentToken;} /* end getToken */Util.cpp#include "globals.h"#include "util.h"void printToken(TokenType token, const char* tokenString) {/*根据对应的判断输出判断结果*/switch(token){case ELSE:case IF:case INT:case RETURN:case VOID:case WHILE:fprintf(listing, "reserved word: %s\n", tokenString);break;case LT:fprintf(listing,"<\n");break;case EQ:fprintf(listing,"==\n");break;case LPAREN:fprintf(listing,"(\n");break;case RPAREN:fprintf(listing,")\n");break;case SEMI:fprintf(listing,";\n");break;case PLUS:fprintf(listing,"+\n");break;case MINUS:fprintf(listing,"-\n");break;case TIMES:fprintf(listing,"*\n");break;case OVER:fprintf(listing,"/\n");break;case ENDFILE:fprintf(listing,"EOF\n");break;case MT:fprintf(listing,">\n");break;case NEQ:fprintf(listing,"!=\n");break;case ASSIGN:fprintf(listing,"=\n");break;case DOT:fprintf(listing,",\n");break;case LZKH:fprintf(listing,"[\n");break;case RZKH:fprintf(listing,"]\n");break;case LDKH:fprintf(listing,"{\n");break;case RDKH:fprintf(listing,"}\n");break;case LZS:fprintf(listing,"/*\n");break;case RZS:fprintf(listing,"*/\n");break;case ME:fprintf(listing,">=\n");break;case LE:fprintf(listing,"<=\n");break;case NUM:fprintf(listing,"NUM,val= %s\n",tokenString);break;case ID:fprintf(listing,"ID, name= %s\n",tokenString);break;case ERROR:fprintf(listing,"ERROR: %s\n",tokenString);break;default:fprintf(listing,"Unknown token: %d\n",token);}}/*this function is used to establish the new stmt node*/TreeNode * newStmtNode(StmtKind kind){TreeNode * t = (TreeNode *)malloc(sizeof(TreeNode));int i;if(t==NULL){fprintf(listing, "Out of memory error at line %d\n",lineno);}else{for(i=0;i<MAXCHILDREN;i++){t->child[i]=NULL;}t->sibling=NULL;t->nodekind=StmtK;t->kind.stmt=kind;t->lineno=lineno;}return t;}/* Function newExpNode creates a new expressionnode for syntax tree construction*/TreeNode * newExpNode(ExpKind kind){TreeNode * t = (TreeNode *)malloc(sizeof(TreeNode));int i;if(t==NULL){fprintf(listing, "Out of memory error at line %d\n",lineno);}else{for(i=0;i<MAXCHILDREN;i++){t->child[i]=NULL;}t->sibling=NULL;t->nodekind=ExpK;t->kind.exp=kind;t->lineno=lineno;t->type=Void;}return t;}char * copyString(char * s){int n;char * t;if(s==NULL){return NULL;}n=strlen(s)+1;t=(char *)malloc(n);/*其作用是在存的动态存储区中分配一个长度为n的连续空间.保存tokenstring*/ if(t==NULL){fprintf(listing, "Out of memory error at line %d\n",lineno);}else{strcpy(t,s);/*该函数是字符串拷贝函数,用来将一个字符串复制到一个字符数组中。

相关文档
最新文档