信号与系统期末复习真题(天津大学) (1)
信号与系统期末考试试题

期末试题一、选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果-———-——-( ) (A )f (-2t )右移5 (B)f (-2t )左移5 (C )f (-2t )右移25 (D)f (—2t )左移252.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f —————() (A )1—at e - (B )at e -(C ))1(1at e a -- (D )at e a-13.线性系统响应满足以下规律——-———-——-——( )(A)若起始状态为零,则零输入响应为零. (B )若起始状态为零,则零状态响应为零。
(C )若系统的零状态响应为零,则强迫响应也为零。
(D )若激励信号为零,零输入响应就是自由响应。
4.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)231(-t f 进行取样,其奈奎斯特取样频率为—-—-———-( )(A )3f s (B )s f 31 (C)3(f s —2) (D ))2(31-s f 5.理想不失真传输系统的传输函数H (jω)是 —————-——( )(A )0j t Ke ω- (B )0t j Ke ω- (C)0t j Ke ω-[]()()c c u u ωωωω+--(D )00j t Keω- (00,,,c t k ωω为常数)6.已知Z 变换Z 1311)]([--=z n x ,收敛域3z >,则逆变换x (n )为——( )(A ))(3n u n (C)3(1)nu n -(B))(3n u n -- (D ))1(3----n u n二.(15分)已知f(t )和h (t)波形如下图所示,请计算卷积f(t)*h (t),并画出f(t)*h (t)波形。
三、(15分)四.(20分)已知连续时间系统函数H (s),请画出三种系统模拟框图(直接型/级联型/并联型)。
信号及系统期末考试试题及答案

信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统期末考试复习题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
天津大学《信号与系统》真题2010年

天津大学《信号与系统》真题2010年(总分:159.98,做题时间:90分钟)一、{{B}}{{/B}}(总题数:10,分数:60.00)1.已知在某输入信号的作用下,LTI连续系统响应中的自由响应分量为(e-3t+e-t)·u(t),强迫响应分量为(1-e-2t)·u(t)。
试判断以下说法中哪些是正确的:A.该系统一定是二阶系统B.该系统一定是稳定系统C.系统的零输入响应中一定包含(e-3t+e-t)·u(t)D.系统的零状态响应中一定包含(1-e-2t)·u(t)(分数:6.00)__________________________________________________________________________________________ 正确答案:(解:强迫响应是特解,由激励信号确定;自由响应是齐次解,由系统确定。
强迫响应全部组成零状态响应;自由响应中一部分组成零输入响应,一部分组成零状态响应。
A:若自由响应分量为(e-3t+e-t)·u(t),即系统有极点p1=-1,p2=-3,是二阶系统。
B:由于系统有极点p1=-1,p2=-3,全部在左半平面,因而系统稳定。
C:系统的零输入响应全部来自于自由响应,且与起始条件共同决定,因而由不同的起始条件,可以得到不同的零输入响应,不一定包含(e-3t+e-t)·u(t)。
D:系统的零状态响应由输入和系统二者共同决定,不同的输入信号,有不同的零状态响应,不一定包含(1-e-2t)·u(t)。
因此,A、B两种说法是正确的,C、D两种说法错误。
)解析:2.信号f1(t)和f2(t)的波形如下图所示,若令y(t)=f1(t)*f2(t),且已知y(-1)=A,y(1)=B,试求A和B的值。
(分数:6.00)__________________________________________________________________________________________ 正确答案:(解:由题意,可知y(t)=f1(t)*f2(t)=[*]f1(t-τ)f2(τ)dτ,则:[*])解析:3.试画出信号-2t*u(t)]的波形图。
信号与系统期末考试题及答案(第一套)

信号与系统期末考试题及答案(第⼀套)信号与系统期末考试题及答案(第⼀套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
⼀、填空(共30分,每⼩题3分)1. 已知某系统的输⼊输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、⾮线性)(时变、⾮时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最⾼⾓频率为,则对信号进⾏时域取样,其频谱不混迭的最⼤取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅⽴叶变换=。
不存在8. 已知⼀离散时间系统的系统函数,判断该系统是否稳定。
不稳定9.。
310. 已知⼀信号频谱可写为是⼀实偶函数,试问有何种对称性)sgn(t )(t δ)(k δ)(t ε)(k ε)0(2)()()(2X dt t df t f t t y +=)(t f ________________?∞-=-+32_________)221()32(dt t t t δ?∞∞-=--_________)24()22(dt t t εε??∞∞-==--1)24()22(21dt dt t t εε},3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε)()(21k f k f *________}12,26,21,9,2{)()(21↓=*k f k f )(t f ),(),()(00为常数t K t t Kf t y f -=)(ωj H ________=)(t h ________0)(t j Ke j H ωω-=)()(0t t K t h -=δ)(t f )(Hz f m )2()()(t f t f t y ==max T ________m ax T )(6121max max s f f T m==)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+?∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f。
信号与系统 期末复习试卷1

, 22t k
第2页共4页
三、(10 分)如图所示信号 f t,其傅里叶变换
F jw F
f t,求(1)
F
0
(2)
F
jwdw
四 、( 10
分)某
LTI
系统的系统函数
H s
s2
s2 2s 1
,已知初始状态
y0 0, y 0 2, 激励 f t ut, 求该系统的完全响应。
参考答案 一、选择题(共 10 题,每题 3 分 ,共 30 分,每题给出四个答案,其中只有一 个正确的)1、D 2、A 3、C 4、B 5、D 6、D 7、D 8、A 9、B 10、A
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、 0.5k uk 2、 (0.5)k1u(k)
3、
s s
2 5
5、 (t) u(t) etu(t)
8、 et cos2tut
三、(10 分)
6、 1 0.5k1 uk
9、 66 , 22k!/Sk+1 s
解:1)
F ( ) f (t)e jt dt
Atut Btut 2 Ct 2ut Dt 2ut 2
10、信号 f t te3tut 2的单边拉氏变换 Fs等于
A
2s
s
7 e 2s3 32
C
se
s
2 s 3
32
B
e 2s
s 32
D
e 2s3
ss 3
二、填空题(共 9 小题,每空 3 分,共 30 分)
1、卷积和[(0.5)k+1u(k+1)]* (1 k) =________________________
信号与系统期末考试题库及答案

信号与系统期末考试题库及答案1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。
B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。
C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。
D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。
3.下列说法不正确的是( D )。
A 、一般周期信号为功率信号。
B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。
A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。
A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。
A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。
A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。
天津工业大学2019-2020学期信号与系统期末试卷

封
线
----------------------------------------
密封
线
-------------密封
线
---------------------------------------
信号与系统第1页共4页天津工业大学20192020学年第2学期信号与系统期末试卷a2020
天津工业大学2019-2020学期信号与系统期末试卷
《信号与系统》第 1 页 共 4 页 天津工业大学(2019—2020学年第2学期) 《信号与系统》期末试卷A 2020. 6 理学院)
一. 填空题(每小题 3 分) 1. 请写出冲击信号()t δ的 : 。 2. 请写出信号()()x t sgn t =的频谱()X j ω的表达式: ,幅度频谱为 和相位频谱为 。 3. 写出sin()()t t δ= , sin()*()t t δ= 。 4. 请写出()t e u t λ-的单边拉普拉斯变换()X s : 。 5. 请写出下列常见信号的傅里叶变换,{()}F u t = , {()}t F e u t α-= , {()}F t δ= 。 二. 判断题(每小题 7 分) 1. 判断下列连续时间系统是否为线性系统,并说明理由。 ()()2(0)dx t y t y dt =+
学院
专业班
学号
姓
名 装
订线装订线装订线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津大学试卷专用纸 学院 精仪学院 专业
三、 (15 分)如图所示系统,已知 f (t ) F ,
班
年级
学号
姓名
A 共 3 页 第3 页
5 1 1 (1)试画出 f (t)、f1(t)、 四、 H ( j) j sgn() , (15 分)已知因果离散系统差分方程 y k y k 1 y k 2 f k 。1)求系统函数 6 6 6
。
8.
4 sin ( 6 )d
t
t
;
2 3 i 1 i
k
i
。
9. 若线性系统的单位阶跃响应 g(t ) 5e
则其单位冲激响应 h (t) = t , , f ()
。
s2 4 10. 若 f ( t ) F s 2 , 则 f (0 ) s 2s 4
H(z)和单位样值响应 h(k); 2)画出系统函数的零极点分布图; 3) 粗略画出 0 < < 3的幅频、相频 响应特性曲线, 指出其滤波特性;4)设
f2(t)、f3(t)和 y(t)的频谱图; (2)说明信号经此系统转换后再传输的意义; (3)说明由 y(t)恢复 f(t)的 方法。 cos(4t) F(j)
。
天津大学试卷专用纸 学院 精仪学院 专业
3、连续时间信号
班
年级
学号
2
姓名
A 共 3 页 第2 页
f (t ) 5 6cos 20 t 4cos 60 t 0.2 。求其周期 T 和傅里叶级数系数
Fn ;离散时间周期信号 f (k ) 6cos
数系数 FN n 。
f t e t t ,求:零状态输出
y f 1 (t ) 和 y f 2 (t )
H ( s)
k
s ,其频响特性 H (jω ) = s 3s 2
2
。
1 7. 已知信号 f (k ) k 5 ,其 z 变换为 2
、收敛域为
h1(t) h1(t)
(非线性、线性) 、
(时变、
时不变)的。 2. 连续信号 f(t)= sin(3 t)的周期 T0 = f(k)= sin(3 k) ,该离散序列是否周期序列? 3. ,若对 f(t)以 Ts = 1s 为间隔进行取样,得离散序列 。 (功率信号、 能量信号、 既非功率亦非能量信号) 。
' y1 ( t ) y1 ( t ) 2 y2 ( t ) 4 f ( t ) 2 、 描 述 系统 输 出 y1 ( t ) 和 y2 ( t ) 的 联立 微 分 方程 为 ' , 若 输入 y2 ( t ) y1 ( t ) 2 y2 ( t ) f ( t )
f (k ) 1 cos(0.5 k ) k ,求稳态响应 yss (k ) 。
1 f (t) -2 2 H(j) f 1(t) sin(4t)
f2 (t)
y (t)
f3 (t)
天津大学试卷专用纸 学院 专业 班 年级 学号 姓名 共 页 第 页
天津大学试卷专用纸 学院 精仪学院 专业 班 年级 学号 姓名 A 共 3 页 第1 页
二、计算以下各题 (每题 8 分,共 40 分)
《 信号与系统 》 卷 共 3 页) (A
(考试时间: )
题号 得分 一、填空题(共 30 分,每小题 3 分)
1. 系统
d y(t ) d f (t ) d 2 y(t ) 2 5 2 y(t ) f (t ) 是 2 dt dt dt
k
f (Ts k ) t kTs ,试画出抽样信号的频谱图。
4
4 e j 4 已 知 滤 波 器 的 频 率 特 性 H ( j ) , 4 0
输 入 为
f (t ) 2 cos(t ) 0.2cos(3t ) 0.1sin(5t ) 。 (1)求滤波器的响应 y( t ) (2)问信号经过滤波
k 2cos k 。 求其周期 N 和离散时间傅里叶级 4 6 3
sin( t ) 5、求信号 f (t ) t 的傅立叶变换 F ( j ) 并画出频谱图。对此信号以 Ts 0.4 s 为间隔进
行冲激抽样得到 f s (t )
f (t ) 2 cos (5 t ) 是
2
4. 对信号 f (t ) Sa (100 t ) 均匀抽样时, 其最低抽样频率 f s
Hz 。
5. 已知信号 f ( t ) 1 sin(6t ) cos(20t ) 。能够无失真地传输此信号的理想低通滤波器的频率特 性 H ( j ) = 6. 已知系统函数为 。
1、系统构成如图所示,各子系统的冲激响应分别为: h1 t t 1 , h2 t t t 3 ,求总 系统的冲激响应。 f (t) h1(t) h2(t(2) 二(3) 二(4) 二(5) 三
四
成绩
核分人签字