有机液体储罐-刘洋

合集下载

有机化工合成中过氧化氢的应用

有机化工合成中过氧化氢的应用

有机化工合成中过氧化氢的应用在有机化工中,过氧化氢有着极为重要的作用,本文通过对其性质的分析,结合其在醇的氧化应用、烯烃的氧化应用、芳香烃中的氧化应用、羥基化合物中的氧化应用,对其展开探讨。

标签:有机化工合成;过氧化氢;应用1 过氧化氢概述过氧化氢的化学式是H2O2的化合物,它的纯净形式是无色液体,比水略粘。

过氧化氢是最简单的过氧化物,是具有氧- 氧单键的化合物,通常用作氧化剂,漂白剂和消毒剂。

浓缩过氧化氢是一高种活性氧氧化物,已被用作火箭中的推进剂。

其化学成分主要是其不稳定的过氧化物键的性质,过氧化氢不稳定并在碱或催化剂存在下缓慢分解。

由于其不稳定性,过氧化氢通常与稳定剂一起储存在弱酸性溶液中。

在包括人体在内的生物系统中发现过氧化氢,使用或分解过氧化氢的酶被分类为过氧化物酶。

世界上大约60%的过氧化氢生产用于纸浆和纸张漂白,第二大工业应用是制造过碳酸钠和过硼酸钠,它们用作洗衣洗涤剂中的温和漂白剂。

用于生产各种有机过氧化物。

过氧酸,例如过乙酸和间氯过氧苯甲酸也通常使用过氧化氢制备,在某些废水处理过程中使用过氧化氢去除有机杂质。

这通过先进的氧化方法实现,例如芬顿反应,其用于产生高反应性羟基。

这些能够破坏通常难以除去的有机污染物,例如芳族或卤代化合物。

它还可以氧化存在于废物中的硫基化合物;这是有益的,因为它通常会降低其气味。

高浓度过氧化氢流,通常在40%以上,由于浓缩的过氧化氢符合美国法规DOT氧化剂的定义,如果被释放到环境中,被认为是危险的。

過氧化氢应储存在阴凉,干燥,通风良好的地方,远离任何易燃或易燃物质。

应将其储存在由不反应性材料(如不锈钢或玻璃)组成的容器中。

因为暴露于光线时它会快速分解,所以应将其储存在不透明的容器中,药物配方通常会进入阻挡光线的棕色瓶子。

2 过氧化氢的反应简述以前,过氧化氢通过水解过硫酸二氢铵而工业化,其本身是通过在硫酸中电解硫酸氢铵溶液。

过氧化氢几乎完全由蒽醌法制造,其在1936年被形式化,并于1939年获得专利。

过氧化氢储存系统的设计要点

过氧化氢储存系统的设计要点

摘要:介绍了过氧化氢的理化性质、危险性以及近年来发生的安全事故,分析总结了过氧化氢储存系统在设计过程中的注意事项。

关键词:过氧化氢;双氧水;储存;设计Abstract: It introduced the physicochemical property and hazard of hydrogen peroxide, share accidents in the recent years. Experience and lesson learned from hydrogen peroxide storage system design were summarized.Key words: hydrogen peroxide; perhydrol; storage; design过氧化氢储存系统的设计要点⊙ 刘嚆1*薛飞飞2[1.中国海诚工程科技股份有限公司,上海 200031;2.福伊特造纸(中国)有限公司,江苏苏州 215347]Key Points in Design for Hydrogen Peroxide Storage System⊙ Liu Hao 1*, Xue Feifei 2 (1.China Haisum Engineering Co., Ltd., Shanghai 200031, China; 2.Voith Paper (China) Co., Ltd., Suzhou 215347, Jiangsu, China)中图分类号:TS727+.1文献标志码:A 文章编号:1007-9211(2022)06-0024-04刘嚆 先生工程师;主要从事制浆造纸工程的设计和应用工作。

过氧化氢,俗称双氧水,被广泛应用于军事、医疗和工业领域。

在军事领域,它被用于火箭发动机燃料的助燃剂;在医疗领域,被用做杀菌消毒剂;在印染工业中,被用做漂白剂和发色剂;在电子行业中,被用作集成电路板的电镀液;在造纸行业,被用作纸浆漂白剂。

储液罐结构和工作原理

储液罐结构和工作原理

储液罐结构和工作原理
储液罐是一种用于存储液体物质的容器,其结构主要由罐体、进出口管道、阀门和传感器等组成。

罐体一般由钢质材料制成,具有较高的耐腐蚀性和密封性能。

常见的罐体形状有圆柱形、圆锥形和球形等,具体形状取决于储液罐的使用要求。

罐体内部常采用防腐涂层,以防止液体物质对罐体的腐蚀。

进出口管道与阀门用于液体物质的进出和控制。

进口管道通常设置在罐体的顶部或侧面,通过阀门和管道连接供应源或输送系统。

出口管道通常位于罐体底部,同样通过阀门和管道进行液体的排放。

阀门用于控制液体的进出和流量,确保储液罐操作的安全可靠。

传感器是储液罐的重要组成部分,用于监测液位、温度、压力等参数,以确保罐内的液体状态和操作环境符合要求。

常见的液位传感器有浮球式传感器和电容式传感器,可以实时监测罐内液体的高低水平。

温度和压力传感器可以监测罐内液体的温度和压力变化,以确保罐内操作的安全性和稳定性。

储液罐的工作原理是依靠重力和压力来实现液体的进出。

液体通过进口管道进入罐体,当液位达到一定高度时,通过阀门控制进液。

在液体排放时,打开底部排放阀门,液体由重力作用下流出。

在整个过程中,液体的进出和流量受到阀门和传感器的控制,以确保操作的安全性和准确性。

除了基本的结构和工作原理外,储液罐通常还配备有安全设施,如报警装置、泄漏检测装置和灭火装置等,以确保储液过程中的安全和环境保护。

双氧水储罐设计

双氧水储罐设计

研究与开发化 工 设 计 通 讯Research and DevelopmentChemical Engineering Design Communications·101·第47卷第1期2021年1月双氧水是过氧化氢水溶液的俗称,是一种重要的无机化工原料,它广泛应用于造纸、纺织、化学品合成、军工、电子、食品加工、医药、化妆品、环境保护、冶金等诸多领域[1]。

双氧水是一种强氧化剂,性质极不稳定,对于促进双氧水分解的引发剂目前研究较多,通常认为有碱液、重金属离子、铁锈等[2]。

因为其分解反应是放热反应,一旦发生,其反应速度会越来越快,如不能及时移出热量,将会导致失控。

由于双氧水贮罐一般为常压储罐,设计者在设计时对储罐的安全性往往考虑不周全。

本文根据双氧水的特性,从材料选择、结构设计及制造检验等多个环节出发,阐述了双氧水贮罐设计需要注意的问题,提出了罐顶排气口面积的计算方法,确保储罐的安全操作性能。

1 材质选择双氧水储罐选择使用的结构材料必须小心谨慎,否则将会遇到分解的问题。

一定要考虑所选的材料与双氧水相容性。

钢制储罐材质一般选用不锈钢,通常使用全奥氏体不锈钢。

首选不锈钢材料是S30403或S31603。

高纯度的铝(99.5%)和Al-Mg 合金也可使用,但这些材料的制作远比不锈钢更为困难。

所以通常设计选用不锈钢材料。

小型储罐(容积30m 3以下),浓度在50%以下,也可采用高密度聚乙烯。

但使用这种材料时必须特别注意,因为它的可靠性是随着时间的延长而降低的,容易因碰撞而损坏。

选用高密度聚乙烯时注意不要含有任何与双氧水不相容的颜料、矿石填料催化残渣。

如果暴露在阳光下,应该添加适量的抗氧剂和适当的光稳定剂。

与双氧水接触的管道、管件及阀门等材质的选择需引起足够的重视。

管道及管件通常采用S30403或S31603,垫片采用聚四氟乙烯,不能使用EPDM 及普通橡胶和石墨材料,普通橡胶为高分子可燃有机物质,可诱发双氧水发生连锁放热分解反应,导致爆炸。

有机化学2011-绿色化学试剂过氧化氢在有机合成中的应用研究进展

有机化学2011-绿色化学试剂过氧化氢在有机合成中的应用研究进展

2011年第31卷有 机 化 学V ol. 31, 2011 * E-mail: qingl z ng@Received July 8, 2010; revised October 25, 2010; accepted December 30, 2010.国家自然科学基金(No. 20672088)、国家人力资源与社会保障部2010年度留学人员科技活动项目择优资助(优秀类项目)、成都理工大学优秀创新团·综述与进展·绿色化学试剂过氧化氢在有机合成中的应用研究进展刘 洋b 曾庆乐*,a ,b 唐红艳b 高 珊b杨治仁b 张 颂b 刘建川b(a 成都理工大学油气藏地质及开发工程国家重点实验室 成都 610059)(b 成都理工大学材料与化学化工学院 成都 610059)摘要 综述了近十年来绿色化学试剂过氧化氢在合成亚砜、砜、环氧化物、醇、酚、醛、酮、酸、酯、卤代物等各种有机化合物中的研究进展, 也论述了一些新的合成反应介质体系, 如离子液体、氟相、超临界流体等绿色介质与过氧化氢结合在有机合成中的应用, 希望能促进绿色化学技术的研究与应用, 促进化学的可持续发展. 关键词 绿色化学; 过氧化氢; 有机合成; 进展; 离子液体; 氟相; 超临界流体; 环境保护Progress on Organic Synthesis Using Hydrogen Peroxide as a GreenChemical ReagentLiu, Yang b Zeng, Qingle *,a ,b Tang, Hongyan b Gao, San bYang, Zhiren b Zhang, Song b Liu, Jiangchuan b(a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Chengdu University of Technology , Chengdu610059)(bCollege of Materials , Chemistry and Chemical Engineering , Chengdu University of Technology , Chengdu 610059)Abstract The developments of organic synthesis using hydrogen peroxide as a green chemical reagent are reviewed in synthesizing various organic compounds, such as sulfoxides, sulfones, epoxy compounds, alco-hols, phenols, aldehydes, ketones, carboxylic acids, esters and halides in recent ten years. The applications of hydrogen peroxide combining with some new classes of green reaction media including ionic liquids, fluor-ous phase solvents, and supercritical fluids in organic synthesis have also been described. We hope that more green technologies using hydrogen peroxide in place of unsustainable ones could be worked out and applied. Keywords green chemistry; hydrogen peroxide; organic synthesis; progress; ionic liquid; fluorous phase; supercritical fluid; environment protection人类作为美丽自然的一部分, 自诞生之日起就不断的认识和改造着自然. 人类创造了文明, 也严重的破坏着自然[1]. 事物的量变与质变, 如现有事物和新事物的消亡与产生、增减、分布的改变等是人类得以影响自然的一个本因. 化学就是这样的一种重要工具, 自其出现伊始, 发展所涉及的领域越来越多, 成为社会发展的最重要的基础之一; 在不断满足着人类需求的同时, 也产生了触目惊心的破环作用, 惨痛的环境污染和生态灾难比比皆是[2]. 自DDT(双对氯苯基三氯乙烷) 1874年被发明和1939年应用以来, 因其对生态造成严重破坏以及对人类健康造成重大危害而被禁用[3], 成为化学发展的一个典型的“DDT 模式”. 在我国, 近年来因化学污染N o. 7 刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展987导致的癌症高发村事件也频有报道[4]; 而一些企业尤其是建在一些边远地区的冶炼厂、化工厂, 肆意排污, 对生态、环境的破坏以及对人民生命财产的侵害更具严重性、隐蔽性和深远性. 我国环境形势十分严峻, 必须加强环境保护[5]. 事物的存在与发展是在一个特定的环境下进行的, 环境所含因素的变化尤其是突变与剧变可能超出事物的调节与适应极限而使其损害或消亡. 如果说物种的灭绝是因为不能适应环境, 那么人类的命运将取决于能否保护环境.化学污染容易, 治理难, 有些污染后果往往是不可逆的. 绿色化学的提出正是基于要解决这一问题. 绿色化学, 又可称环境无害化学、环境友好化学、清洁化学. Sheldon将其定义为: 在制造和应用化学产品时应有效地利用(最好是可再生的)原料, 消除废物和避免使用有毒的和/或危险的试剂和溶剂[6]. 他还首次提出环境因子(E)、原子效率(AE)和环境商(EQ), 并引入作为评价化学反应是否“绿色”的量化依据[7,8]. “绿色化学”的提出标志着人类对运用化学手段认识和改造自然方式的飞跃. 1990年, 美国通过《污染预防法》, 1995年设立“总统绿色化学挑战奖”; 1999年, “英国皇家化学会”的《绿色化学》杂志创刊; 在我国, 1995年确立了《绿色化学与技术》的院士咨询课题[9], 2008年设立环境保护部.化学的可持续发展应得到学术界的广泛关注; 产业界应该用更为“绿色”工艺进行技术升级; 教育界应及时将相关成果写入教科书、纳入教学内容; 化学工作者作为化学工具的具体操纵者应该有强烈的责任感, 秉持绿色化学的理念, 在运用化学手段时, 慎思慎行.1 过氧化氢简介过氧化氢(H2O2), 其水溶液称为双氧水. 氧原子采取不等性的sp3杂化轨道成键, 分子为共价极性分子, 立体结构处在犹如半展开书的两页纸上(Figure 1), 熔点-0.4 ℃, 沸点150 ℃; 其化学性质主要表现为一定的酸性、氧化性、还原性和不稳定性[10,11]. 过氧化氢在酸性介质中的氧化性比在碱性介质中的强, 还原性则相反[12]. 金属离子等杂质能催化分解过氧化氢[13]. 过氧化图1H2O2的分子结构Figure 1The chemical structure of H2O2氢在反应中分解产物为无毒害的水和氧气, 是一种重要的绿色化学试剂[14].过氧化氢在自然界的植物、动物等中有少量存在. 如放屁甲虫利用催化分解体内的过氧化氢来保护自己[15]. 过氧化氢最早于1818年由Thenard报道, 是用硝酸酸化过氧化钡制备(Eq. 1). 目前, 全世界每年的过氧化氢产量已超过了220万吨[16], 其中95%以上是由20世纪40年代开始商业化的蒽醌自氧化法(AO)制备(Scheme 1). 最近有报道用酸处理的碳载体Au-Pd纳米催化剂催化O2和H2直接合成过氧化氢取得了重大进展[17], 该方法不但经济, 而且避免了AO法污染大, 耗能高的缺点.(1)Scheme 1过氧化氢广泛用于纺织、化工、造纸、环保、电子、食品、卫生、军工等几乎所有行业[18], 尤其是化学化工和环保行业. 在美国, 与过氧化氢相关的研究分别在1999年、2007年和2010年三度获得“总统绿色化学挑战奖”[19]; 在欧洲, 过氧化氢在化学合成中的用量已占到了过氧化氢使用总量的43%[16], 尤其在有机合成中作为绿色化学试剂的应用越来越普遍.2 过氧化氢人名反应人名反应对于推广合成的科学和艺术起到了巨大的作用. 很多人名反应的发明者还是诺贝尔奖得主[20]. 过氧化氢在人名反应中有广泛的应用.2.1 Fenton反应该反应在1893年被报道[21]. 在过氧化氢和亚铁盐(Fenton试剂)存在下, 可将α-羟基酸氧化成α-酮酸, 还可将1,2-乙二醇氧化成羟基醛(Eq. 2).(2)2.2 Ruff-Fenton降解反应1898年Ruff [22]报道的这个反应可用于糖类的减链或脱羧. 如用过氧化氢、铁盐与醛糖酸反应, 可得减少988有机化学V ol. 31, 2011一个羧基的醛糖(Eq. 3).(3)2.3 Baeyer-Villiger氧化反应1899年Baeyer等[23]报道这类将酮或环酮转化为酯或内酯的反应是酯的重要合成反应. 反应在过酸下进行, 如过氧化氢、MCBPA或路易斯酸等(Eq. 4).(4)3.4 Harries臭氧化反应该反应在1905年被报道[24]. 反应可将烯烃双键断开, 然后在还原性条件下得到醇或羰基化合物; 在氧化性条件下, 如过氧化氢氧化下, 可得到羧酸和酮(Scheme 2).Scheme 22.5 Dak in氧化反应该反应在1909年被报道[25], 反应在碱性过氧化氢条件下, 可将芳甲基醛或酮氧化成酚(Eq. 5).(5)2.6 Algar-Flynn-Oyamada反应1934年Algar等[26]报道了这一反应, 它可将2'-羟基查尔酮经碱性过氧化氢氧化反应转化为2-芳基-3-羟基四氢苯并吡喃-4-酮(Eq. 6).(6)2.7 Milas烯烃羟基化反应该反应在1936年被报道[27]. 烯烃在紫外光下或锇、钒或铬氧化物的催化下, 可被过氧化氢氧化为顺式邻二醇(Eq. 7).(7)2.8 Baudisch反应1939年Baudisch[28]报道的反应可将苯或取代苯在过氧化氢和铜盐存在下, 得到邻位亚硝基苯酚(Eq. 8).(8)2.9 Brown硼氢化反应1958年Brown等[29]报道的这类反应是烯的硼氢化-氧化反应, 常用于醇的合成(Eq. 9).(9)过氧化氢在有机合成人名反应中的应用还有很多. 这些人名反应可以广泛的用于醇、酚、醛、酮、羧酸等有机物的合成.3 过氧化氢在有机合成中的一些最新应用关于过氧化氢在有机合成中的应用, 国内外已有过一些不同角度和时间段的综述[30~33]. 20世纪90年代起, 一些绿色介质体系如超临界流体、氟相、离子液体等与过氧化氢结合用于有机合成, 成为绿色化学的研究热点之一[34]. 过氧化氢在有机合成中的应用按照反应类型来分, 可用于: 氧化反应、环氧化反应、羟基化反应、氧卤化反应、阻止乳浊夜聚合的反应等[16]. 从反应起始物来看, 过氧化氢可参与烯烃、炔烃、醇、酚、醛、酮、芳烃、胺类、硫醚等的反应. 根据逆合成法原理, 按目标分子来分类, 过氧化氢可用于亚砜、砜, 醚, 醇、酚, 醛、酮, 羧酸, 酯, 氮氧化物等有机物的合成.3.1 过氧化氢用于合成(手性)亚砜、砜(手性)亚砜、砜及其衍生物广泛用作手性辅剂、手性配体、手性催化剂和手性药物等[35,36]. 通过硫醚氧化合成(手性)亚砜、砜已成为目前的一个研究热点, 过氧化氢是这类反应中最常用的氧化剂之一. 1995年, Bolm 等[37]报道了一种全新的硫醚或二噻烷的不对称催化氧化合成亚砜的方法. 该方法以VO(acac)2和手性单亚胺配体生成的手性钒配合物为催化剂, 过氧化氢为氧源, 不对称选择性高达85% (Eq. 10).2001年, 日本名古屋大学的Noyori教授[38] (2001年诺贝尔化学奖得主)报道了用无害的钨酸钠作催化剂, 硫酸氢三辛基甲基铵作相转移催化剂, 过氧化氢作氧化剂, 在无有机溶剂、无卤化物的体系中氧化硫醚的反应, 其中二苯硫醚氧化成砜的产率达到了96%; 在无钨酸钠N o. 7刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展98911). 该体系还在烯烃环氧化制环氧醚[39], 醇氧化制醛、酮和酸[40], 醛氧化制酸[41], 环已烯氧化制已二酸[42]等方面表现出很强的适用性.(11)2003年, Matteucci 等[43]报道用钪的化合物作催化剂催化过氧化氢氧化烷基芳基硫醚和含有缩氨酸的甲基半胱氨酸等成亚砜, 方法可用于固相反应, 产率达到98%以上(Eq. 12). 2004年, Sun 等[44]报道了用钒的配合物作催化剂不对称氧化硫醚成手性亚砜, 并获得了高产率和较高的对映选择性(Eq. 13).(12)2005年, 我们课题组[45]首次合成了一种手性Schiff 碱, 并用其作为配体与VO(acac)2制备预制钒配合物催化剂, 以过氧化氢为氧源, 成功用于不对称氧化芳基烷基硫醚, 亚砜的ee 值高达99% (Eq. 14); 并进一步推测了合理的反应机理[46], 对相关钒络合物研究其ESI-MS 裂解规律[47].2005年, Drago 等[48]用另一种配体与VO(acac)2制备预制钒配合物为催化剂催化氧化烷基芳基硫醚成亚砜,均得到了较高的产率和ee 值. Karimi 等[49]报道用可回收的氧化硅载钨酸盐界面催化剂在室温下催化过氧化氢选择性地氧化各种烷基芳基硫醚成亚砜或砜, 方法的分离产率均在85%以上(Eq. 15).2007年, Mba 等[50]用过氧化氢在室温下氧化硫醚, 反应的分离产率在61%~92%之间. 所用催化剂是一种不需要在反应前活化的且耐空气和湿气的含有C 3轴对称的三苯酚盐与钛(IV)的配合物. 这克服了常用钛催化剂在空气中易变质的不足. Egami 等[51]报道了用Fe(Salan)配合物作催化剂实现对诸多硫醚包括烷基芳基硫醚和甲基烷基等硫醚进行不对称氧化, 产物的ee 值在87%以上. 该方法不需要表面活性剂, 直接在水相中进行.3.2 过氧化氢用于合成环氧化物环氧化物/醚在食品、药物、添加剂、杀虫剂等方面应用广泛. 由过氧化氢氧化烯烃的环氧化反应是合成环氧化物的重要方法. 1996年, N oyori 研究组[39]报道了用在无有机溶剂、无卤化物的条件下, 用钨酸钠、硫酸氢三辛基甲基铵、胺甲基磷酸、过氧化氢体系对简单烯进行环氧化, 反应的产率和催化效率很高(Eq.16).1999年, Stoop 等[52]首次报道了用过氧化氢作氧化剂, 钌化合物作催化剂不对称催化烯烃环氧化的反应. 但该反应的选择性(52%~80%)和ee 值(41%)欠佳, 且用污染较大的二氯甲烷作溶剂. 2001年, 丙烯环氧化的研究取得重大突破. 中科院大连化物所的奚祖伟研究员[53]以过氧化氢为氧化剂, 采用一种含钨的相转移催化剂, 通过反应来控制催化剂, 使该催化体系兼具均相和异相催化的优点, 反应产率达到85%, 且无任何副产物, 被誉为是“具有环境友好体系”的研究成果(Scheme 3).Mandelli 等[54]采用相对廉价、简单的Al 2O 3作催化剂进行烯的环氧化. 反应底物的适应范围广, 包括多种α-链烯和环烯等. 产物与催化剂物质的量比达到4.3∶1, 虽然偏小, 但催化剂比较经济、易得, 且可反复回收使用. 2003年, 烯的环氧化再次取得了重大进展. 日本东京大学的Mizuno 研究组[55]用(Me 4N)4[γ-SiW 10O 34(H 2O)2]990有 机 化 学 V ol. 31, 2011Scheme 3为催化剂, 过氧化氢为氧化剂, 使用乙腈作溶剂, 实现了对包括异丙烯在内的链烯、环烯、端烯、非端烯和共轭烯等各类烯的环氧化, 反应的选择性和过氧化氢的氧化效率均达到了99%, 产率均在84%以上, 催化剂也容易回收(Eq. 17).(17)2005年, Marigo 等[56]报道了第一个用有机催化剂催化α,β-不饱和醛的环氧化方法 (Eq. 18). 采用的有机催化剂为手性吡咯烷衍生物, 反应可在乙醇/水等这类环境友好型的介质中进行, 方法的产率和ee 值都很高.2006年, Goodman 等[57]则报道了用硒化合物作催化剂催化过氧化氢氧化烯成环氧化物的方法, 反应底物范围广. 2007年, Sawada 等[58]用钛催化剂催化不活泼烯进行不对称环氧化研究取得了新进展, 适应底物包括了含有末端脂基的Z 式烯烃, 这类烯烃一般对环氧化缺乏活性, 反应的产率和对映选择性都很高(Eq. 19). Gelacha 等[59]则研究了芳基或/和烷基取代的E 式烯烃的不对称环氧化. 采用的是用含有铁化合物、吡啶衍生酸和一种新型手性配体的催化体系, 以2-甲基-2-丁醇为溶剂, 反应的产率、转化率以及ee 值都在90%以上(Eq. 20).(19)对于末端烯烃和内部孤立双烯的选择性氧化问题, Colladon 等[60]使用一种含有缺电子的铂(II)催化剂, 实现了对末端双键进行选择性环氧化. 对该反应的机理研究表明, 这是一个少有的过氧化氢对烯的亲核氧化反应. 2008年, Garcia-Bosch 等[61]报道用锰的配合物作催化剂, 在乙酸的存在下, 用过氧化氢氧化烯烃成环氧化物. 该方法的适应范围广, 具有很好的化学选择性. 李记太等[62]报道用KF/碱性Al 2O 3催化体系催化过氧化氢氧化查尔酮, 合成了一系列2,3-环氧-1,3-二芳基丙酮(Eq. 21). 反应条件温和, 收率在79%~99%, 对环境友好.离子液体溶剂与过氧化氢结合的反应体系在有机合成中表现出了独特的优越性[63,64]. 2003年, 香港理工大学陈德恒研究组[65]报道在室温下的离子液体介质中, 实现了亲酯性烯的高效率环氧化(Eq. 22). 2005年, Ya-maguchi 等[66]报道用衍生的吡啶六氟磷酸盐作离子液体, 改性固定的SiO 2, 用来催化烯的环氧化, 使这一反应体系在催化性能上具有均相催化剂的性能, 同时又具有异相催化体系分离产物和回收催化剂方便的优点.(22)氟相体系是一类以全氟化或高氟化的有机物为介质的液相体系, 在20世纪90年代已用于有机合成[67]. 2003年有报道, 在氟化醇(如三氟乙醇和六氟异丙醇等)介质中, 无其他催化剂的情况下, 直接用过氧化氢进行烯的环氧化[68]. 2006年, Berkessel 等[69]对在六氟异丙醇溶剂中的烯环氧化作了进一步研究, 在无其他催化剂的情况下, 烯的环氧化比在1,4-二氧六烷中的反应快1万倍(Eq. 23), 初步研究表明这种氟相介质能够大大降低反应的活化能. 显示了氟相体系在过氧化氢进行烯烃环氧化中的优越性.N o. 7 刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展991(23)超临界流体具有溶解能力强、物性可调、绿色无污染等优点, 常用于做理想的提取分离溶剂. 近来, 超临界流体尤其是超临界二氧化碳作为一种理想的绿色反应溶剂, 越来越受到青睐[70~72]. 2001年, Nolen等[73]在超临界二氧化碳介质中, 在不添加任何金属催化剂和过氧酸的情况下, 用过氧化氢水溶液氧化环己烯环氧化成环氧烷, 反应选择性高, 产率达到89%. 研究者认为反应过程中H2O和CO2可能原位生成过氧乙酸, 从而实现了在无其他催化剂条件下环氧化烯.3.3 过氧化氢用于合成醇、酚过氧化氢氧化烯合成醇是制备醇、酚的常用方法,研究的热点主要是筛选高性能的氧化反应体系以满足不同的合成反应要求. 2003年, Usui等[74]开发了一种清洁、安全的从烯烃合成反式邻二醇的方法, 该方法采用易于回收的磺酸树脂反应体系替代一般的有机溶剂和金属反应体系. 2005年, Trudeau等[75]报道了顺式邻二醇的合成方法, 所用催化剂为铑配合物(Eq. 24).苯酚的制备常采用Fenton试剂氧化苯及其衍生物的方法, 主要问题在于产物苯酚比反应底物更活泼, 易发生过氧化. 2003年, 中国科学院兰州化物所的邓有全研究组[76]实现了在水相-离子液体(3-甲基-1-辛基咪唑六氟磷酸盐)两相体系中, 用三(十二烷基硫酸)铁作催化剂高选择性地氧化苯制备酚. 产物酚进入水相, 与离子液体相中的催化剂、底物分开, 从而避免了酚的过氧化.反应的催化效率高, 选择性可达到90%以上. 2005年,Bernini等[77]报道采用三氧化甲基铼和过氧化氢为氧化催化体系, 从安息香醛合成苯酚的方法(Eq. 25). 反应介质可为[bmim]BF4或[bmim]PF6的离子溶液.(25)3.4 过氧化氢用于合成醛、酮醛、酮化合物应用很广, 其所含羰基是一种很活泼的基团, 是很多有机反应的中间体. 用过氧化氢作氧源氧化合成醛、酮, 反应条件一般比较温和, 可控, 副反应少. 1997年, N oyori等[40]报道了使用钨酸钠作催化剂,硫氢酸三辛基甲基铵作相转移催化剂, 用过氧化氢做氧化剂, 可以将芳甲醇氧化成醛(Eq. 26), 将仲醇氧化成酮(Eq. 27).(26)(27)2006年, 张燕飞等[78]报道一种合成酮醇的直接和温和的方法. 反应底物主要为芳基烯烃衍生物, 钨磷酸化合物为催化剂, 方法的产率和区域选择性较高(Eq.28).(28)苯乙酮的制备常用Friedel-Crafts反应和Wacker 反应, 但选择性往往较差, 产物分离困难, 并伴有大量有毒、腐蚀性废液产生. 2007年, Wang等[79]首次报道在超临界二氧化碳作反应介质, 用Au-Pd载体(Al2O3)催化剂催化过氧化氢选择性氧化苯乙烯制苯乙酮, 产物转化率达到68%, 选择性达到了87% (Scheme 4).Scheme 42008年, Ganguly等[80]用醛肟或酮肟制备酮. 用溴化钾和四水合钼酸铵作催化剂, 反应条件温和, 产率在80%以上. 龚树文等[81]也用四水钼酸铵和草酸配位形成配合物作催化剂, 实现由环己醇合成环己酮, 收率达85%. 据报道, 该法反应体系无卤素及相转移催化剂和992有 机 化 学 V ol. 31, 2011酸氧化法制备环己酮更环保, 是一种实用的环境友好型绿色清洁氧化方法. 苏金龙[82]在其2009年的硕士论文中首次报道用H 2O 2/Ti(SO 4)2体系催化氧化苄醇或其衍生物成相应醛、酮的方法(Eq. 29). 方法的部分产物的产率达到99%.(29)3.5 过氧化氢用于合成酸目前, 用过氧化氢氧化烯烃、醇、醛等制备相应的酸均有报道. 传统方法采用硝酸等作氧化剂, 所产生的废酸严重污染环境. 用过氧化氢氧化体系能从源头避免这一问题. 1997年, N oyori 等[40]报道了使用钨酸钠作催化剂, 硫氢酸三辛基甲基铵作相转移催化剂, 用过氧化氢作氧化剂, 可以氧化伯醇成酸, 最高产率达到了96%, 该反应适用于链烷基或芳基取代的伯醇. 1998年, N oy-ori 等[42]用过氧化氢氧化环已烯制备已二酸取得重大突破. 同样使用上述催化体系, 且不使用有机试剂和卤化物, 使已二酸的产率达到了90%以上(Eq. 30). 同时提出了这一反应的机理(Scheme 5). 该反应体系对环辛烯和庚烯等更大的烯类为底物的反应效果欠佳, 主要原因是这类烯在氧化形成环氧化物后比较稳定, 不易发生水解裂键.(30)Scheme 52000年, N oyori 研究组[41]发现, 同样在该反应体系下, 当不使用钨酸钠等金属催化剂时, 可以选择性地把含有吸电子取代的链烷基醛或苯甲醛氧化成相应的酸, 而伯醇基、仲醇基和烯基不受影响(Eq. 31).(31)为了拓宽过氧化氢合成酸反应的底物适用范围以及使用更为经济的反应体系, 国内外研究人员开展了更[83]化铵为相转移催化剂, 用磷钨酸催化氧化环己烯合成己二酸, 收率可达87%. 2004年, 丁宗彪等[84]也报道了过氧化氢氧化环己烯合成己二酸的方法, 该反应不使用相转移催化剂, 直接用钨酸钠或磷钨酸为催化剂. 2005年, 曹发斌[85]报道了对以上合成方法的改进, 以钨酸/有机酸性添加剂为催化体系, 在无有机溶剂、相转移剂的情况下, 催化30%过氧化氢氧化环己烯合成己二酸, 产率达90%以上, 有机酸性添加剂可以为磺酸水杨酸、间苯二酚等.3.6 过氧化氢用于合成酯用过氧化氢合成酯的方法较多, Baeyer-Villiger 氧化反应是其中的一个重要方法. 2000年, Gopinath 等[86]报道用氧化钒作催化剂, 在高氯酸存在下, 催化过氧化氢氧化芳甲醛与甲醇反应生成芳甲酸甲酯. 反应条件温和, 反应时间短, 产率高, 目标产物易分离(Eq. 32).(32)2002年, Murahashi 等[87]报道用他们合成的一种具有手性结构的催化剂用于不对称Baeyer-Villiger 氧化反应, 合成环内酯(Eq. 33). 2003年, Mutsumura 等[88]也用Baeyer-Villiger 反应, 以过氧化氢或过氧化氢的尿素加合物作为氧化剂, 钴配合物为催化剂, 从3-苯基环丁酮合成相应的内酯, 获得了68%的产率和87%的ee 值 (Eq.34).(34)2007年, 兰州大学黄国生研究组[89]报道了一类酮羰基的α位活泼氢的取代反应. 该反应在过氧化氢和碘苯作用下, 对酮的α位进行乙酰氧基化(Eq. 35).(35)N o. 7刘洋等:绿色化学试剂过氧化氢在有机合成中的应用研究进展9933.7 过氧化氢用于合成有机卤代化合物有机卤代化合物的合成有几个问题: 一是有机卤代反应的化学选择性较差, 副产物多; 二是往往直接用卤素作卤化剂, 污染大; 三是碘代物的合成较困难. 2004年, Iskra 等[90]报道了一种合成碘苯的方法. 该方法使用硫酸进行催化, 用过氧化氢和KI 在甲醇介质中对富电子的苯进行碘化反应. 反应的选择性好, 分离产率达到了97% (Eq. 36).(36)佟拉嘎等[91]报道以噻吩、48% (m /m )氢溴酸水溶液、35% (m /m )过氧化氢水溶液、高纯氨、金属钠为原料, 以(dppp)NiCl 2为催化剂, 合成了3-溴噻吩和3,4-二溴噻 吩. 2006年, Terentev 等[92]报道羰基α位的双溴化方法.反应用H 2O 2 -HBr 溶液体系对1-芳基乙酮以及其衍生物的甲基位进行双溴化反应(Eq. 37). 反应速度快, 不足之处是富电子的芳基环上易发生溴化.(37)Kirihara 等[93]报道了羰基α位的另一种溴化方法.反应为β-二酮的单溴化反应, 反应在KBr, HCl, 过氧化氢体系中进行, 反应适用底物范围广, 化学选择性高, 且是个定量反应(Eq. 38).(38)3.8 过氧化氢用于合成其他有机化合物使用过氧化氢参与的有机反应合成的有机物种类还有很多. 2002年, Ichihashi 等[94]报道了一种更为“绿色”的用环己酮合成己内酰胺的方法(AE =75%, E =0.32)取代了原有的硫酸氧化法(AE =29%, E =4.5), 大大提高了反应的原子效率(AE ), 降低了环境影响因子(E ), 该反应采用钛硅分子筛(TS-1)作催化剂(Eq. 39).(39)2004年, Defoin[95]报道了以芳胺为起始物, 用钼化合物为催化剂合成亚硝基芳烃的方法, 产物可控进一步氧化成硝基芳烃(Eq. 40). 2007年, Žmitek 等[96]报道用单质碘催化过氧化氢氧化酮合成偕二过氧化氢的方法, 芳基醛也可发生类似反应(Eq. 41).(40)(41)Kirihara 等[97]用催化量的碘离子或碘单质催化硫醇成二硫化物, 反应的分离产率达到了99% (Eq. 42). Bahrami 等[98]报道了一种简洁有效的一锅法合成取代苯并咪唑的方法. 目标产物可在乙腈、过氧化氢、HCl 体系中用邻苯二胺和芳醛于室温下合成, 反应产物易分离, 产率均在96%以上(Eq. 43).(42)(43)李洪珍等[99]连续报道了氨基硝基呋咱的合成方法研究(Scheme 6), 其采用的反应体系均为H 2O 2/ CH 3SO 3H/Na 2WO 4或(NH 4)2S 2O 8. 以67%的产率获得了3-氨基-4-硝基呋咱(ANF), 以54.7%的产率得到3,3'-二硝基-4,4'-偶氮呋咱(DNAzF). 后来又以高于65%的产率合成了ANF 和3-氨基-3'-硝基-4,4'-氧化偶氮呋咱(ANAF); 并首次合成了3-氨基-3'-硝基-4,4'-偶氮呋咱(ANAzF), 收率为15%[100].Scheme 62009年, 苏金龙[82]报道首次用H 2O 2/V 2O 5催化体系和H 2O 2/Ti(SO 4)2催化体系促进汉斯酯1,4-二氢吡啶芳构化, 目标产物的收率均在94%以上(Eq. 44). 其中H 2O 2/V 2O 5催化体系比H 2O 2/Ti(SO 4)2催化体系在反应时间等方面更具优势.。

沸腾床过滤技术处理MTO急冷水总结

沸腾床过滤技术处理MTO急冷水总结

沸腾床过滤技术处理MTO急冷水总结许洪俊(中石化项目管理有限公司,江苏省南京市210000)摘要:甲醇制烯烃(MTO)项目普遍存在急冷水中含有有机物及催化剂粉末的情况,导致水洗塔操作不稳定,换热器换热效率下降,需经常离线清洗,运维劳动强度大、费用高,严重影响装置的长期、安全稳定运行。

通过分析比较目前常用的几类分离方法,提出沸腾床过滤法在急冷水的深度净化上具有较大竞争优势,重点对沸腾床的分离过程进行了详细介绍。

结合实际案例,提出沸腾床过滤技术在MTO急冷水中的改造方案,通过已实施的项目,MTO急冷水中的总悬浮物浓度由改造前的2000mg/L降至小于30mg/L,为MTO急冷水系统的稳定运行提供了保障。

关键词:沸腾床过滤 MTO 急冷水 催化剂细粉 甲醇制烯烃(MTO)是煤化工的重要组成部分,是煤制烯烃项目的核心装置。

MTO反应再生单元主要是将甲醇转化生成乙烯、丙烯等低碳烯烃,并通过急冷水系统将产品气冷凝,脱除夹带的催化剂、氧化物、烃类及回收热量。

急冷水系统的工艺水在系统中不只存在于反应再生单元,同时也经过分离单元加热器及空冷器等设备,急冷水中杂质如处理不达标将影响MTO装置的长期稳定运行。

1 MTO急冷水系统存在的问题多套已投产的采用高效甲醇制烯烃全流程技术的MTO装置(S MTO装置)均采用了催化流化床反应技术,催化剂颗粒小、易夹带,产品气会夹带部分细小含磷催化剂颗粒进入水系统。

装置在开车一段时间后,都出现了水洗塔压差波动频繁;水洗水系统换热器换热效率下降;空冷器堵塞,需频繁离线清洗换热器;急冷水连续排放造成下游污水处理装置来水磷含量超标,水质不合格。

同时由于急冷水夹带有机物杂质及催化剂粉末,造成仪表阀门导压管堵塞、仪表指示波动、控制阀门的阀座与阀芯及测量仪表的取源部件冲刷严重、工艺介质在仪表设备上结垢严重,使仪表测量误差增大[1],影响装置的稳定操作。

2 原因分析2.1 反应副产物复杂尽管MTO反应原料相对单一,但副反应极其复杂。

有机朗肯循环实验

动力工程学院本科生创新实验报告题目:有机朗肯循环:废热余热利用关于有机朗肯循环系统性能测试实验学 号:2009XXXX班 级:热能与动力工程X 班 姓 名:XX 教 师:XXX动力工程学院中心实验室2013年1月实验名称:试实验注意:1.实验成绩按照百分制给出。

2.教师评定成绩根据实际情况时要有区分度。

3.本页由指导教师填写。

报告内容1.实验背景能源是推动人类社会发展的动力,随着煤炭、石油、天然气等化石能源消耗量的不断攀升,以及能源消耗带来的环境负担(如二氧化碳排放、酸雨等),能源和环境问题已成为全世界共同关注的重大问题。

能源利用形式不仅要讲究环境友好型,而且能源利用效率也要讲究高效型。

经过人类的不断研究,高温热源利用技术已经相对成熟,为了更好地缓解能源压力,人类开始对新能源进行探索,同时也开始对低品位能源利用技术进行研究。

因此,各种能源利用形式开始出现:太阳能、风能、潮汐能、地热能、生物质能、工业废热等。

因此,对低品位能源(如工业废热)形式的利用,人类开始有机朗肯循环技术进行探索。

本实验对于有机朗肯循环系统利用废热进行了简单介绍及其性能进行实验研究。

2.研究进展有机朗肯循环(Organic Rankine Cycle,ORC)是以有机物代替水作为工质,回收低品位热能的朗肯动力循环。

有机物朗肯循环的研究最早始于1924年,有人以二苯醚作为ORC工作介质进行了研究。

1966年有学者撰文指出可应用有机朗肯循环回收低品位的热能,一时之间以氟利昂为工质回收低品位热能的朗肯循环引起了各国学者的广泛关注。

Curran H M J,Badr O J,Giampaolo G 等人在有机朗肯循环的设计、运行及工质选择等方面开展了较深入的研究工作。

我国自20世纪80年代开始对有机朗肯循环进行研究,分析了有机朗肯循环的热力系统及效率,论证了有机朗肯循环中工质的选择与循环参数的确定及对八种常用的氟里昂的动力粘度在100~450K范围内求出拟合公式。

小型液氢储罐的结构设计及制造

3700m m17000 mm图1 液氢储罐外观结构示意图Fig. 1 Schematic diagram of appearance structure of liquidhydrogen storage tank液氢储罐为真空绝热深冷压力容器,由内容器和外容器套合组成双层卧式圆柱形筒体。

液氢储罐内容器采用S31608不锈钢,能够满足-253 ℃的最低设计金属温度。

根据液氢储罐外罐的设计温度(-40~150 ℃),16MnDR和奥氏体不锈钢均符合“选取的材料应能满足-40 ,男,教授级高工,主要从事铁路深冷装备,液氢装备及铁路冷链装备研发设计及技术管理等工作。

2 液氢储罐内外容器之间绝热材料测试Fig. 2 Test of thermal insulation materials between inner and outer containers of liquid hydrogen storage tank在液氢储罐内外容器套合形成夹层空间后,进行抽真空处理。

容器夹层和各真空管路夹套各自独立,在罐体上设置有ZK-50-2型超高真空阀,抽口直径为DN50,采用金属密封结构,a. 焊接工装设备b. 焊缝细节3 焊缝采用P+T等离子焊接工艺Fig. 3 Weld adopts P+T plasma welding采用实时成像工艺对容器及管路上所有进行100%的射线探伤,2015标准规定的II级要求;对类焊缝进行了100%的渗透表面探伤,符合—2015标准规定的I级要求。

液氢储罐内容器内外表面及外壳内壁均进行了酸洗钝化处理,制造过程中严密控制和检查容器内部、夹层及管道内的多余物和洁净度,进行清洁、脱脂处理并禁油,脱脂后及时将脱脂件内部残液排净,并用高纯氮气吹干,确保图4 低温性能测试Fig. 4 Low temperature performance test第5期STRUCTURAL DESIGN AND MANUFACTURE OF SMALL-SCALELIQUID HYDROGEN STORAGE TANKHe Yuanxin 1,2,Xiong Zhenyan 1,Wang Hongxing 3,Yuan Jiao 1,Wu Huimin 1,Liu Guozhu 1(1. Institute of Cold Transportation Equipment ,Yangtze Corporation of China Railway Rolling Stock Corporation ,Wuhan 430212,China ;2. Mobile Pressure Vessel Technical Committee ,National Technical Committee for Standardization of Boiler and Pressure Vessel ,Shanghai 200240,China ;3. Tianjin University of Science and Technology ,Tianjin 300457,China )Abstract :In order to meet the storage requirements of small volume liquid hydrogen of a project ,a 4 m 3small-scale liquid hydrogen storage tank is developed. The tank body adopts high vacuum multilayer insulation structure ,the support structure between inner and outer containers adopts metal support structure at both ends , and Ag400 adsorbent is used to control the vacuum degree of interlayer. In terms of main material ,the inner container adopts S31608 stainless steel ,the shell adopts S30408 stainless steel ,and PAW+GTAW plasma welding ,real-time imaging and cantilever assembling manufacturing process are adopted. The test results under the condition of loading liquid nitrogen show that the vacuum degree of the body interlayer of the designed small-scale liquid hydrogen storage tank is 3.5×10-3 Pa ,and the static daily evaporation rate is 0.82%.Keywords :liquid hydrogen ;storage tank ;high vacuum multilayer insulation ;static evaporation rate技术应用何远新等:小型液氢储罐的结构设计及制造。

储存Ⅰ级和Ⅱ级毒性液体的储罐与可燃液体储罐成组布置分析

储存Ⅰ级和Ⅱ级毒性液体的储罐与可燃液体储罐成组布置分析发布时间:2022-04-24T07:24:19.771Z 来源:《福光技术》2022年6期作者:王长乐[导读] 以石化企业工程建设过程中对可燃液体储罐、储存极度危害(Ⅰ级)和高度危害(Ⅱ级)毒性液体成组布置时采用及执行的国家标准规范交叉与重叠为例,结合GB50160-2008(2018年版)《石油化工企业设计防火标准》与GB50351-2014《储罐区防火堤设计规范》标准条款不一致问题,项目在建设过程中对建设单位、勘察设计单位、政府监管部门提出相应的分析与建议,供参考。

南京合创工程设计有限公司摘要:以石化企业工程建设过程中对可燃液体储罐、储存极度危害(Ⅰ级)和高度危害(Ⅱ级)毒性液体成组布置时采用及执行的国家标准规范交叉与重叠为例,结合GB50160-2008(2018年版)《石油化工企业设计防火标准》与GB50351-2014《储罐区防火堤设计规范》标准条款不一致问题,项目在建设过程中对建设单位、勘察设计单位、政府监管部门提出相应的分析与建议,供参考。

关键词:液体储罐;标准规范;成组布置;防火堤;Ⅰ级和Ⅱ级毒性一、同一石化企业存在多个标准重叠交叉实施江苏某石化企业装置中间罐区依据GB50160-2008(2018年版)《石油化工企业设计防火标准》第6.2.5条将苯、甲苯/肟、甲苯和丙酮成组布置在同一个罐区的罐组内。

在工程设计进行安全设施设计专篇审查的过程中,评审的专家组提出“苯”的毒性为极度危害液体,不符合国家标准GB50351-2014“储存极度危害液体储罐和高度危害液体的储罐不应同其它类的易燃液体储罐和可燃液体储罐布置在同一个防火堤内”的规定。

针对上述专家提出的审查意见以及对目前在运行的工厂安全检查情况了解到,专家在项目设计过程中或对在运行的工厂安全检查中,对同一企业工程项目中采用、实施不同的标准规范是比较普遍的,对可燃液体储罐和有毒液体储罐的分组布置问题一直也争论不断。

关于低温液体储罐安装安全要求

关于低温液体储罐安装安全要求
一、液氧容器一般安装在室外,当液氧总贮存量不超过10 m3时,允许安装在防火耐热、耐火极限不低于1. 5h非燃烧材料建筑的室内,且必须是具有良好通风条件、人员流动少的单独房间。

明火间距不小于20m.
二、液氮、容器宜安装在室外。

若安装在室内,其安装场所应符合
4.2.3 的规定,且气体紧急放空口必须引出室外安全处。

放空口直设在高出操作面3m 以上的安全处。

三、液氧容器不得安装在经常有人逗留的房间上下层。

四、液氧容器安装在室外,必须设有导除静电的接地装置及防雷击装置。

防止静电的接地电阻不应大于10Ω;防止雷击装置的最冲击电阻为30Ω。

五、容器不准安装在出入口、通道、楼梯间或距它们5m 的范围内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.1有机液体储罐 7.1.1工艺描述 再许多工业中都可以发现盛装有机液体的储罐,包括(1)石油生产与提炼,(2)石油化学品和化工生产,(3)储存库和中转库,和(4)消耗或生产有机液体的其他产业。在石油工业中,有机液体通常被称为石油液体,通常是具有不同真实大气压的碳氢化合物的混合物(例如,汽油和原油)。在化工工业中,有机液体通常被称为挥发性有机液体,它是由具有相同真实大气压的纯化工产品或化工产品的混合物(例如,苯或异丙醇和丁醇的混合物)。 有机液体的储罐有六种基本罐体设计:固定顶罐(立式和卧式)、外浮顶罐、拱顶外(或覆盖的)浮顶罐、内浮顶罐、可变蒸汽空间罐和压力罐(低压和高压)。每一种罐都将在下面部分简短描述。与各种罐相关的损耗机理见7.1.2。 在7.1节提供的排放估算方程式是由美国石油协会(API)开发的。API保留这些方程式的版权。 API已允许非独家,非商业性的分发给政府和监管机构。但是,关于所有的商业复制和发行它的资料API保留一切权利。因此,在7.1节中展现的材料可供公众使用,但如果没有从美国石油学会、美国环境保护署获得书面许可,就不能出售该材料。 7.1.1.1固定顶罐 常见的立式拱顶罐如图7.1-1所示。这种类型的储罐由带有永久性附加罐顶的圆柱形钢壳组成,其罐顶可以有锥形、圆拱顶形到平顶的不同设计。固定顶罐的损耗是由温度、压力和液位的变化造成的。 固定顶罐装有自由排气孔或呼吸阀,后者可以使储罐能在极低内压或真空下操作,以防止在温度、压力或液面微小变化的情况下蒸气释放。对于目前的罐体设计,固定顶罐是造价最低的而且对于储存有机液体是最低可接受的罐体。 卧式固定顶罐可以建造成地上和地下,通常是由钢或钢与玻璃纤维涂层或加固的玻璃纤维聚酯为材料。卧式储罐的容积一般低于40000加仑。建造卧式储罐的长度不大于直径的六倍从而保证结构的稳定性。卧式储罐通常配有呼吸阀、测量口和采样口,还有进入罐体的人孔。此外,地下罐可以被负极保护从而避免罐体的腐蚀。阴极保护是通过在罐内放置的牺牲阳极并将其连接到一个外加电流系统或利用罐内的电化阳极来实现的。但是,应对腐蚀的内部阴极保护不再广泛用于石油行业,这是由于大多数精炼的石油产品中都含有缓蚀剂。 地面的卧式罐的潜在排放源头和立式固定顶罐一样。地下罐的排放主要是由罐内的液位变化造成的。对于地下罐由于温度或气压变化引起的损耗是最小的,因为周围的土地限制了白天的温度变化,而且由气压变化而造成的损失很小。 7.1.1.2外浮顶罐 一个典型的外浮顶罐(EFRT)是由一个开放的圆柱形钢壳和漂浮在储存液体表面的浮顶组成。浮顶是由一个浮盘、专用附件和边缘密封装置组成。目前使用的浮盘都是使用焊接钢板建造的,分为两种类型:浮筒型和双盘式。浮筒型和双盘式外浮顶罐分别见图7.1-2和7.1-3。所有类型的外浮顶罐,浮盘随着罐内液面上下浮动。外浮顶配有一个边缘密封系统,它连接在浮盘的外缘并与罐壁接触。浮顶和密封装置系统是为了减少储存液体的蒸发损耗。在密封装置和罐壁间仍存在一些环形空间。当浮顶上升和下降时,密封装置沿着罐壁滑动。浮盘也有配件,这些配件穿过浮盘并提供操作功能。以限制储存液体的蒸发损失、限制从边缘密封系统和浮盘配件及管壁上液体(挂壁液体)蒸发造成的损失为目标设计外浮顶。 7.1.1.3内浮顶罐 内浮顶罐(IFRT)不仅具有固定的罐顶而且里面有一个浮顶。内浮顶罐具有两种基本的类型:一是内部有垂直圆柱支撑固定罐顶的内浮顶罐,二是没有圆柱支撑的自支撑式固定罐顶的内浮顶罐。用浮顶改造的固定顶罐属于典型的第一种。外浮顶罐加盖改造属于典型的自支撑式内浮顶罐。新建的内浮顶罐则两种类型都有可能。内浮顶罐的浮顶随液面水平的变化而升降,浮顶或直接飘在液体表面(接触型浮顶),或悬浮在液面几英寸以上的浮桶上(非接触型浮顶)。目前在用的大多数铝制内浮顶用于非接触型浮顶。典型的内浮顶罐见图7.1-4。 接触型浮顶可能是(1)由螺栓连接而成的三明治式铝夹层板,通过蜂窝铝芯漂浮在液面上;(2)也可能是漂浮在液面上带有或不带有浮桶的钢制盘式内浮顶;(3)或是漂浮在液面上的带树脂涂层的玻璃钢浮力板。目前在用的大多数内接触型浮顶都是三明治式铝夹层板内浮顶或钢制盘式内浮顶。玻璃钢浮顶是很少见的。钢制盘式内浮顶的面板通常是通过焊接连接的。 非接触型浮顶是目前最常用的形式。典型的非接触型浮顶是由铝板和铝网格框架构成,铝网格框架通过管状铝浮桶或其他浮力结构支撑在液面上。非接触型浮顶通常是通过螺栓连接的。安装浮顶可使储液蒸发损失最小化。接触型和非接触型浮顶都包括边缘密封和浮顶配件,以达到和之前描述的外浮顶罐同样的目的。浮顶蒸发损失可能来自于浮顶配件、非焊接板缝和浮顶与罐壁之间的环形空隙。这些罐通过固定罐顶顶部的循环排气口来实现自由排气。排气口减少了罐内气相空间有机蒸气积累接近可燃浓度的可能性。没有自由排气的内浮顶罐可认为是一个压力罐。这种罐的排放估算方法不在AP-42提供。 7.1.1.4拱顶外浮顶罐 拱顶外(或覆盖型)浮顶罐使用比外浮顶罐更重的甲板以及像内浮顶罐一样的固定罐顶。拱顶外浮顶罐通常有外浮顶罐加一个固定罐顶改造而成。这种类型的罐与内浮顶罐非常相似,都使用焊接板和自支撑式固定罐顶。典型的拱顶外浮顶罐见图 7.1-5。 与内浮顶罐一样,固定灌顶的作用不是作为隔气层,而是为了防风。固定顶罐的类型通常是自支撑式铝制拱顶,铝制拱顶用螺栓固定。与内浮顶罐很像,这种罐也通过固定罐顶顶部的循环排气口来实现自由排气。但是,浮顶配件和边缘密封却与外浮顶罐是相同的。当浮顶由更轻的IFRT-型浮顶代替时,这种罐就可以认为是内浮顶罐。 7.1.1.5 可变气相空间罐 可变气相空间罐配有可膨胀的容器,可适应由温度和大气压力改变而引起的蒸汽体积波动变化。尽管可变蒸汽空间罐有时也独立使用,但通常它们是与一个或多个固定顶罐的蒸汽空间相连的。最普通的两种可变蒸汽空间罐类型是升降式浮顶罐和膜式柔性浮顶罐。 升降顶式罐装有一个可收缩式浮顶,松散安装在主要罐壁的外围。浮顶和罐壁之间的空隙可通过一种充满液体的水槽液封,或使用一种活性涂层织物固封。 膜式柔性浮顶罐使用柔性膜来提供可扩展体积。这种罐或者是独立储气单元,或是安装在固定顶罐顶部的整体单元。 可变蒸汽空间罐损失发生在装罐时,此时蒸汽被液体所替代。蒸气损失只发生在超过罐内存储能力时。 7.1.1.6 压力罐 通常使用的有两种等级的压力罐:低压罐(2.5-15 psig)和高压罐(> 15 psig)。压力罐通常是用来存储高蒸汽压的有机液体和气体,具有多种形状和尺寸,这取决于罐的操作压力。压力罐装有呼吸阀,用来防止沸腾排气损失和每日温度或大气压变化引起的呼吸损失。高压储罐实际中可以在无蒸发或工作损失下操作。在低压罐中,工作损失可能伴随着装罐的大气排气而发生。无法得到适当的关联方法用于估算压力罐的蒸发损失。 7.1.2蒸发机理和控制 有机液体储存过程的排放是由于储存过程中有机液体的蒸发和储罐的液位变化。由于储罐设计不同,排放源也不同,排放源与罐型密切相关。固定顶罐的排放是由于储存过程中造成的蒸发损耗(即小呼吸损失)和充装、出料操作时的蒸发损耗(即大呼吸损失)。内浮顶罐和外浮顶罐是排放源,这是由于储存期间和从罐内向外发油时产生蒸发损耗。静止储存损耗是通过边缘密封、浮盘配件、和/或浮盘缝隙密造成的。固定顶罐和内外浮顶罐的蒸发机理在这部分有更详细的描述。可变蒸汽空间罐也是排放源,这是由充装操作时蒸发损耗造成的。可变蒸汽空间罐的蒸发机制在这部分也将详细描述。压力罐也是如此,但是,压力罐的损耗机理不在这部分描述。 7.1.2.1固定顶罐 固定顶罐两种主要的排放类型是储存损耗和工作损耗。储存损耗是指油气的膨胀和收缩而排出的油气,这是由温度和大气压力的变化而造成的。即使储罐的液位不发生变化这种损耗也发生。 充装和出料时的组合损耗称为工作损耗。充装操作时蒸发是由于罐内油品液位的增加造成的。随着液位的增加,罐内的压力超过了呼吸阀的释放压力,使油气从罐内排出。出料时蒸发损耗的发生是由于油品移出罐时,进入罐内的空气被有机蒸气饱和并膨胀,超过气相空间的容量造成的。 固定顶罐的排放量是罐容积、储存液体的蒸汽压、罐的利用率,以及储罐所在位置的大气条件的函数。 对固定顶罐的排放控制常用集中方法。通过安装一个内浮顶和边缘密封以减少储存产品的蒸发。这个方法的控制效率范围可从60%到90%,这取决于罐顶的形式和安装的密封装置以及储存有机液体的种类。 蒸气平衡是另一种控制排放的方法。经常用于加油站中储罐的充装。当向罐内充装汽油时,储罐内排出的蒸气被导入出料汽油罐车中。卡车将油气运到一个集中站,在那里使用油气回收或油气控制系统来控制排放。如果油气经过回收或控制利用,那么蒸汽平衡的方法的控制效率可以达到90%到98%。如果卡车将油气直排到大气而不是进行回收或控制利用,那么将达不到任何控制效果。 油气回收系统收集罐内排放出的油气,并将其转化为液体。应用的几种油气回收方法包括气/液吸收法、油气压缩法、冷凝法、气/固吸附法或这些方法的组合。整个油气回收系统的控制效率可高达90%到98%,这取决于采用的方法、单元的设计、回收油气的组成,以及该系统的机械状态。 在一个典型的氧化焚烧系统中,油气混合物通过一个燃烧器直接注入焚烧炉的燃烧区域。该系统的控制效率范围为96%到99%。 7.1.2.2浮顶罐2-7 浮顶罐的总的排放是出料损失与静止储存损耗之和。当液位(即浮顶)下降时产生出料损失,这时一些油品粘附在罐内壁上,然后蒸发。对于一个内浮顶罐具有一个支撑固定顶的圆柱,一些液体也粘附在圆柱上从而蒸发掉。直到罐内充满,而且裸露的表面再次被覆盖后才会发生蒸发损耗。浮顶罐的静止储存损耗包括边缘密封和浮盘配件损耗,对于内浮顶罐也包括浮盘缝隙的损失,除了焊接的浮盘。其他潜在的静止储存损耗类别包括由于温度和压力的改变而引起的呼吸损耗。 边缘密封损耗的发生有很多复杂的原因,但对于外浮顶罐,大部分边缘密封油气损耗是由于风导致的。对于内浮顶罐或有拱顶的外浮顶罐边缘密封损耗机理中风不是主导因素。由于边缘密封材料的渗透蒸发或通过液体的毛细作用也会导致蒸发损耗,但是如果选择正确的密封材料将不会发生密封材料的渗透。测试表明相对于包括风因素在内的总损耗中,呼吸、溶解和毛细作用所造成的损耗是小的。在这个部分提到的边缘密封系数合并了所有形式的损耗。 边缘密封系统常常用于液位变化时,允许浮顶在罐内升降。边缘密封系统也用于填充浮盘边缘与罐壁间的环形间隙,从而减少该区域的蒸发损耗降。边缘密封系统可以只是一次密封或一次密封和安装在一次密封上面的二次密封系统组成。一次密封和二次密封配置的例子见图7.1-6、7.1-7、7.1-8。 一次密封通过将浮盘的边缘和罐壁间的环形间隙闭合形成蒸发屏障。外浮顶

相关文档
最新文档