乘法公式练习题(含答案)

合集下载

乘法公式(人教版)(含答案)

乘法公式(人教版)(含答案)

乘法公式(人教版)一、单选题(共10道,每道10分)1.下列各式中能够成立的是( )A. B.C. D.答案:D解题思路:∵∴A,B选项错误;∵∴C选项错误;互为相反数的两个数,平方一定相等,∴选项D正确,∴选D.试题难度:三颗星知识点:完全平方式2.下列各式中,正确的是( )A.B.C.D.答案:D解题思路:选项A:,错误;选项B:,错误;选项C:,错误;选项D:正确.故选D.试题难度:三颗星知识点:完全平方式3.若,则的值为( )A.12B.6C.3D.0答案:A解题思路:∵故选A.试题难度:三颗星知识点:完全平方式4.若,,则的值是( )A.4B.C. D.答案:C解题思路:∵,,∴,∴,联立,可得,故选C.试题难度:三颗星知识点:平方差公式的应用5.计算的结果是( )A.1B.-1C.2D.-2答案:A解题思路:故选A.试题难度:三颗星知识点:平方差公式的应用6.已知:,,则下列计算正确的是( )A. B.C. D.答案:C解题思路:∵,,∴,A选项错误;∴,B选项错误;∴,∴,C选项正确;,D选项错误. 综上,应选C.试题难度:三颗星知识点:完全平方公式知二求二问题7.若,,则的值为( )A.1B.C.2D.答案:B解题思路:∵将,代入得,,∴,∴,∴选B.试题难度:三颗星知识点:完全平方公式知二求二问题8.已知是完全平方式,则的值为( )A.3B.±3C.-6D.±6答案:D解题思路:,,即,∴,故选D.试题难度:三颗星知识点:完全平方公式9.若实数满足,则等于( )A.-1B.0C. D.1答案:B解题思路:∵,∴,∴,又∵,∴,故选B.试题难度:三颗星知识点:完全平方公式10.若,,其中,则,的大小的关系是( )A. B.C. D.不能确定答案:A解题思路:∵∴∴,∴.故选A.试题难度:三颗星知识点:完全平方式的应用。

乘法公式练习含答案

乘法公式练习含答案
2x
4.
2
2 2
6.(—m n+2)(—m n—2).
2
8.(3mn—5ab).
10.(—3x2+5y)2.
12.(y—3)2—2(y+2)(y—2).
1.应用公式计算:(1)103 97;(2)1.02 0.98;
2.当x=1,y=2时,求(2x—y)(2x+y)—(x+2y)(2y—x)的值.
12 2
3.用适当方法计算:(1)(40^);⑵299.
4.若a+b=17,ab=60,求(a—b)2和a2+b2的值.
提升精练
一、填空题
a a
1
2.(—3x—5y)(—3x+5y)=.
3.在括号中填上适当的整式:
(1)(x+5)(
(3)(—1—3x)(_
)=x2—
)=
25;
(2)(m—n)(
)=n2—m2;
B、原式=(—7+a+b)[—7—(a+b)]=7+(a+b)
22
C、原式=[—(7—a—b)][—(7+a+b)]=7—(a+b)
D、原式=[—(7+a)+b][—(7+a)—b]=(7+a)2—b2
3.(a+3)(a2+9)(a—3)的计算结果是().
4444
A、a+81B、一a—81C、a—81D、81—a
乘法公式
巩固专练
一、填空题
1.直接写出结果:
(1)(x+2)(x—2)=;(2)(2x+5y)(2x—5y)=
22
(3)(x—ab)(x+ab)=;⑷(12+b )(b—12)=.

《乘法公式》习题精选

《乘法公式》习题精选

15.2乘法公式 习题精选一、选择题:1.下列式子能成立的是( )A .(a −b)2= a 2−ab+b2B .(a+3b)2= a 2+9b 2C .(a+b)2= a 2+2ab+b2 D .(x+3)(x −3) = x 2−x −92.下列多项式乘法中,可以用平方差公式计算的是( )A .( 2m −3n)(3n − 2m)B .(−5xy+4z)(−4z −5xy)C .(−21a −31b)( 31b+21a)D .(b+c −a)(a −b −c) 3.下列计算正确的是( ) A .( 2a+b)( 2a −b) = 2a 2−b 2B .(0.3x+0.2)(0.3x −0.2) = 0.9x 2−0.4C .(a 2+3b 3)(3b 3−a 2) = a 4−9b 6D .( 3a −bc)(−bc − 3a) = − 9a 2+b 2c 24.计算(−2y −x)2的结果是( ) A .x 2−4xy+4y2B .−x 2−4xy −4y2C .x 2+4xy+4y 2D .−x 2+4xy −4y 25.下列各式中,不能用平方差公式计算的是( )A .(−2b −5)(2b −5)B .(b 2+2x 2)(2x 2−b 2) C .(−1− 4a)(1− 4a) D .(−m 2n+2)(m 2n −2)6.下列各式中,能够成立的等式是( ) A .(x+y)2= x 2+y2B .(a −b)2 = (b −a)2C .(x −2y)2= x 2−2xy+y2D .(21a −b)2 =41a 2+ab+b 2二、解答题: 1.计算:(1)( 31x+32y 2)( 31x −32y 2);(2)(a+2b −c)(a −2b+c); (3)(m −2n)(m 2+4n 2)(m+2n); (4)(a+2b)( 3a −6b)(a 2+4b 2); (5)(m+3n)2(m −3n)2;(6)( 2a+3b)2−2( 2a+3b)(a −2b)+(−a+2b)2.2.利用乘法公式进行简便运算: ①20042; ②999.82;③(2+1)(22+1)(24+1)(28+1)(216+1)+1参考答案一选择题1. 答案:C说明:利用完全平方公式(a −b)2 = a 2−2ab+b 2,A 错;(a+3b)2 = a 2+ 2a(3b)+(3b)2 = a 2+6ab+9b 2,B 错;(a+b)2 = a 2+2ab+b 2,C 正确;利用平方差公式(x+3)(x −3) = x 2−9,D 错;所以答案为C .2. 答案:B说明:选项B ,(−5xy+4z)(−4z −5xy) = (−5xy+4z)(−5xy −4z),符合平方差公式的形式,可以用平方差公式计算;而选项A 、C 、D 中的多项式乘法都不符合平方差公式的形式,不能用平方差公式计算,所以答案为B .3. 答案:D说明:( 2a+b)( 2a −b) = ( 2a)2−b 2 = 4a 2−b 2,A 错;(0.3x+0.2)(0.3x −0.2) = (0.3x)2−0.22 = 0.09x 2−0.04,B 错;(a 2+3b 3)(3b 3−a 2) = (3b 3)2−(a 2)2 = 9b 6−a 4,C 错;( 3a −bc)(−bc − 3a) = (−bc)2−( 3a)2 = b 2c 2− 9a 2 = − 9a 2+b 2c 2,D 正确;所以答案为D .4. 答案:C说明:利用完全平方公式(−2y −x)2 = (−2y)2+2(−2y)(−x)+(−x)2 = 4y 2+4xy+x 2,所以答案为C .5. 答案:D说明:选项D ,两个多项式中−m 2n 与m 2n 互为相反数,2与−2也互为相反数,因此,不符合平方差公式的形式,不能用平方差公式计算,而其它三个选项中的多项式乘法都可以用平方差公式计算,答案为D .答案:B说明:利用完全平方公式(x+y)2 = x 2+2xy+y 2,A 错;(x −2y)2 = x 2−2x(2y)+(2y)2 = x 2−4xy+4y 2,C 错;(21a −b)2 =(21a)2−2(21a)b+b 2 =41a 2−ab+b 2,D 错;只有B 中的式子是成立的,答案为B .二、解答题1. 解:(1)(31x+32y 2)(31x −32y 2) = (31x)2−(32y 2)2 =91x 2−94y 4.(2) (a+2b −c)(a −2b+c)= [a+(2b −c)][a −(2b −c)]= a2−(2b−c)2= a2−(4b2−4bc+c2)= a2−4b2+4bc−c2(3)(m−2n)(m2+4n2)(m+2n)= (m−2n)(m+2n)(m2+4n2)= (m2−4n2)(m2+4n2)= m4−16n4(4)(a+2b)( 3a−6b)(a2+4b2)= (a+2b)•3•(a−2b)(a2+4b2)= 3(a2−4b2)(a2+4b2)= 3(a4−16b4)= 3a4−48b4(5) 解1:(m+3n)2(m−3n)2= (m2+6mn+9n2)(m2−6mn+9n2)= [(m2+9n2)+6mn][(m2+9n2)−6mn] = (m2+9n2)2−(6mn)2= m4+ 18m2n2+81n4− 36m2n2= m4− 18m2n2+81n4解2:(m+3n)2(m−3n)2= [(m+3n)(m−3n)]2= [m2−(3n)2]2= (m2−9n2)2= m4− 18m2n2+81n4(6)解1:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2= 4a2+12ab+9b2−2( 2a2+3ab−4ab−6b2)+a2−4ab+4b2 = 4a2+12ab+9b2− 4a2−6ab+8ab+12b2+a2−4ab+4b2= a2+10ab+25b2解2:( 2a+3b)2−2( 2a+3b)(a−2b)+(−a+2b)2= ( 2a+3b)2−2( 2a+3b)(a−2b)+(a−2b)2= [( 2a+3b)−(a−2b)]2= (a+5b)2= a2+10ab+25b22. 解:①20042= (2000+4)2= 20002+2•2000•4+42= 4000000+16000+16= 4016016②999.82= (1000−0.2)2= (1000)2−2×1000×0.2+(0.2)2= 1000000−400+0.04= 999600.04③(2+1)(22+1)(24+1)(28+1)(216+1)+1= (2−1)(2+1)(22+1)(24+1)(28+1)(216+1)+1= (22−1)(22+1)(24+1)(28+1)(216+1)+1= (24−1)(24+1)(28+1)(216+1)+1= (28−1)(28+1)(216+1)+1 = (216−1)(216+1)+1= 232−1+1= 232.。

整式乘法公式练习题附答案

整式乘法公式练习题附答案

1、(﹣2m﹣1)2;2、(a+b+3)(a+b-3)3、计算4、(x-2y+3)(x+2y+3)5、计算:6、运用整式乘法公式计算:.7、(a+b-c)(a-b+c)8、因式分解:;9、的值是()A. B. C. D.10、只要a、b为实数,的值总是()A.正数B.负数C.非负数D.非正数11、计算的结果是:()A.B.C.D.12、已知,,则与的值分别是()A.4,1B.2,C.5,1D.10,13、不论为什么实数,代数式的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数14、若9x2+mxy+16y2是一个完全平方式,则m的值为()A.24B.﹣12C.±12D.±2415、若,,则的值为A、15B、90C、100D、11016、如图,两个正方形的边长分别为和,如果,,那么阴影部分的面积是()A. B.C. D.17、下列多项式乘法中,能用平方差计算的是()A. B.C. D.18、下列各式中与2nm﹣m2﹣n2相等的是()A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 19、若a+b=0,ab=11,则a2-ab+b2的值为()A.11B.-11C.-33D.3320、若x2+mx+1是完全平方式,则m=()。

A2B-2C±2D±421、已知,求:①②xy的值.22、已知a+b=2,ab=-1,求(1)5a2+5b2,(2)(a-b)2的值.23、已知,求的值.24、已知,,,求代数式的值。

25、已知,求代数式的值。

26、已知:=2,请分别求出下列式子的值(1);(2)27、已知x2+x-1=0,求x3+2x2+3的值.28、探索题:先填空,再解答,解答需要写出恰当的过程.……①运用以上方法求:的值;②运用以上方法求:的个位数字是多少?29、计算:19902-19892+19882-19872+…+22-1.30、已知,,则___________.31、已知实数x满足x+=3,则x2+的值为_________.32、若,,则=,=。

乘法公式练习题及答案

乘法公式练习题及答案

乘法公式练习题及答案1.下列各式中,相等关系一定成立的是A.2=2B.=x2-6C.2=x2+y2D.6+x=2.下列运算正确的是A.x2+x2=2xB.a2·a3= a5C.4=16x6D.=x2-3y23.下列计算正确的是232A.·=-8x-12x-4xB.=x3+y3C.=1-16a2D.2=x2-2xy+4y24.的计算结果是A.x4+1B.-x4-1C.x4-1D.16-x45.19922-1991×1993的计算结果是A.1B.-1C.D.-26.对于任意的整数n,能整除代数式-的整数是A.B.C.D.27.=1-25a2, =4x2-9,=4a4-25b28.99×101== .9.=[z+][ ]=z2-2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.2=2+ ,a2+b2=[2+2], a2+b2=2+,a2+b2=2+ .12.计算.2-2;2-2;2-+2;1.23452+0.76552+2.469×0.7655;-2;+y413.已知m2+n2-6m+10n+34=0,求m+n的值11114.已知a+=4,求a2+2和a4+4的值. aaa15.已知2=654481,求的值.16.解不等式2+2>13.17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.如果=63,求a+b的值.19.已知2=60,2=80,求a2+b2及ab的值.yyy20.化简+++…+,并求当x=2,y=9时1?22?38?9 的值.21.若f=2x-1=2×-1,f=2×3-1),求f?ff0200322.观察下面各式:12+2+22=222+2+32=232+2+42=2……写出第2005个式子;写出第n个式子,并说明你的结论.参考答案1.A2.B3.C4.C5.A6.C7.1-5a x+ -2a2+5b18.100-1 100+199.x-y z- x-y 10.±10 11.4ab -ab22ab12.原式=8mn;原式=-30xy+15y;原式=-8x2+99y2;提示:原式=1.23452+2×1.2345×0.7655+0.76552=2=22= 原式=-xy-3y2;原式=x413.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴+=0,22即+=0,由平方的非负性可知,?m?3?0,?m?3, ∴ ∴m+n=3+=-2. n??5.?n?5?0,14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴2=42. aa111∴a2+2a·+2=16,即a2+2+2=16. aaa11∴a2+2=14.同理a4+4=194. aa15.提示:应用整体的数学思想方法,把看作一个整体. ∵2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴=+48×68=654481-582+48×68=654481-582+=654481-582+582-102=654481-100=654381.316.x<17.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=1=[++]七年级数学乘法公式专项练习题一、精心选一选1.下列多项式的乘法中能用平方差公式计算的是A.B.C.D.2.下列等式成立的是A.?4x4?yB.2?4x2?9y2C.??36m2?25D.?m4?4n23.等式?16b4?9a4中,括号内应填入的是A.3a2?4bB.4b2?3aC.?3a2?4bD.a2?4b24.若a2?b2?20,且a?b??4,则a?b的值是A.?B.4C.?5D.55.式子2?2是由两个整式相乘得到的,那么其中的一个整式可能是A.?3B.3C.?11D.117.计算2?2的结果是A.82B.8C.8b2?8aD.8a2?8b28.已知2?13,2?5,则mn的值是A.2B.C.D.二、细心填一填9.?____________.10.?_________.11.a??___________.12.设20082?A,则2007?2009?_________.13.22?__________.14.若4x2?12x?m是关于x的一个完全平方式,则m?_____.第 1 页共页)15.一个正方形的边长是a?12b,则它的面积是______________.16.?_______________.三、耐心做一做17.计算:.18.求值:19. 已知p?q??5,pq?6,求下列各式的值.p2q?pq2; p2?q2.20. 已知甲数为2a,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求这三个数的积,并求当a??2.5时的积.21. 某农场为了鼓励学生集体到农场去参加劳动,许诺学生到农场劳动后,每人将得到与参加劳动人数数量相等的苹果,第一天去农场参加劳动的学生有a人,第二天有b人,第三天有人,第四天有人.请你求出这四天农场共送出多少个苹果?共页第页1112?,其中a?,b?3.33322. 阅读下列材料,解答下列问题.利用完全平方公式把一个式子或一个式子的一部分改写为完全平方式或几个完全平方式的和的形式,这种方法叫做配方法.如a2?2ab?b2?2;x2?4x??x2?4x?43??3; (2)请你给下列两个式子配方:x2?10x?24;9a2?12a?15.七年级数学乘法公式专项练习题参考答案一、1~4. BCAC;~8. DACA.二、9.9?4a2;10.16m2?49; 11.16?2a;12.A2?1;13.p4?8p2?16; 14.9;15.a?ab?214b; 16.x?4y?9z?6xz.22242222三、17.原式a?16.18.原式?19??22892b.当a?223,b?3时,原式?89?3?8. 19.原式?pq?630;原式??2pq??2?6?13.20.由题意,得乙数为4a?3,丙数为4a?3,故这三个数的积是2a2332a?32a?18a.当a??2.5时,原式?32??18455.21.这四天农场共送出的苹果数:a?ba?b?a?2ab ?b?a?4ab?4b?3a?6ab?6b. 2222222222222.x?10x?24?x?10x?25?1??1;9a?12a?15??2?3a?2?2?2?15??11.共页第页222222221. 填空=b2-a2; =a2-4b2;;;;;.计算:;;; 10199.3.计算:4.已知5.先化简,再求值:,,,求:的值。

(完整版)乘法公式练习含答案

(完整版)乘法公式练习含答案

乘法公式牢固专练一、填空题1.直接写出结果:(1)(x + 2)(x - 2)= _______;(2)(2x +5y)(2x - 5y)= ______;(3)(x - ab)(x+ ab)= _______;(4)(12+ b2)(b2- 12)= ______.2.直接写出结果:(1)(x + 5)2= _______; (2)(3m +2n)2= _______;(3)(x - 3y) 2= _______; (4) (2a b)2=_______;3(5)(- x+ y)2= ______; (6)( - x- y)2= ______.3.先观察、再计算:(1)(x + y)(x - y)= ______;(2)(y + x)(x - y)=______;(3)(y - x)(y + x)= ______;(4)(x + y)(- y+ x)= ______;(5)(x - y)(- x- y)=______ ;(6)( - x-y)(- x+ y)= ______.4.若 9x2+4y2= (3x + 2y) 2+ M ,则 M = ______.二、选择题1.以下各多项式相乘,能够用平方差公式的有().①(- 2ab+ 5x)(5x + 2ab) ②(ax-y)( - ax- y)③(- ab- c)(ab- c) ④ (m +n)( - m- n)(A)4 个(B)3 个(C)2 个(D)1 个2.若 x+ y= 6,x- y= 5,则 x2- y2等于 ( ).(A)11 (B)15 (C)30 (D)60 3.以下计算正确的选项是 ( ).(A)(5 - m)(5 + m)= m2- 25 (B)(1 - 3m)(1+ 3m)= 1- 3m2(C)( - 4-3n)( -4+ 3n)=- 9n2+16 (D)(2ab - n)(2ab+ n)= 4ab2- n24.以下多项式不是完满平方式的是().(A)x 2- 4x- 4 (B) 1m 2 m 4(C)9a2+ 6ab+ b2 (D)4t 2+ 12t+ 95.以低等式能够成立的是( ).(A)(a - b)2= (- a-b) 2 (B)(x - y)2= x2- y2(C)(m - n)2= (n- m)2 (D)(x - y)(x + y)= (- x- y)(x - y) 6.以低等式不能够恒成立的(A)(3x - y)2=9x 2- 6xy + y2(C) (1m n)2 1 m2 mn n 2 2 4三、计算题1.(3a2b)(3a2b).2 23.(2m3n )( 3n 2m ).3 4 4 3(B)(a + b- c)2= (c- a- b)2(D)(x - y)(x + y)(x 2- y2)= x4- y42. (x n- 2)(x n+ 2).4.2x 3y . 3 y 2x2 3x y x y6. (- m2n+ 2)( - m2n- 2).5.( )(4 ).4 2 27.(3x 2 y) 2. 8. (3mn- 5ab)2.4 39. (5a2- b4)2.10. (- 3x2+5y) 2.11. (- 4x3- 7y2 )2.12. (y- 3)2- 2(y+ 2)(y- 2).四、解答题1.应用公式计算: (1)103 97×;(2)1.02 0×.98;1 6 (3) 10 97 72.当 x= 1, y= 2 时,求 (2x- y)(2x + y)- (x+ 2y)(2y - x)的值.3.用合适方法计算: (1) (401)2;(2)299 2.24.若 a+ b= 17,ab= 60,求 (a- b)2和 a2+ b2的值.提升精练一、填空题a a1.( 3)(3 ) =_______.2 22. (- 3x- 5y)( - 3x+ 5y)= ______.3.在括号中填上合适的整式:(1)(x+ 5)(______) = x2- 25;(2)( m- n)(______) = n2-m2;(3)( - 1- 3x)(______) =1- 9x2;(4)( a+ 2b)(______) = 4b2- a2.4. (1)x2- 10x+ ______= ( -5)2:(2)x2+ ______+ 16= (______- 4)2;(3)x2- x+ ______= (x- ______)2;(4)4x2+ ______+ 9= (______+ 3)2.5.多项式 x2- 8x+ k 是一个完满平方式,则k= ______.6.若 x2+ 2ax+ 16 是一个完满平方式,则a= ______.二、选择题1.以下各式中能使用平方差公式的是( ).A 、 (x2- y2)( y2+ x2)B、 ( 1m2 1 n3)( 1 m2 1 n3) 2 5 2 5C、 (- 2x- 3y)(2x+ 3y)D、 (4x- 3y)(- 3y+4x)2.下面计算 (- 7+a+ b)(- 7- a-b)正确的选项是 ().A 、原式= (- 7+ a+ b)[ -7- (a+ b)] =- 72- (a+ b)2B、原式= (- 7+ a+ b)[ - 7- (a+ b)] = 72+ (a+ b)2C、原式= [- (7- a- b)][ - (7+ a+ b)] = 72- (a+b)2D、原式= [- (7+ a)+ b][ - (7+ a)- b]= (7+ a)2- b23. (a+ 3)(a2+ 9)(a- 3)的计算结果是 ( ).A 、 a4+ 81 B、- a4- 81 C、a4- 81 D、 81- a4 4.以下式子不能够成立的有 ()个.①( x- y)2= (y- x)2② (a-2b)2=a2-4b2③ (a-b)3=(b-a)(a-b)2④( x+ y)(x- y)= (- x- y)( - x+y) ⑤1- (1+ x)2=- x2- 2xA 、 1 B、 2 C、3 D、 45.计算(a b)2的结果与下面计算结果相同的是().2 2A 、1(a b) 2 B 、1( a b)2 ab 2 2C、1( a b)2 ab D、1( a b)2 ab 4 4三、计算题1. ( 3a 21b2 )( 1 b2 3a 2 ). 2. (x+ 1)(x2+ 1)(x- 1)( x4+ 1).2 23. (m- 2n)(2n+ m)- (- 3m-4n)(4n- 3m) .4. (2a+ 1)2(2a- 1)2.5.( x- 2y) 2+ 2(x+2y)( x- 2y) + (x+2y)2.6. (a+ b+2c)(a+b- 2c).7. (x+ 2y- z)(x- 2y+ z).8. (a+ b+c)2.9.( x 2y 1)2.3四、解答题1.一长方形场所内要修建一个正方形花坛,预计花坛边长比场所的长少8米、宽少6米,且场所面积比花坛面积大 104 平方米,求长方形的长和宽.2.回答以下问题:(1) 填空: x2 1 ( x 1 )2 ______=( x 1 )2 ______.x2 x x(2) 若 a 1 5 ,则 a2 1 的值是多少 ?a a2(3) 若 a2- 3a+ 1= 0,则a 2 1a 2的值是多少 ?超越导练1 1 1 1 11.巧算: (1) (1 )(1 2 )(12 4 )(1 8)15;2 2 2 26(2)(3+ 1)(3 2+ 1)(34+ 1)(38+ 1) ⋯(32n+1) .2.已知: x, y 正整数,且4x2- 9y2= 31,你能求出x, y 的 ?一.3.若 x2- 2x+ 10+ y2+ 6y= 0,求 (2x-y)2的.4.若 a4+b4+a2b2=5, ab=2,求 a2+ b2的.5.若△ABC 三边 a, b, c 满足 a2+ b2+ c2= ab+bc+ ca,试问△ ABC乘法公式参照答案牢固专练一、填空题1. (1) x2-4;(2)4 x2-25y2;(3) x2- a2b2;(4) b4-144.2. (1) x +10x+25;(2)9 m+12mn+4n ;(3) x -6xy+9y ;(4) 4a22 2 2 2 2 的三边有何关系?4ab b239(5)x2-2xy+ y2;(6) x2+2xy+ y2.2222222222223. (1) x - y ; (2) x -y ; (3) y -x ; (4) x - y ; (5) y - x ;(6) x - y . 二、 选择题1. B 2 . C 3 . C 4 . A 5 .C 6 .D 三、 计算题1. 9a 4b22 .x 2n-4. 3 .46. mn - 4 7 .9 x + xy +4y .4 22216 94 m 29n 2. 4 . 2x 23 y 2 .5 . y 2 x 29 16324 168 .9 2 2- 30 + 252 2.mn mnab a b 9. 25a 4 -10a 2b 4+ b 8. 10 . 9x 4- 30x 2y + 25y 2. 11 . 16x 6+ 56x 3y 2+ 49y 4.12.- y 2- 6y + 17. 四、 解答题1. (1)9991 ;;(3)48 2.- 15.99493. (1) 1640 1; (2)89401 .4. 49;169.4提升精练一、 填空题1.a 2 9.2.9x 2-25y 2. 3.(1) x - 5. (2) - m -n . (3)3x - 1. (4)2b - a .41 1 5. 16.6.± 4.4. (1)25; x ; (2)- 8x ; x ; (3); (4)12 x ; 2x .4 2二、 选择题1. A 2 . C 3 . C 4 . B 5 .D 三、 计算题1. 1 b49a 42.x 8- 13.- 8m 2+12n 24.16a 4- 8a 2+ 15. 4x 2.46. a 2+ 2ab + b 2- 4c 2 7.x 2 -4y 2- z 2+4yz 8.a 2 +b 2 +c 2 +2ab + 2bc + 2ac9. x 24xy 4 y 22 x4 y 133 9四、 解答题1.长 12 米,宽 10 米. 2. (1)2; 2; (2)23; (3)7.超越导练1. (1)2. (2) 132n 11 2. x = 8; y = 53. 254. 3 5.相等.22。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

初中竞赛数学18.乘法公式(含答案)

初中竞赛数学18.乘法公式(含答案)

18.乘法公式知识纵横乘法公式(multiplication formula)是在多项式乘法的基础上,•将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、•又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解【例1】•(•1)•已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.(江苏省竞赛题)(2)已知(2000-a)·(1998-a)=1999,那么,(2000-a)2+(1998-a)2=________.(2000年重庆市竞赛题)思路点拨 (1)建立两个连续奇数的方程组;(2)视(2000-a)·(1998-a)为整体,•由平方和想到完全平方公式(formula for the square the sum)及其变形.解:(1)设两个连续奇数为x,y,且x>y,则2220002x yx y⎧-=±⎨-=⎩得x+y=1000或x+y=-1000,解得(x,y)=(499,501)或(-501,-499).(2)4002 提示:(2000-a)2+(1998-a)2=[(2000-a)-(1998-a)]2+2(2000-a)·(1998-a)【例2】若x是不为0的有理数,已知M=(x2+2x+1)(x2-2x+1),N=(x2+x+1)(x2-x+1),则M与N 的大小关系是( ). (“祖冲之”杯邀请赛试题)A.M>NB.M<NC.M=ND.无法确定思路点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.解:选B【例3】计算:(1)6(7+1)(72+1)(74+1)(78+1)+1; (天津市竞赛题)(2)1.345×0.345×2.69-1.3453-1.345×0.3452. (江苏省竞赛试题)思路点拨 若按部就班计算,显然较繁,能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特征,对于(2),由于数字之间有联系,•可用字母表示数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特征.解:(1)原式=(7-1)(7+1)(72+1)(74+1)(78+1)+1=716(2)设1.345=x,则原式=x(x-1)·2x-x 3-x(x-1)2=-x=-1.345【例4】(1)已知x 、y 满足x 2+y 2+54=2x+y,求代数式xy x y+的值. (“希望杯”邀请赛试题) (2)整数x,y 满足不等式x 2+y 2+1≤2x+2y,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b;乙商场:两次提价的百分率都是 2a b + (a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. (2003年河北省竞赛题)思路点拨 对于(1)、(2)两个未知数一个等式或不等式,•须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表示,作差比较它们的大小.解:(1)提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13(2)原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•所以可能有的结果是1010x y -=⎧⎨-=⎩或1110x y -=±⎧⎨-=⎩或1011x y -=⎧⎨-=±⎩,解得11x y =⎧⎨=⎩或21x y =⎧⎨=⎩ 或 12x y =⎧⎨=⎩或10x y =⎧⎨=⎩,x+y=1或2或3 (3)甲、乙、丙三个商场两次提价后,价格分别为(1+a)(1+b)=1+a+b+ab; (1+2a b +)·(1+2a b +)=1+(a+b)+( 2a b +)2; (1+b)(1+a)=1+a+b+ab; 因(2a b +)2-ab>0,所以(2a b +)2>ab, 故乙商场两次提价后,价格最高.【例5】已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数. 证明:(1)b 与c 两数必为一奇一偶; (2)2(a+b+1)是完全平方数.思路点拨 从a 2+b 2=c 2的变形入手;a 2=c 2-b 2,运用质数、奇偶数性质证明.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a 应为奇质数,c+b 与c-b 同奇同偶,b 与c 必为一奇一偶.(2)c+b=a 2,c-b=1,两式相减,得2b=a 2-1,于是2(a+b+1)=2a+2b+2=2a+a 2-1+2=(a+1)2,为一完全平方数.学力训练一、 基础夯实1.观察下列各式:(x-1)(x+1)=x 2-1;(x -1)(x 2+x+1)=x 3-1;(x -1)(x 3+x 2+x+1)=x 4-1.根据前面的规律可得 (x -1)(x n +x n-1+…+x+1)=_______.(2001年武汉市中考题)2.已知a 2+b 2+4a -2b+5=0,则a b a b+-=_____. (2001年杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655=_______;(2)19492-19502+19512-19522+……+19972-19982+19992=_________;(3) 2221999199819991997199919992+-=___________. 4.如图是用四张全等的矩形纸片拼成的图形,•请利用图中空白部分的面积的不同表示方法写出一个关于a 、b 的恒等式________.(2003年太原市中考题) 5.已知a+1a =5,则=4221a a a++=_____. (2003年菏泽市中考题)6.已知a-b=3,b+c=-5,则代数式ac-bc+a 2-ab 的值为( ).A.-15B.-2C.-6D.6 (2003年扬州市中考题)7.乘积(1-212)(1-213)……(1-211999)(1-212000)等于( ). A. 19992000 B. 20012000 C. 19994000 D. 20014000(2002年重庆市竞赛题)8.若x -y=2,x 2+y 2=4,则x 2002+y 2002的值是( ).A.4B.2002C.2D.49.若x 2-13x+1=0,则x 4+41x的个位数字是( ). A.1 B.3 C.5 D.710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是().A.a 2-b 2=(a+b)(a -b)B.(a+b)2=a 2+2ab+b 2C.(a -b)2=a 2-2ab+bD.(a+2b)(a -b)=a 2+ab -2b 2 (2002年陕西省中考题)11.(1)设x+2z=3y,试判断x 2-9y 2+4z 2+4xz 的值是不是定值?如果是定值,•求出它的值;否则请说明理由.(2)已知x 2-2x=2,将下式先化简,再求值:(x -1)2+(x+3)(x-3)+(x-3)(x-1).(2003年上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观察:1·2·3·4+1=522·3·4·5+1=1123·4·5·6+1=192……(1)请写了一个具有普遍性的结论,并给出证明;(2)根据(1),计算2000·2001·2002·2003+1的结果(用一个最简式子表示).(2001年黄冈市竞赛题)二、能力拓展14.你能很快算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,•任意一个个位数为5的自然数可写在10n+5(n为自然数),即求(10n+5)2的值,试分析n=1,n=2,n=3,……这些简单情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152=225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100×3×(3+1)+25;452=2025可写成100×4×(4+1)+•25;•……752=•5625•可成写__________;852=7225可写成__________.(2)从第(1)题的结果,归纳,猜想得(10n+5)2=________.(3)根据上面的归纳猜想,请算出19952=________. (福建省三明市中考题)15.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.(2001天津市选拨赛试题)16.(1)若x+y=10,x3+y3=100,则x2+y2=________. (2)若a-b=3,则a3-b3-9ab=________.17.1,2,3,•……,•98•共98•个自然数中,•能够表示成两整数的平方差的个数是________.(全国初中数学联赛试题)18.已知a-b=4,ab+c2+4=0,则a+b=( ).A.4B.0C.2D.-219.方程x2-y2=1991,共有( )组整数解.A.6B.7C.8D.920.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是( ).A.x≤yB.x≥yC.x<yD.x>y (2003年太原市竞赛题)21.已知a=1999x+2000,b=1999x+2001,c=1999x+2002,则多项式a2+b2+c2-•ab-•bc-c a的值为( ).A.0B.1C.2D.3 (2002年全国初中数学竞赛题)22.设a+b=1,a2+b2=2,求a7+b7的值. (西安市竞赛题)23.已知a满足等式a2-a-1=0,求代数式a8+7a-4的值. (2003年河北省竞赛题)24.若x+y=a+b,且x2+y2=a2+b2,求证:x1997+y1997=a1997+b1997. (北京市竞赛题)三、综合创新25.有10位乒乓球选手进行单循环赛(每两人间均赛一场),用x1,y1•顺次表示第一号选手胜与负的场数;用x2,y2顺次表示第二号选手胜与负的场数,……;用x10,y10•顺次表示十号选手胜与负的场数.求证:x12+x22+……+x102=y12+y22+……+y102.26.(1)请观察:25=521225=352112225=335211122225=33352……写出表示一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选另外两个类似26、53的数,使它们能表示成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?答案1.x n+1-12.-133.(1)4;(2)3897326;(3)124.(a+b)2-4ab=(a-b)25.246.C7.D 提示;逆用平方差公式,分解相约8.C 提示:由已知条件得xy=09.D 提示:x≠0,由条件得x+1x=13,x4+41x=(x2+21x)2-2=[(x+1x)2-2]2-2 10.A11.(1)定值为0 提示:由条件得x-3y=-2z,原式=(x-3y)·(x+3y)+4z2+4xz=-2z·(x+3y)+4z2+4xz=4z2+2xz-6yz=4z2+2z(x-3y)=0(2)原式=3x2-6x-5=3(x2-2x)-5=1.12.提示:设这个自然数为x,由题意得224544x m x n ⎧-=⎪⎨+=⎪⎩②-①得n2-m2=89 即(n+m)(n-m)=89×1从而891n mn m+=⎧⎨-=⎩,解得4544nm=⎧⎨=⎩(m,n都为自然数) 故 x=45-44=1981.13.(1)对于自然数n,有n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,证明略.(2)由(1)得原式=(20002+3×2000+1)2=4006001214.(1)100×7×(7+1)+25;100×8×(8+1)+25.(2)(10n+5)2=10n(n+1)+25(3)19952=(10×199+5)2=10×199×(199+1)+25=398002515.216.(1)40 提示:x3+y3=(x+y)(x2-xy+y2)=(x+y)[(x+y)2-3xy];(2)27.17.73 提示:x=n2-m2=(n+m)(n-m)(1≤m<n≤98,m,n为整数),因n+m与n-m•的奇偶性相同,故x是奇数或是4的倍数.18.B提示:把a=b+4代入ab+c2+4=0得(b+2)2+c2=019.C 提示:(x+y)(x-y)=1×1991=11×181=(-1)×(-1991)=(-11)×(-181)20.B提示:x-y=(a+2)2+(b-4)2≥021.D 提示:原式=12[(a-b)2+(b-c)2+(a-c)2]22. 718 提示:由a+b=1,a 2+b 2=2,得ab=-12, 利用a n+1+b n+1=(a n +b n )(a+b)-ab(a n-1+b n-1)•可分别求得 a 3+b 3=52,a 4+b 4=72,a 5+b 5=194 ,a 6+b 6=264. 23.48 提示:由a 2-a-1=0,得a -a -1=1,进而a 2+a -2=3,a 4+a -4=7, 所以a 8+7a -4=a 4(a 4+a -4)+7a -4-•1=7a -4+7a -4-1=7(a 4+a -4)-1=48.24.提示:设2222x y a b x y a b+=+⎧⎨+=+⎩, 则由①2-②得2xy=2ab ③ ②-③,得(x-y )2=(a -b)2,即│x-y │=│a-b │则x-y=a-b 或x-y=b-a,分别与x+y=a+b 联立解得x a y b =⎧⎨=⎩或x b y a =⎧⎨=⎩25.提示:由题意知:x i +y i =9(i=1,2,…,10)且x 1+x 2+…+x 10=y 1+y 2+…+y 10 因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=026.(1)提示:经观察,发现规律: (1)111n - 个 2225n 个=((1)3335n - 个)2 ,实际上, ((1)3335n - 个)2=(3332n + 个)2=(13×9992n + 个)2 =[13(10n -1)+2]2=(1053n +)2=2109n +1109n ++259 =21019n -+11019n +-+2529+= 2111n 个+ (1)111n + 个+3 = (1)111n - 个 2225n 个(2)一般地,设m=a 2+b 2,n=c 2+d 2,则mn=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+b 2c 2+a 2d 2=a2c2+b2d2+2abcd+b2c2-•2abcd+a2d2=(ac+bd)2+(bc-ad)2或(a c-bd)2+(bc+ad)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘法公式
14.2.1 平方差公式
1.计算(4+x )(4-x )的结果是( )
A .x 2-16
B .16-x 2
C .x 2+16
D .x 2-8x +16
2.下列多项式乘法中可以用平方差公式计算的是( )
A .(b -a )(a -b )
B .(x +2)(x +2)
C.⎝⎛⎭⎫y +x 3⎝⎛⎭
⎫y -x 3 D .(x -2)(x +1) 3.若m +n =5,m -n =3,则m 2-n 2的值是( )
A .2
B .8
C .15
D .16
4.计算:
(1)(a +3)(a -3)=________;
(2)(2x -3a )(2x +3a )=________;
(3)(a +b )(-a +b )=________;
(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.
5.计算:
(1)⎝⎛⎭⎫16x -y ⎝⎛⎭
⎫16x +y ; (2)20182-2019×2017;
(3)(x -1)(x +1)(x 2+1).
6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12
.
14.2.2完全平方公式
第1课时完全平方公式
1.计算(x+2)2正确的是()
A.x2+4 B.x2+2 C.x2+4x+4 D.2x+4
2.下列关于962的计算方法正确的是()
A.962=(100-4)2=1002-42=9984
B.962=(95+1)(95-1)=952-1=9024
C.962=(90+6)2=902+62=8136
D.962=(100-4)2=1002-2×4×100+42=9216
3.计算:
(1)(3a-2b)2=____________;(2)(-3x+2)2=________;
(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:
(1)(-2m-n)2; (2)(-3x+y)2;
(3)(2a+3b)2-(2a-3b)2; (4)99.82.
5.已知a+b=3,ab=2.
(1)求(a+b)2的值;
(2)求a2+b2的值.
第2课时添括号法则
1.下列添括号正确的是()
A.a+b-c=a-(b+c)
B.-2x+4y=-2(x-4y)
C.a-b-c=(a-b)-c
D.2x-y-1=2x-(y-1)
2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2
B.[x+(2y+1)]2
C.[x+(2y-1)][x-(2y-1)]
D.[(x-2y)+1][(x-2y)-1]
3.填空:
(1)a+b-c=a+(________);
(2)a-b+c-d=(a-d)-(________);
(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.
5.运用乘法公式计算:
(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.
乘法公式
14.2.1 平方差公式
1.B 2.C 3.C
4.(1)a 2-9 (2)4x 2-9a 2 (3)b 2-a 2
(4)2 2 100 2 9996
5.解:(1)原式=136
x 2-y 2. (2)原式=20182-(2018+1)×(2018-1)=20182-20182+1=1.
(3)原式=(x 2-1)(x 2+1)=x 4-1.
6.解:原式=4-a 2+a 2-4a =4-4a .当a =-12
时,原式=4+2=6. 14.2.2 完全平方公式
第1课时 完全平方公式
1.C 2.D
3.(1)9a 2-12ab +4b 2 (2)9x 2-12x +4
(3)x 2-2xy +y 2 (4)3x -1
4.解:(1)原式=4m 2+4mn +n 2.
(2)原式=9x 2-6xy +y 2.
(3)原式=4a 2+12ab +9ab 2-4a 2+12ab -9b 2=24ab .
(4)原式=(100-0.2)2=1002-2×100×0.2+0.22=9960.04.
5.解:(1)∵a +b =3,∴(a +b )2=9.
(2)由(1)知(a +b )2=9,∴a 2+2ab +b 2=9.
∵ab =2,∴a 2+b 2=9-2ab =9-4=5.
第2课时 添括号法则
1.C 2.C
3.(1)b -c (2)b -c
(3)x +y x 2+2xy +y 2+4xz +4yz +4z 2
4.解:∵a -3b =3,∴8-a +3b =8-(a -3b )=8-3=5.
5.解:(1)原式=(2a +3b )2-1=4a 2+12ab +9b 2-1.
(2)原式=x 2-2xy +y 2-4xz +4yz +4z 2.。

相关文档
最新文档