数字电压表设计

合集下载

数字电压表的设计毕业论文

数字电压表的设计毕业论文

数字电压表的设计毕业论文数字电压表的设计摘要:本文主要介绍了数字电压表的设计。

首先介绍了数字电压表的基本原理和功能,然后详细讲解了数字电压表的硬件设计和软件设计。

硬件设计包括电路设计和元器件选择,软件设计包括程序设计和界面设计。

最后对数字电压表进行了实验验证,并总结了设计过程中的经验和教训。

1. 引言数字电压表是一种常用的电子测量仪器,广泛应用于工业控制、科研实验和电子维修等领域。

本文将介绍一种基于单片机的数字电压表的设计方案。

2. 基本原理和功能数字电压表的基本原理是通过采集电压信号并将其转换成数字信号,然后通过显示器显示出来。

数字电压表的功能包括测量电压值、显示电压值、单位切换、数据保存等。

3. 硬件设计3.1 电路设计数字电压表的电路设计主要包括信号采集电路、信号转换电路和显示电路。

信号采集电路负责将待测电压信号转换成电压信号,信号转换电路负责将电压信号转换成数字信号,显示电路负责将数字信号显示出来。

3.2 元器件选择在数字电压表的设计中,元器件的选择非常重要。

需要选择合适的电阻、电容、集成电路等元器件,以确保电路的稳定性和精确度。

4. 软件设计4.1 程序设计数字电压表的程序设计主要包括信号采集程序、信号转换程序和显示程序。

信号采集程序负责采集电压信号,信号转换程序负责将电压信号转换成数字信号,显示程序负责将数字信号显示出来。

4.2 界面设计数字电压表的界面设计主要包括显示界面和操作界面。

显示界面负责将数字信号以合适的格式显示出来,操作界面负责提供操作按钮和设置选项。

5. 实验验证为了验证数字电压表的设计方案的准确性和可靠性,进行了一系列实验。

实验结果表明,设计方案能够准确测量电压值并显示出来。

6. 经验总结在数字电压表的设计过程中,我们遇到了一些问题和挑战。

通过实践和总结,我们得出了一些经验和教训。

例如,在硬件设计中,需要注意电路的稳定性和精确度;在软件设计中,需要考虑程序的效率和界面的友好性。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。

传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。

数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。

本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。

二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。

(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。

2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。

3、显示模块:用于实时显示测量的电压值。

三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。

(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。

(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。

四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。

(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。

然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。

最后将电压值发送到 LCD1602 进行显示。

(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。

数字电压表的课程设计

数字电压表的课程设计

数字电压表的课程设计一、课程目标知识目标:1. 理解数字电压表的工作原理,掌握其基本组成部分及功能;2. 学会使用数字电压表进行电压测量,并能正确读取测量数据;3. 了解数字电压表在电子测量领域中的应用。

技能目标:1. 能够正确连接和操作数字电压表,进行电压测量;2. 培养学生观察、分析、解决问题的能力,通过实践操作,提高动手能力;3. 学会对测量数据进行处理,具备初步的数据分析能力。

情感态度价值观目标:1. 培养学生对电子测量的兴趣,激发学习热情;2. 培养学生的合作精神,学会在团队中共同完成任务;3. 增强学生的安全意识,遵守实验室操作规程,爱护实验设备。

分析课程性质、学生特点和教学要求,本课程将目标分解为以下具体学习成果:1. 学生能够明确数字电压表的工作原理,掌握其使用方法;2. 学生能够独立完成电压测量实验,正确读取测量数据,并进行简单的数据处理;3. 学生在课程学习中,表现出积极的合作态度和良好的安全意识,对电子测量产生浓厚兴趣。

二、教学内容根据课程目标,本章节教学内容主要包括以下三个方面:1. 数字电压表基本原理与组成- 电压表的定义及分类- 数字电压表的工作原理- 数字电压表的组成部分及功能2. 数字电压表的使用方法与操作- 数字电压表的选择与连接- 电压测量方法与步骤- 测量数据的读取与处理3. 数字电压表的应用与实践- 数字电压表在电子测量中的应用案例- 实验操作:电压测量实践- 数据分析:处理测量数据,探讨实验现象教学大纲安排如下:1. 引入数字电压表的概念,介绍其工作原理及分类(第1课时)2. 讲解数字电压表的组成部分及功能,进行实物展示(第2课时)3. 指导学生掌握数字电压表的使用方法,进行实践操作(第3-4课时)4. 课堂讨论:数字电压表在电子测量中的应用,分析实验数据(第5课时)教学内容关联教材章节:1. 数字电压表基本原理与组成:教材第X章2. 数字电压表的使用方法与操作:教材第X章3. 数字电压表的应用与实践:教材第X章三、教学方法针对数字电压表的教学内容,选择以下多样化的教学方法,以激发学生的学习兴趣和主动性:1. 讲授法:- 对数字电压表的基本原理、组成部分和功能进行系统讲解,结合教材第X章内容,通过PPT展示,使学生建立完整的理论知识框架。

数字电压表的设计

数字电压表的设计

目录一、设计方案 (2)(一)、设计要求 (2)(二)、设计方案 (2)1、由数字电路及芯片构建 (2)2、由单片机系统及A/D转换芯片构建 (2)(三)、系统设计的组成框图 (3)二、单元电路器件的选择 (3)(一)、单片机AT89C51 (3)(二)、A/D芯片的选择 (5)(三)、LED显示器件简介 (6)三、硬件电路系统的设计 (7)(一)、硬件电路系统的接口设计 (7)1、 AT89C51单片机和数码管显示电路的接口设计 (7)2、 A/D转换电路的接口设计 (7)(二)、硬件电路系统模块的设计 (7)1、单片机系统 (7)2、时钟电路 (8)3、复位电路 (8)4、显示电路设计 (9)(三)、总电路图 (10)四、系统软件程序的设计 (10)五、系统调试 (13)六、心得体会 (15)参考文献: (15)数字电压表的设计(电子信息工程技术专业电信09(1)班,xxx)摘要:设计采用AT89C51单片机、A/D转换器ADC0808和共阳极数码管为主要硬件,分析了数字压表Proteus软件仿真电路设计及编程方法。

将单片机应用于测量技术中,采用ADC0808将模拟信号转化为数字信号,用AT89C51实现数据的处理,通过数码管以扫描的方式完成显示。

设计的数字电压表可以测量0~5 V的电压值,AT89C51为8位单片机,当ADC0808的输入电压为5 V时,输出数字量值为+4.99 V。

本设计电路简单、成本低、性能稳定。

关键字:AT89C51单片机;A/D转换器ADC0808;数字电压表;Proteus仿真软件一、设计方案(一)、设计要求利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的电压值转换成数字量信号,以两位数码管显示,并通过虚拟电压表观察ADC0808模拟量输入信号的电压值,LED数码管实时显示相应的数值量。

(二)、设计方案设计数字电压表有多种的设计方法,方案是多种多样的,由于大规模集成电路数字芯片的高速发展,各种数字芯片品种多样,导致对模拟数据的采集部分的不一致性,进而又使对数据的处理及显示的方式的多样性。

数字电压表的设计方案

数字电压表的设计方案

数字电压表的设计方案1. 引言数字电压表(Digital Voltmeter,简称DVM)是一种能够直接显示电压值的测量仪器。

它与传统的模拟电压表相比,具有精确度高、稳定性好、便于读取等优势。

本文将介绍一种基于集成电路的数字电压表的设计方案。

2. 设计原理数字电压表的设计基于模数转换技术,通过将输入的模拟电压信号转换为数字形式,并经过一系列处理后显示在数码管上。

通常的设计流程包括采样、量化、编码和显示四个步骤。

2.1 采样采样是将连续的模拟信号转换为离散的数字信号的过程。

在数字电压表中,采样过程通过使用一个模拟-数字转换器(ADC)来完成。

常见的ADC电路有逐次逼近型和闩锁型等,根据需求选择合适的ADC器件。

2.2 量化量化是将采样得到的模拟信号分为若干个不同电平的过程。

量化过程中,转换器将模拟信号映射到一个有限数量的离散值,通常为二进制数。

量化级别的选择会影响数字电压表的精度和分辨率。

2.3 编码编码是将量化后的模拟信号转换为与数码管对应的数字形式的过程。

常用的编码方式有二进制编码、格雷码等。

编码器可以是硬件电路,也可以是通过程序实现的软件算法。

2.4 显示显示是将编码后的数字信号以可读的形式呈现出来的过程。

在数字电压表中,常用的显示器件是七段数码管。

数码管的控制可以通过驱动电路来实现,同时需要考虑亮度控制和多位数显示的问题。

3. 系统组成数字电压表的系统组成主要包括模拟前端、模数转换、显示部分等。

3.1 模拟前端模拟前端是将待测电压信号处理成可以输入到模数转换器的范围内。

模拟前端通常包括电阻分压器、跨导放大器、滤波器等模块,其目的是将输入信号的幅度范围缩放到ADC的输入电压范围内。

3.2 模数转换模数转换是将模拟电压信号转换为数字信号的过程。

在数字电压表中,常用的模数转换器有逐次逼近型和闩锁型。

模数转换器的选择要考虑精度、速度、功耗等因素。

3.3 显示部分显示部分是将数字信号以可读的形式显示出来。

数字电压表设计002

数字电压表设计002

接口技术学生姓名:学号:学院:专业: 电子科学与技术题目: 数字电压表设计指导教师:数字电压表的设计一、设计概念资料1.数字电压表基本概念数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统智能化测量领域,示出强大的生命力。

与此同时,由DVM 扩展而成各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2.数字电压表优缺点⑴显示清晰直观,读数准确,缩短读数和记录的时间。

新型数字电压表还增加了标志符显示功能,包括测量项目符号、单位符号和特殊符号。

⑵显示位数显示位数通常为3位~8位判定数字仪表的位数有两条原则:①能显示从0~9所有数字的位是整数值;②分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高位数字做分母。

⑶准确度高。

准确度愈高,测量误差愈小。

数字电压表的准确度远优于模拟式电压表。

⑷分辨率高。

从设计DVM的角度看,分辨力应受准确度的制约,并与之相适应。

⑸测量范围宽。

多量程DVM一般可测0~1000V直流电压,配上高压探头还可测量上万伏的高压。

(6扩展能力强。

在数字电压表的基础上、还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。

⑺测量速率快。

数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/秒”。

它主要取决于A/D 转换器的转换速率,其倒数是测量周期。

⑻输入阻抗高。

数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高1TΩ。

在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,减小由信号源内阻引起的测量误差。

EDA课程设计数字电压表的设计

EDA课程设计数字电压表的设计

数字电压表的技术挑战与展望
技术挑战:高精度、 高稳定性、高可靠 性
技术挑战:低功耗、 低噪声、低漂移
技术挑战:高集成 度、高灵活性、高 可扩展性
展望:未来数字电 压表将更加智能化 、自动化、网络化
THANKS
汇报人:
数据处理算法
采样算法:采用定时器进行周期性采样,获取电压信号 滤波算法:采用低通滤波器对采样数据进行滤波,去除噪声干扰 量化算法:采用ADC将滤波后的电压信号转换为数字信号 转换算法:采用DAC将数字信号转换为模拟信号,显示在显示屏上
Part Five
数字电压表的测试 与调试
测试环境与设备
测试设备:数字电压表、示 波器、万用表等
结束:程序结束,等待下一次启动
A/D转换程序流程图
初始化:设置A/D转换器参数,如采样 频率、分辨率等
启动A/D转换:启动A/D转换器,开始 采样
数据采集:读取A/D转换器的数据,并 存储到缓冲区
数据处理:对采集到的数据进行处理, 如滤波、放大等
数据输出:将处理后的数据输出到显示 设备,如LCD、LED等
数字电压表的软件 设计
主程序流程图
初始化:设置初始状态,如电压、电流、 频率等
数据采集:读取传感器数据,如电压、电 流、频率等
数据处理:对采集到的数据进行处理,如 滤波、放大、转换等
数据显示:将处理后的数据显示在屏幕上, 如电压、电流、频率等
控制输出:根据处理后的数据控制输出, 如控制继电器、报警器等
添加标题
启动测试:启动电源, 观察电压表显示值与 实际值是否一致,如 有误差,调整参数进 行校准
添加标题
记录测试数据:记录 电压表在不同负载、 不同电压下的显示值 和实际值,进行分析 和比较

简易数字电压表课程设计

简易数字电压表课程设计

简易数字电压表课程设计一、课程目标知识目标:1. 学生能够理解电压表的基本工作原理和电路连接方式;2. 学生能够掌握简易数字电压表的使用方法和读数技巧;3. 学生能够了解电压的单位换算,并能进行简单的计算。

技能目标:1. 学生能够正确连接电压表的电路,并进行电压测量;2. 学生能够通过操作简易数字电压表,准确读取电压值,并记录数据;3. 学生能够运用所学知识解决实际电路中的电压问题。

情感态度价值观目标:1. 培养学生对电子测量工具的兴趣,激发学习电子技术的热情;2. 培养学生严谨、细致的实验态度,注重实验操作的规范性和安全性;3. 培养学生团队合作精神,学会分享和交流实验过程中的心得体会。

课程性质分析:本课程为电子技术基础课程,以实验为主,结合理论教学。

简易数字电压表是电子测量工具的基础,通过本课程的学习,使学生掌握基本的电压测量方法。

学生特点分析:学生为初中生,具备一定的物理知识和实验操作能力。

学生对电子技术感兴趣,但可能对电压表的使用方法和电路连接不够熟悉。

教学要求:1. 理论与实践相结合,注重实验操作技能的培养;2. 注重启发式教学,引导学生主动探究和解决问题;3. 关注学生的个体差异,提供个性化指导,确保每个学生都能达到课程目标。

二、教学内容1. 电压表基本原理:讲解电压表的工作原理,包括磁电式电压表和数字电压表的区别与联系,重点介绍数字电压表的原理和特点。

教材章节:第二章第二节《电压表的原理与使用》2. 电压表的使用方法:详细讲解电压表的电路连接方法,操作步骤,读数技巧以及注意事项。

教材章节:第二章第三节《电压表的使用与维护》3. 电压单位换算:介绍电压的单位制,换算关系,并进行实际计算。

教材章节:第一章第四节《电学单位制》4. 实际电路电压测量:设计实际电路,指导学生运用电压表进行电压测量,分析测量结果。

教材章节:第二章第四节《电压测量》5. 数字电压表操作练习:安排学生进行数字电压表的实操练习,巩固所学知识,提高操作技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《单片机课程设计》设计报告设计题目:姓名:设计时间:2010-12-28备注:目录1.引言 (2)2.概述··22.1实验要求 (2)2.2实验目的 (2)2.3 实验器材 (2)3.总体设计方案 (3)3.1系统的总体结构 (3)3.2芯片的选择 (4)3.3 ADC0809 的主要性能指标 (4)4.硬件电路设计 (6)4.1 AT89S52 单片机最小系统 (6)4.2 ADC0809 与AT89S52 单片机接口电路设计 (6)4.3显示电路与AT89S52 单片机接口电路设计 (6)5.软件设计 (7)5.1 主程序图 (7)5.2 ADC0809 电压采集程序框图 (8)5.3显示程序框图 (9)6.调试与测量结果分析 (10)6.1实验系统连线图 (11)6.2程序调试 (12)6.3 仿真结果 (13)6.4 实验结果分析 (14)7.程序清单和系统原理图 (15)7.1程序清单 (15)7.2 系统原理图 (16)8.实验总结和实验收获 (17)1.引言本次课程设计要求完成是数字电压表的设计,随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。

本次课程设计我们小组xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx该电路设计新颖、功能强大、可扩展性强。

实验报告首先简要介绍了设计数字电压表的实验要求和目的;根据要求和目的设计出直流数字电压表的系统结构流程,以及硬件系统和软件系统的设计,并给出了硬件电路的设计细节,以及调试和仿真结果。

最后进行了实验和心得体会的总结。

通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。

2.概述2.1实验要求采用ADC0809 和AT89S52 单片机及显示电路完成0~5V 直流电压的检测2.2实验目的(1)进一步熟悉和掌握单片机的结构和工作原理;(2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法;(3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。

2.3 实验器材⑴主控CPU 部分⑵A/D 转换器件⑶数码管显示电路所涉及的器件单元的信号连接端口:IN0 , AOUT1,CS4,FF80H,JX0,JX6,8MHZ,T3.总体设计方案3.1系统的总体结构文字说明:(多路数字电压表的系统软件程序由主程序、A/D转换子程序和显示子程序组成。

)多路数字电压表的系统软件程序由主程序、A/D转换子程序和显示子程序组成。

主程序包含初始化部分、调用A/D转换子程序和调用显示程序,初始化部分包含存放通道数据缓冲区初始化和显示缓冲区初始化。

另外,对于单路显示和循环显示,系统设置了一个标志位00H控制。

初始化时00H位设置为0,默认为循环显示,当它为1时改变为单路显示。

00H位通过单路/循环按键控制。

A/D转换子程序用于对ADC0809的8路输入模拟电压进行A/D转换,并将转换的数值存入8个相应的存储单元中,如图1—4所示。

A/D转换子程序每隔一定时间调用一次,即隔一段时间对输入电压采样一次。

LED数码管采用软件译码动态扫描方式。

在显示子程序中包含多路循环显示和单路显示程序。

多路循环显示把8个存储单元的数值依次取出送到4位数码管上显示,每一路显示1秒。

单路显示程序只对当前选中的一路数据进行显示。

每路数据显示需经过转换变成十进制BCD码,放于4个数码管的显示缓冲区中。

单路显示或多路循环显示通过标志位00H控制。

在显示控制程序中加入了对单路或多路循环按键和通道选择按键的判断。

3.2芯片的选择1)AT89S52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。

使用Atmel公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。

AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32位I/O 口线,2个数据指针,三个16位定时器/计数器,5个中断优先级2层中断嵌套中断,全双工串行口,片内晶振及时钟电路。

另外,AT89S52可降至0Hz静态逻辑操作,支持2种软件,可选择节电模式。

空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。

掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。

2)ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

3)8255是Intel公司生产的可编程并行I/O接口芯片,有3个8位并行I/O口。

具有3个通道3种工作方式的可编程并行接口芯片(40引脚)。

其各口功能可由软件选择,使用灵活,通用性强。

8255可作为单片机与多种外设连接时的中间接口电路。

8255作为主机与外设的连接芯片,必须提供与主机相连的3个总线接口,即数据线、地址线、控制线接口。

同时必须具有与外设连接的接口A、B、C口。

由于8255可编程,所以必须具有逻辑控制部分,因而8255内部结构分为3个部分:与CPU连接部分、与外设连接部分、控制部分3.3ADC0809的主要性能指标1)8路输入通道,8位A/D转换器,即分辨率为8位。

2)具有转换起停控制端。

3)转换时间为100μs(时钟为640kHz时),130μs(时钟为500kHz时)4)单个+5V电源供电5)模拟输入电压范围0~+5V,不需零点和满刻度校准。

6)工作温度范围为-40~+85摄氏度7)低功耗,约15mW。

2.内部结构ADC0809是CMOS单片型逐次逼近式A/D转换器,内部结构如图13.22所示,它由8路模拟开关、地址锁存与译码器、比较器、8位开关树型A/D转换器、逐次逼近3.外部特性(引脚功能)ADC0809芯片有28条引脚,采用双列直插式封装,如图13.23所示。

下面说明各引脚功能。

IN0~IN7:8路模拟量输入端。

2-1~2-8:8位数字量输出端。

ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路ALE:地址锁存允许信号,输入,高电平有效。

START: A/D转换启动脉冲输入端,输入一个正脉冲(至少100ns宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D转换)。

EOC: A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平)。

OE:数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

CLK:时钟脉冲输入端。

要求时钟频率不高于640KHZ。

REF(+)、REF(-):基准电压。

Vcc:电源,单一+5V。

GND:地。

ADC0809的工作过程首先输入3位地址,并使ALE=1,将地址存入地址锁存器中。

此地址经译码选通8路模拟输入之一到比较器。

START上升沿将逐次逼近寄存器复位。

下降沿启动 A/D转换,之后EOC输出信号变低,指示转换正在进行。

直到A/D转换完成,EOC变为高电平,指示A/D转换结束,结果数据已存入锁存器,这个信号可用作中断申请。

当OE输入高电平时,输出三态门打开,转换结果的数字量输出到数据总线上。

转换数据的传送 A/D转换后得到的数据应及时传送给单片机进行处理。

数据传送的关键问题是如何确认A/D转换的完成,因为只有确认完成后,才能进行传送。

为此可采用下述三种方式。

(1)定时传送方式对于一种A/D转换其来说,转换时间作为一项技术指标是已知的和固定的。

例如ADC0809转换时间为128μs,相当于6MHz的MCS-51单片机共64个机器周期。

可据此设计一个延时子程序,A/D转换启动后即调用此子程序,延迟时间一到,转换肯定已经完成了,接着就可进行数据传送。

(2)查询方式A/D转换芯片由表明转换完成的状态信号,例如ADC0809的EOC端。

因此可以用查询方式,测试EOC的状态,即可确认转换是否完成,并接着进行数据传送。

(3)中断方式把表明转换完成的状态信号(EOC)作为中断请求信号,以中断方式进行数据传送。

不管使用上述那种方式,只要一旦确定转换完成,即可通过指令进行数据传送。

首先送出口地址并以信号有效时,OE信号即有效,把转换数据送上数据总线,供单片机接受。

4.硬件系统的设计4.1AT89S52 单片机最小系统51单片机最小系统电路介绍1.51单片机最小系统复位电路的极性电容C1的大小直接影响单片机的复位时间,一般采用10~30uF,51单片机最小系统容值越大需要的复位时间越短。

2.51单片机最小系统晶振Y1也可以采用6MHz或者11.0592MHz,在正常工作的情况下可以采用更高频率的晶振,51单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。

3.51单片机最小系统起振电容C2、C3一般采用15~33pF,并且电容离晶振越近越好,晶振离单片机越近越好4.P0口为开漏输出,作为输出口时需加上拉电阻,阻值一般为10k。

设置为定时器模式时,加1计数器是对内部机器周期计数(1个机器周期等于12个振荡周期,即计数频率为晶振频率的1/12)。

计数值N乘以机器周期Tcy就是定时时间t。

设置为计数器模式时,外部事件计数脉冲由T0或T1引脚输入到计数器。

在每个机器周期的S5P2期间采样T0、T1引脚电平。

当某周期采样到一高电平输入,而下一周期又采样到一低电平时,则计数器加1,更新的计数值在下一个机器周期的S3P1期间装入计数器。

由于检测一个从1到0的下降沿需要2个机器周期,因此要求被采样的电平至少要维持一个机器周期。

当晶振频率为12MHz时,最高计数频率不超过1/2MHz,即计数脉冲的周期要大于2 ms。

标识符号地址寄存器名称P3 0B0H I/O口3寄存器PCON 87H 电源控制及波特率选择寄存器SCON 98H 串行口控制寄存器SBUF 99H 串行数据缓冲寄存器TCON 88H 定时控制寄存器TMOD 89H 定时器方式选择寄存器TL0 8AH 定时器0低8位TH0 8CH 定时器0高8位TL1 8BH 定时器1低8位TH1 8DH 定时器1高8位4.2 ADC0809 与AT89S52 单片机接口电路设计在连接时,ADC0809的数据线D0—D7与AT89S52的P0口相连接,ADC0809的地址引脚、地址锁存端ALE、启动信号START、数据输出允许控制端OE分别与AT89S52的P2口相连接,转换结束信号EOC 与AT89S52的P3.2相连接。

相关文档
最新文档