midas桥梁抗震分析与设计例题-new0810
基于Midas-Civil的桥梁下部结构抗震计算分析与研究

基于Midas/Civil的桥梁下部结构抗震计算分析与研究刘渐成(中山市规划设计院,广东中山 528400)摘要:文章以中山市石岐区广丰工业大道南六涌桥为工程背景,运用有限元软件Midas/Civil建立模型,根据抗震规范要求,运用反应谱法对桥梁下部墩柱分别进行E1、E2地震力作用下的受力分析,以指导结构设计。
关键词:Midas/Civil;桥梁下部结构;抗震计算U442 :A :1009-2374(2014)09-0005-031 工程概况本工程位于中山市石岐区岐港片区,广丰工业大道(石岐段)上,跨越现状南六涌,河涌宽约38m。
根据水利及航道部门技术要求,南六涌无通航要求,水位受水系的水闸控制,设计洪水位取2.3m。
根据现状河道走向、地形及周边环境,拟建桥梁与主河道斜交,约成30度角。
桥跨布置为3×16m预应力砼简支空心板梁桥,共两幅,每幅桥宽20m。
下部结构采用桩柱式桥墩,直径1m的柱接1.2m的钻孔灌注桩,桥台采用薄壁式台,桩基础,台前设4m 长的M7.5浆砌片石铺砌,台后用碎石与粗砂混合料回填。
拟建桥梁两侧均有水泥路到达场地,交通较方便,原始地貌单元为珠江三角洲海陆交互沉积平原,地形开阔,无池塘、坑道、土洞等不良地质。
区域内水网密布,地表水系发育,地下水对混凝土结构无腐蚀性。
2 技术指标安全等级:二级;设计基准期:100年;环境类别:Ⅰ类环境;设计速度:50;设计荷载:公路-Ⅰ级;净空:无通航净空要求;地震动峰值加速度:0.1g。
3 结构荷载取值3.1 永久作用桥梁永久荷载考虑上部板梁自重及二期恒载,二期恒载包括桥面铺装和栏杆等,以均布荷载形式加载,合计95.4KN/m。
下部桥墩自重。
混凝土容重取26kN/m3,计算时将荷载转化为质量。
3.2 地震计算参数根据《中国地震动参数区划图》(GB18306-2001)、《建筑抗震设计规范》(GB50011-2001)等相关资料,本项目区域地震基本烈度Ⅶ度(加速度取0.10g)。
Midas-城市桥梁抗震分析及验算资料讲解

• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。 在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。 验算内容和注意事项见附件。
结论
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 荷载工况
完成反应谱分析后,需要定义混凝土的荷载工况,一般点击自动生成。规范选择城市桥梁抗震设 计规范。
Midas 抗震分析后处理
2. 后处理验算
点击设计-RC设计
①RC设计参数
这里的规范同前,也需要选 择城市桥梁抗震设计规范。
Midas 抗震分析后处理
E2弹塑性验算
根据规范要进行刚度进行调整
在E2地震作用下桥墩的强度不能满足要求,桥墩 进入了塑性阶段,所以接下来要进行弹塑性验算。
Midas 抗震分析后处理
第一个表格中的数值可以在特性的材料 和截面中查询,第二个表格是第一个表 格计算得到的,第三个表格是根据弯矩 曲率中理想化屈服的弯矩曲率得到(y和 z分别是0和90度)。
(b)结构振动引起的破坏 例如:地震强度过大,或者强度延性不足,结构的布置或者构造不合 理。
延性设计理念
3. 延性设计
桥梁结构体系中设置延性构件,桥梁在E2地震作用下,延性构件进入塑 性状态进行耗能,同时可以减小结构刚度,增大结构周期,达到减小地 震动响应的目的。
类型 Ⅰ
类型 Ⅱ
延性设计理念
规范中延性设计理念的体现
Midas 抗震分析前处理
2. 反应谱分析
midas反应谱法的抗震验算实例及概率Pusnover法—牛亚运

midas桥梁抗震验算
• (11)、E2地震(弹性)作用下抗震验算
midas桥梁抗震验算
• (12)E2地震(弹塑性)墩顶位移
midas桥梁抗震验算
• (13)E2地震(弹塑性)抗剪强度验算
概率Pushover法
• 现行规范结构抗震设计三大方法:
• • • • 一、底部剪力法 二、振型分解反应谱法 三、时程分析法 “四”、pushover法(写入美国的ATC-40及其他 国家抗震规范)
、D为地震作用模型化时的不确定因子 、G为结构总的重力荷载,变异系数0.1 、β 为放大系数,不确定性来源于地面运动的随机过程 确定烈度下地震作用的概率分布:
概率Pushover法
(2)结构抗力的随机化
pushover分析可以得到在某种侧向力分布作用下结 构体系的抗力曲线,即Vb—un曲线,没有考虑结构 本身的随机性,抗力曲线是唯一的。
(4)累加各个加载阶段的力和变形,就可以获得所有构件 在所有加载阶段的总内力和总变形。不断重复步骤(3)直到结 构的侧向位移达到预定的目标位移,或者结构中出现的塑性 铰过多成为机构。
概率Pushover法
• 利用pushover曲线的能力谱法:
(1)用单调增加水平荷载作用下的静力弹塑性分析,计算 结果的基地剪力—顶点位移曲线(pushover曲线) (2)建立能力谱曲线,将pushover曲线转化为谱加速度— 谱位移曲线,及能力谱曲线
求解各阶振型对应的等效地震作用来计算多自由度体系的地震作用效应
基本原理:利用单自由度体系设计的加速度反应谱和振型分解的原理
分析步骤:
(1)模态分析(频率、周期、振型参与系数) (2)反应谱分析(地震影响系数α、Fji=αjγjjimjg) (3)振型组合(ABS法、SRSS法、CQC法)
midas抗震设计-反应谱分析

北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
MIDAS GEN 钢筋混凝土框架结构抗震分析及设计

例题钢筋混凝土结构 抗震分析及设计1例题钢筋混凝土结构抗震分析及设计例题. 钢筋混凝土结构抗震分析及设计 概要本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料和截面3.利用建模助手建立梁框架4.建立框架柱及剪力墙5.楼层复制及生成层数据文件6.定义边界条件7.输入楼面及梁单元荷载8.输入反应谱分析数据9.定义结构类型10.定义质量11.运行分析12.荷载组合13.查看结果14.配筋设计2例题钢筋混凝土结构抗震分析及设计1.简要本例题介绍使用MIDAS/Gen 的反应谱分析功能来进行抗震设计的方法。
(该例题数据仅供参考)例题模型为六层钢筋混凝土框-剪结构。
基本数据如下:¾轴网尺寸:见平面图¾主梁: 250x450,250x500¾次梁: 250x400¾连梁: 250x1000¾混凝土: C30¾剪力墙: 250¾层高:一层:4.5m 二~六层:3.0m¾设防烈度:7º(0.10g)¾场地:Ⅱ类3例题 钢筋混凝土结构抗震分析及设计2.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1:主菜单选择 文件>新项目文件>保存: 输入文件名并保存 2:主菜单选择 工具>单位体系: 长度 m, 力kN注:也可以通过程序右下角随时更改单位。
定义单位体系3:主菜单选择 模型>材料和截面特性>材料:添加:定义C30混凝土材料号:1 名称:C30 规范:GB(RC) 混凝土:C30 材料类型:各向同性定义材料4例题钢筋混凝土结构抗震分析及设计4:主菜单选择模型>材料和截面特性>截面:添加:定义梁、柱截面尺寸定义梁、柱截面5:主菜单选择模型>材料和截面特性>厚度:添加:定义剪力墙厚度定义剪力墙厚度5例题 钢筋混凝土结构抗震分析及设计3.用建模助手建立模型1:主菜单选择 模型>结构建模助手>框架:输入:添加x 坐标,距离5,重复2;距离3.9,重复2;距离4.3,重复2; 添加z 坐标,距离5,重复3;编辑: Beta 角,90度;材料,C30;截面,250x450;生成框架; 插入:插入点,0,0,0;Alpha ,-90。
midasBuilding建筑抗震性能化设计[详细]
![midasBuilding建筑抗震性能化设计[详细]](https://img.taocdn.com/s3/m/fe07ab474693daef5ff73d64.png)
关键构件:其失效可能引起结构的连续破坏或危及生命安全的严重破坏的构件
• 底部加强部位的重要竖向构件(底部加强区剪力墙、框架柱) • 水平转换构件及与其相连竖向支承构件(转换梁、框支柱) • 大跨连体结构的连接体及与其相连的的竖向支承构件 • 大悬挑结构的主要悬挑构件 • 加强层伸臂和周边环带结构的竖向支承构件 • 承托上部多个楼层框架柱的腰桁架 • 长短柱在同一楼层且数量相当时该层各个长短柱 • 扭转变形很大部位的竖向(斜向)构件 • 重要的斜撑构件;
midas Building 建筑抗震性能化设计
北京迈达斯技术有限公司
技术中心
侯晓武
ontents
1 什么是性能设计 2 性能设计的发展
3 规范中的性能设计
4
midas Building中性能 设计实现方法
第一节
什么是 性能设计?
1 什么是性能设计?
Part
常规抗震设计方法 “三水准,两阶段”
普通竖向构件 弯矩
常规设计
剪力 常规设计
轴力 常规设计
耗能构件 弯矩
常规设计
3.11.3-1
3.11.3-1
3.11.3-1
3.11.3-1
3.11.3-1 常规设计
3.11.3-1 常规设计
3.11.3-2 常规设计
3.11.3-2 常规设计
3.11.3-1 3.11.3-2 常规设计 3.11.3-2 3.11.3-3(a) 常规设计 3.11.3-3(a) 3.11.3-3(a)
3 规范中的性能设计
Part
高规3.11.3条中对各种构件的各内力成分给出了计算公式(见下表)。
性能 目标 目标A 目标B 目标C 目标D
地震作用
MIDASCivil桥梁抗震分析与设计

动力平衡方程的解法
3、数值方法
可适用于线性和非线性领域 中心差分法 、常加速度法、线性加速度法
Newmark- 法 、Wilson- 法
不同参数对应的逐步积分法
特征值问题
当没有外荷载和阻尼时,n个自由度体系的运动方程
特征值问题 : 固有圆频率
模态向量
振型分析的原理
n个自由度体系的n个自振频率和模态向量:
表3.1.2-1 各类公路桥梁抗震措施等级
地震基
6
7
8
9
本烈度
桥梁分类
0.05 0.1 0.15 0.2 0.3 0.4
A
8
9
9
更高,专门研究
B
7
8
8
9
9 >=9
C
6
7
7
8
8
9
D
6
7
7
8
8
9
桥梁抗震设防标准
多遇地震烈度(地震影响E1):50年内超越概率为63%的地震烈度(=I-1.55) 设计地震烈度(地震影响E2) :50年内超越概率为10%的地震烈度(=I) 罕遇地震烈度:50年内超越概率为2~3%的地震烈度(=I+1)
u 2 nu n2u 0
临界阻尼?
惯性力
惯性力
mu(t) cu(t) ku(t) mug (t)
达朗贝尔原理 (D’ Alembert’s Principle)
p(t)-fS -fD = mu
牛顿第二定律
静止/匀速运动
加速度运动
动力平衡方程的解法
mu cu ku mug
1、经典解法
总则1.0.5条:铁路工程应按多遇地震、设计地震、罕遇 地震三个地震动水准进行抗震设计。
基于Midas的桥梁不同抗震分析计算方法的对比研究

交通与土木工程河南科技Henan Science and Technology总第805期第11期2023年6月收稿日期:2022-08-31基金项目:弯梁外倾式异形拱桥关键技术研究及应用(ZJZYJZSJY-2021-1)。
作者简介:王麒(1988—),男,硕士,工程师,研究方向:桥梁设计和现代桥梁设计理论研究;于建立(1995—),男,硕士,工程师,研究方向:桥涵设计;郑亚林(1989—),男,本科,工程师,研究方向:桥涵设计。
基于Midas 的桥梁不同抗震分析计算方法的对比研究王麒于建立郑亚林(中国建筑第七工程局有限公司,河南郑州450000)摘要:【目的】桥梁是地震后救援的生命线,必须保证其抗震性能,桥梁的抗震设计和研究是桥梁设计工作中非常重要的一环。
【方法】目前,桥梁抗震设计常用的方法有反应谱法和时程分析法,本研究结合实际工程,采用Midas Civil 软件,分别通过反应谱法和时程分析法对桥梁结构进行地震作用计算,并对计算结果进行对比分析。
【结果】反应谱法和时程分析法会得到相似的弯矩分布和位移形式。
【结论】采用时程分析法时地震波的选取至关重要,会直接影响计算结果,工程技术人员应尤其注意。
关键词:桥梁抗震;反应谱法;时程分析法;Midas Civil 中图分类号:U442.55文献标志码:A文章编号:1003-5168(2023)11-0078-04DOI :10.19968/ki.hnkj.1003-5168.2023.11.016Comparative Study on Different Seismic Analysis and CalculationMethods of Bridges Based on MidasWANG Qi YU Jianli ZHENG Yalin(China Construction Seventh Engineering Division Co.,Ltd.,Zhengzhou 450000,China )Abstract :[Purposes ]Bridge is the lifeline of post-earthquake rescue,and its seismic performance must be guaranteed.Therefore,the seismic design and research of bridge is a very important part of bridge design.[Methods ]The commonly used methods for seismic design of bridges are response spectrum method and timehistory analysis method.In this study,Midas Civil software was used to calculate the seismic action of bridge structure by response spectrum method and time history analysis method,and the calculation results were compared and analyzed.[Findings ]Similar bending moment distribution and displacement form can be ob⁃tained by response spectrum and time history analysis.[Conclusions ]The selection of seismic waves is very important when using time history analysis method,which will directly affect the calculation results,and engi⁃neers and technicians should pay special attention to it.Keywords :bridge seismic;response spectrum method;time history analysis method;Midas Civil0引言地震会给人类带来巨大的灾难,桥梁作为交通生命线,如果在地震中遭到破坏会给救灾工作带来巨大困难,加重次生灾害,造成巨大的经济损失,因此桥梁抗震设计是桥梁建造中的重要一环[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥梁抗震分析与设计北京迈达斯技术有限公司2007年8月前言为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。
新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。
从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。
从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。
随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。
Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。
目录一桥梁抗震分析与设计注意事项 (1)1. 动力分析模型刚度的模拟 (1)2. 动力分析模型质量的模拟 (1)3. 动力分析模型阻尼的模拟 (1)4. 动力分析模型边界的模拟 (2)5.特征值分析方法 (2)6.反应谱的概念 (3)7.反应谱荷载工况的定义 (4)8.反应谱分析振型组合的方法 (4)9.选取地震加速度时程曲线 (5)10.时程分析的计算方法 (5)二桥梁抗震分析与设计例题 (7)1. 概要 (7)2. 输入质量 (8)3. 输入反应谱数据 (10)4. 特征值分析 (12)5. 查看振型分析与反应谱分析结果 (13)6. 输入时程分析数据 (18)7. 查看时程分析结果 (20)8. 抗震设计 (22)一 桥梁抗震分析与设计注意事项1.动力分析模型刚度的模拟建立桥梁动力分析模型时,结构类型需要采用3D ,主梁、桥墩、支座(边界连接)都需要模拟出来。
【命令】模型>结构类型>结构类型(3D)2.动力分析模型质量的模拟动力分析模型质量的模拟方法:(1)一致质量矩阵;(2)集中质量矩阵。
一致质量矩阵的质量按实际分布情况考虑的,集中质量矩阵假定单元的质量集中在节点上,这样得到的质量矩阵是对角阵。
一般情况下两者给出的结果相差不多,因为质量矩阵积分表达式的被积函数是插值函数本身的平方项,而刚度矩阵是插值函数导数的平方项,因此在相同精度要求条件下,质量矩阵可用较低阶插值函数,而集中质量矩阵正是这样一种替换方案。
集中质量矩阵还可以减少方程自由度,另外一致质量矩阵求出的是结构自振频率的上限。
【命令】模型>结构类型>将结构的自重转换为质量>不转换>按集中质量法转换>转换到X 、Y 、Z >按一致质量法转换3.动力分析模型阻尼的模拟程序中目前提供三种阻尼的计算方法:(1)直接输入各振型阻尼。
直接输入各振型的阻尼,所有振型也可以采用相同的阻尼。
混凝土结构阻尼比一般取0.05,钢结构一般取0.03。
(2)质量和刚度因子法(一般称为瑞利阻尼),非线性分析时会采用瑞利阻尼。
][][][10K a M a C ∗+∗=,程序中可直接输入和,也可以通过输入两阶振型的阻尼比来计算和,计算公式如下:0a 1a 0a 1a 01n n n a a 22ωζω=+ (1-1) 工程上一般在确定和时使用的阻尼比相等,但要注意的是两阶自振频率的取值。
0a 1a确定瑞利阻尼的原则是:选择的用于确定常数和的两阶自振频率要覆盖结构分析中感兴趣的频段。
感兴趣的频段的确定要根据作用于结构上的外荷载的频率成分和结构的动力特性综合考虑。
在频段[0a 1a i ω,j ω]内,阻尼比略小于给定的阻尼比ζ(在、i j 点上i j ζζζ==),这样在该频段的结构反应将略大于实际的反应,这样的计算结果对工程设计而言是安全的,如果i ω和j ω选择的好,则可避免过大设计。
在频段[i ω,j ω]以外,阻尼比将迅速增大(瑞利阻尼的特点),这样频率成分的振动会被抑制,所以这部分是可以忽略的。
但是如果i ω和j ω选择的不合理,在频段[i ω,j ω]外有对结构设计有重要影响的频率分量时,则可能导致严重的不安全。
(3)应变能因子法。
根据用户在“材料和截面特性>组阻尼比”中指定的阻尼比计算各振型的阻尼比,大部分结构的阻尼矩阵会是一种非典型的阻尼,故无法分离各振型。
所以为了在进行动力分析时反映各单元不同的阻尼特性,使用变形能量的概念来计算各振型的阻尼比。
【命令】荷载>反应谱分析数据>反应谱荷载工况>适用阻尼计算方法>阻尼比计算方法>振型>质量和刚度因子 >应变能因子荷载>时程分析数据>时程荷载工况>阻尼>阻尼计算方法>振型阻尼 >质量和刚度因子 >应变能因子模型>材料和截面特性>组阻尼比4. 动力分析模型边界的模拟板式橡胶支座可以用线性弹簧连接单元模拟,活动盆式支座可以用摩擦摆隔震装置来模拟。
【命令】模型>边界条件>弹性连接 模型>边界条件>一般连接特性值>特性值类型>摩擦摆隔震装置5. 特征值分析方法程序目前提供三种特征值分析方法:(1) 子空间迭代法;(2)Lanczos 方法;(3)Ritz 向量法。
子空间迭代法求出结构的前r 阶振型,而Ritz 向量直接叠加法求出的是和激发荷载向量直接相关的振型。
因此用振型分解反应谱法和振型叠加法进行结构动力分析时,一般建议采用Ritz 向量法进行结构的振型分析。
如果分析后振型参与质量达不到《建筑抗震设计规范》(GB 50011-2001)所规定的90%,则需适当增加频率数量重新进行分析。
【命令】分析>特征值分析控制6. 反应谱的概念所谓的“反应谱”就是单自由度弹性体系在给定的地震作用下,某个最大反应量(位移、速度、加速度)与体系自振周期T 的分关系曲线。
将一个地震波时程曲线输入一个单自由度体系,得到一个结构反应(位移、速度、加速度)的时程,取绝对值最大值,就得到反应谱上的一个点。
据同一场地上所得到的强震时地面运动加速度记录xg &&别计算出它的反应谱曲线,然后将这些谱曲线进行统计分析,求出其中最有代表性的平均反应谱曲线作为设计依据,通常称这样的谱曲线为抗震设计反应谱。
《公路工程抗震设计规范》(JTJ 004-89)中给出动力放大系数)(t β谱maxmaxg g uu u &&&&&&+=β (1-2)《建筑抗震设计规范》(GB 50011-2001)中给出水平地震影响系数α谱maxmaxmaxg g g uu u guk &&&&&&&&+×==βα (1-3)地震系数是地面运动最大加速度k g x &&与重力加速度g 的比值,它反映该地区基本烈度的大小。
例如《公路工程抗震规范》(JTJ 004-89)中8度区水平地震系数,因为2.0=h K 25.2max =β,所以45.0max =α。
而《建筑抗震设计规范》(GB 50011-2001)中8度区的水平地震影响系数最大值多遇地震为0.16、罕遇地震为0.90。
由此可见,公路工程抗震规范中的β谱曲线是基本烈度(中震)水准上的反应谱曲线。
但是公路工程抗震规范中计算地震作用时还使用了综合影响系数,大约为1/3,所以使用z C βh z K C 计算的地震作用相当于小震作用。
如果在目前公路工程抗震规范下计算桥墩的中震或大震作用,可通过调整综合影响系数来计算。
可推荐用户在计算中震作用时取1.0,大震作用时取2.0。
z C z C z C 新公路桥梁抗震设计规范(征求意见稿)中给出的设计加速度反应谱如下:βA C C C S d s i = (1-4)式中,为重要性系数、为场地系数、为阻尼调整系数、A 为相应设计烈度的地震加速度峰值。
已经去除综合影响系数的说法。
i C s C d C z C 【命令】荷载>反应谱分析数据>反应谱函数7. 反应谱荷载工况的定义一般情况下,公路桥梁可只考虑水平地震作用,直线桥可分别考虑顺桥向X 和横桥向Y 的地震作用。
曲线桥应分别沿相邻桥墩连线方向和垂直于连线水平方向进行多方向地震输入,以确定最不利地震水平输入方向。
设防烈度为8度和9度时的拱式结构、长悬臂桥梁结构和大跨度结构,应同时考虑竖向地震作用。
【命令】荷载>反应谱分析数据>反应谱荷载工况8. 反应谱分析振型组合的方法 程序中目前提供四种计算方法: (1) 完整二次项组合法(CQC 法)∑∑===n i nj j i ijR R R 11max ,max ,max ρ(1-5)CQC 法用于振型密集型结构,如考虑平移—扭转耦连振动的线性结构系统。
(2)平方和开方法(SRSS 法)CQC 法中,自振频率相隔越远,则ij ρ值越小,当ij ρ近似为零时,∑==ni i R R 12max ,max (1-6) SRSS 法用于主要振型的周期均不相近的场合,如串联多自由度体系。
(3)ABS 法将各振型所产生的作用效应的绝对值求和,由于结构的各振型最大地震反应并不发生在同一时刻,因此该计算结果过于保守。
(4)线性法将各振型所产生的作用效应直接求和,该计算结果也过于保守。
【命令】荷载>反应谱分析数据>反应谱荷载工况>模态组合控制9. 选取地震加速度时程曲线《建筑抗震设计规范》(GB 50011-2001)的5.1.2条文说明中规定,正确选择输入的地震加速度时程曲线,要满足地震动三要素的要求,即频谱特性、有效峰值和持续时间均要符合规定。
频谱特性可用地震影响系数曲线表征,依据所处的场地类别和设计地震分组确定。
这句话的含义是选择的实际地震波所处场地的设计分组(震中距离、震级大小)和场地类别(场地条件)应与要分析的结构物所处场地的相同,简单的说两者的特征周期应接近或相同。
g T 加速度有效峰值按《建筑抗震设计规范》(GB 50011-2001)的表5.1.2-2中所列地震加速度最大值采用,即以地震影响系数最大值除以动力放大系数(约2.25)再乘以g 得到。
输入的地震加速度时程曲线的持续时间,不论实际的强震记录还是人工模拟波形,一般为结构基本周期的5~10倍。
《建筑抗震设计规范》(GB 50011-2001)的5.1.2条中规定,采用时程分析方法时,应按建筑场地类别和设计地震分组选用不少于二组的实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符。