变力做功的求解途径

合集下载

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。

下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。

方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。

例题1:如图所示。

质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。

解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。

此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。

理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。

例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。

假设机车受到的阻力为恒力。

求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。

所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。

在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。

由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。

方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。

例题3:如图所示。

轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。

求变力做功的8种思路

求变力做功的8种思路

求变力做功的8种思路张家港市塘桥高级中学施 坚功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.物体受到力的作用,并且在力的方向上发生一段位移,就叫做力对物体做了功. αcos Fs W =,式中F 应是恒力.但实际问题中经常遇到变力,那变力做功如何求解呢?下面结合典型问题,指明求变力做功的八种思路.思路1、微元法:若参与做功的变力,其仅力的大小不变,而方向改变,且力与位移的夹角确定不变,则可通过微分累积W N W ∆⋅=求解.【例1】 在一粗糙的水平面上,动摩擦因素为μ,一小滑块质量为m 在某小孩手的水平拉力的作用下做匀速圆周运动,则一小滑块转动一周的过程中,水平拉力、摩擦力分别做功多少?[解析]:手的水平拉力始终在圆周的切线方向上,故可以把圆周均匀分割成N 段(N 足够大),每段位移为s ∆,则每一小段s ∆上都可以认为水平拉力(滑动摩擦力)方向不变且与位移s ∆方向一致(相反),且mg f F μ==.每一小段上拉力做功s F W∆⋅=∆,所以,Rmg R F s N F W N W W f F πμπ22⋅=⋅=∆⋅⋅=∆⋅==,即:水平拉力、摩擦力分别做功:R mg πμ2,R mg πμ2-.点评:手的拉力和摩擦力是变力,但经微分后将变力转化为恒力,再用公式求解.思路2、均值法:若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式θscos F W =求解.【例2】 用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1cm .问击第二次时,能击入多少深度?(设铁锤每次做功相等)[解析]:此题可根据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,kx f F =-=,可用平均阻力来代替. 如图1-1,第一次击入深度为1x ,平均阻力1121kx F =,做功为2111121kx x F W ==.第二次击入深度为1x 到2x ,平均阻力)(21212x x k F +=,位移为12x x -,做功为)(21)(21221222x x k x x F W -=-=.两次做功相等:21W W =.得:cm x x 41.1212==,即:cm x x x 41.012=-=∆.点评:对于线形变化的变力,可以取其平均值,将变力转化为恒力,进而求该力的功. 思路3、图象法(示功图求解):若参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图1-2,那么所示的阴影面积,即为变力做的功.【例3】图所示,做直线运动的物体所受的合外力与物体运动距离的对应关系.已知物体的质量为kg 4.10.开始处于静止状态,求s 12末物体的速度多大?[解析]:物体所受的合外力是变力.根据s F -图中曲线下所围的“面积”表示力的功的物理意义,可求得)()()(总J W 52612426622=-⨯+-⨯+⨯=,再由动能定理求得102==mW v 总)/(s m点评:根据示功图中曲线所围的“面积”表示功的物理意义,直接求变力的功.例2也可以利用图象法,类似匀变速直线运动的t v -图象而作出x F -图象.[解析]:因为阻力kx F =,以F 为纵坐标,F 方向上的位移x 为横坐标,作出x F -图象(图1-4),曲线上面积的值等于F 对铁钉做的功.由于两次做功相等,故有:21S S =(面积),即:))((2121121221x x x x k kx -+=,即:cm x x x 41.012=-=∆.思路4、t P Pt W==公式法:已知恒定功率或平均功率的条件下,机车等的变力做功转化为功率求解,化难为易.【例4】 质量为M 的汽车,沿平直的公路加速行驶,当汽车的速度为1v 时,立即以不变的功率行驶,经过距离s ,速度达到最大值2v .设汽车行驶过程中受到的阻力f 始终不变.求汽车的速度由1v 增至2v 的过程中所经历的时间及牵引力做的功.[解析]:汽车以恒定功率运动,此过程中的牵引力是变力.当加速度减小到0时,即牵引力等于阻力时,速度达到最大值.由于汽车的功率恒定,故变力(牵引力)的功可用Pt W=计算.对汽车加速过程中由动能定理有22122Mv Mv fs Pt -=-又2P f = 联立得:221222)(v s P v v M t +-=22122)(v Ps v v M Pt W +-==点评:运用Pt W =,将恒定功率作用下的机械做功转化为易确定的因素,另辟蹊径. 思路5、动能定理法:若参与做功的变力,方向与大小都变化,导致无法直接由αcos Fs W =求变力F 做的功.这时可利用动能定理:αscos F W 合总合=∆==k E W ;但此法只能求合力做的功.【例5】 如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为2R ,在此过程中,外力对物体做的功为: A .27FRB 、47FR C 、23FR D 、FR 4 解析:该题显然是一个变力问题,但通常有学生利用平均力法求解,即θscos F W =.此题中绳上拉力需提供向心力,方向时刻改变,不能利用平均力法求解.则可以从功能关系入手,而且绳上拉力是合外力,则动能定理:20212121mv mv W -=合,又圆周运动:Rv mF 02=;2821R v m F =,结合以上三式,得:FR FR FR mv mv W 2321221212021=-=-=合.故选C .点评:对于物体的始末状态的动能是已知的,则在这种情境下的变力做功用动能定理显得方便简捷.思路6、功能关系法:能是物体做功的本领,功是能量转化的量度.因此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.【例6】 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:A .θcos mgLB .()θcos 1-mgLC .θsin FLD .[解析]:解物理题必须注意把握题中的关键词,比如此题中“很缓慢”三字,表明拉力F 所做的功并未增加物体的动能,根据题意恰恰是提高了势能,即:)cos 1(θ-=∆=mgl E W P F (或理解成据功能原理:F 的功增加了小球的机械能),B 正确.C 选项则是利用了恒力做功公式W=Fscos θ,但事实上F 不是恒力.如图,三球受T mg F 、、,且θmgtg F =,则在上拉过程中,↑↑F ,θ.C 选项不正确.故选B .点评:如果系统所受的外力和内力(除重力、弹力外)所做的功的代数和等于系统的机械能的增量,且这些力中有变力做功,机械能的增量易求,用功能关系(或功能原理)求解简便. 思路7、等效替代法:等效思想是物理教学中一种重要思维方法.当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功.【例7】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角为α,经一段时间后,绳与水平面间的夹角为β,已知图中的高度为h ,求绳的拉力T 对物体做的功.(绳的质量、滑轮质量及绳与滑轮间的摩擦不计)[解析]:物体由初态运动到终点,所受的绳子拉力是变力(变方向),但在题设条件下,人的拉力F 对绳的端点做的功就等于绳的拉力T 对物体做的功.故可用恒力F 的功替代变力T 的功.绳端的位移大小为)sin 1sin 1(21βα-=-=∆h s s s 则:)sin 1sin 1(βα-=∆⋅==Fh s F W W F T点评:当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功. 思路8、借助守恒定律求解:能量守恒定律、机械能守恒定律是物理学中极为重要的规律,为求功提供了另一条重要思路,尤其是变力做功问题.【例8】 如图所示,一根轻的刚性杆长为l 2,中点和右端各固定一个质量为m 的小球,左端O 为水平转轴.开始时杆静止在水平位置,释放后将向下摆动,求从开始释放到摆到竖直位置的过程中,杆对B 球做了多少功?[解析]:如果没有A 球,杆上只有B 球,摆到最低点B 球的速度为1v ,根据机械能守恒定律有.21212mv l mg =所以gl v 21= 现在杆上有A 、B 两球,设摆到最低点时B 球速度为2v ,则A 球速度为22v ,系统仍满足机械能守恒的条件,有22.22)2(21212v m mv mgl l mg +=+ 解出gl v 5242=B 球两次末动能之差就是轻杆对B 球做的功,即mgl mv mv W B 5221212122=-=杆对 点评:系统内只有重力和弹力做功,当弹力是变力时,求这个变力功可借助能量守恒定律(尤其是机械能守恒定律).小结:变力做功的求解对学生的思维鉴别力、跳跃性提出了较高的要求,采用平均力法、图象法、动能定理还是功能关系,必须对物理情景分析透彻,而后决定取舍.当然.有时方法不是单一的,如例2,而且适当地一题多解可以提高学生的思维深度和开阔性.图8。

求变力做功的方法

求变力做功的方法

求变力做功的方法以求变力做功的方法为标题,我们来探讨一下。

第一种方法是应用直接施力。

当我们需要对物体施加力量时,可以直接使用肌肉力量来推动或拉动物体,这样就能够对物体做功。

比如,我们可以用手推动一辆停在原地的自行车,或者拉动一个重物。

第二种方法是应用杠杆原理。

杠杆是一种简单机械装置,可以将施加的力放大。

通过调整杠杆的长度或角度,我们可以改变施加在物体上的力的大小,从而实现对物体做功。

比如,我们可以用杠杆原理来举起一个重物,或者将一个重物推离地面。

第三种方法是应用滑轮系统。

滑轮系统是一种机械装置,可以改变力的方向和大小。

通过使用滑轮组合,我们可以改变施加在物体上的力的方向和大小,从而实现对物体做功。

比如,我们可以用滑轮系统来举起一个重物,或者将一个重物推离地面。

第四种方法是应用斜面原理。

斜面是一种简单机械装置,可以减小施加在物体上的力的大小。

通过调整斜面的角度,我们可以改变施加在物体上的力的大小,从而实现对物体做功。

比如,我们可以用斜面来推动一个重物上斜面,或者将一个重物从斜面上滑下来。

第五种方法是应用弹簧原理。

弹簧是一种弹性体,可以储存和释放能量。

通过压缩或拉伸弹簧,我们可以改变施加在物体上的力的大小,从而实现对物体做功。

比如,我们可以用弹簧来推动一个重物,或者将一个重物弹射出去。

第六种方法是应用气压原理。

气压是气体分子对容器壁面的压力。

通过调节气压,我们可以改变施加在物体上的力的大小,从而实现对物体做功。

比如,我们可以利用气压来推动汽车或自行车的轮胎,从而使其前进。

第七种方法是应用电力原理。

电力是电流通过导体时所产生的能量。

通过控制电流的大小和方向,我们可以改变施加在物体上的力的大小和方向,从而实现对物体做功。

比如,我们可以利用电力来推动电动机,从而使机器工作。

以上所提到的方法只是其中的几种常见方法,实际上还有很多其他方法可以实现对物体做功。

无论采用哪种方法,我们都要根据具体情况选择合适的方法,并合理应用力量,以实现对物体的目标操作和做功。

变力做功的六种常见计算方法

变力做功的六种常见计算方法

变力做功的六种常见计算方法变力做功是指当力的大小和方向随着对象运动的位置而变化时,力对物体所做的功。

下面将介绍六种常见的计算变力做功的方法。

1.通过力的曲线面积计算功:当力的大小和方向随着位置的变化而变化时,可以通过绘制力与位置的曲线图,然后计算曲线下的面积来求得所做的功。

2.利用求和法计算功:将运动过程划分成若干个小的位移段,对每个位移段内力的大小和方向保持不变,然后通过求和法计算每个位移段上力所做的功,最后将所有位移段上力所做的功相加得到总功。

3.应用积分法计算功:对力和位移变化连续的问题,可以利用微积分中的积分法来计算变力做功。

通过计算力在位移方向上的积分,即对力关于位移的函数进行积分,来得到变力做功的结果。

4.利用功率和时间计算功:如果已知物体在一段时间内所受到的平均力和物体的平均速度,可以利用功率和时间的关系来计算功。

功率定义为单位时间内做功的大小,根据功率公式P=W/t,其中W是做功的大小,t是时间,可以通过已知的其它量来计算功。

5.利用速度和质量计算功:在一些特定的情况下,可以利用物体的速度和质量来计算变力做功。

根据力学中的动能定理,物体的动能变化等于外力所做的功,其中动能定义为 K=1/2 mv^2,其中 m 是质量, v 是速度。

6.利用万有引力计算功:当物体受到的力是万有引力时,可以利用万有引力公式来计算变力做功。

万有引力公式为F=GmM/r^2,其中F是力,m和M是物体的质量,G 是万有引力常数,r是两物体之间的距离。

通过将力乘以物体的位移并将结果进行积分,可以得到变力做功的计算结果。

这些是常见的计算变力做功的方法,根据具体问题的条件和要求,选择适合的方法来计算变力做功。

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。

如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。

2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。

若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。

3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。

4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。

5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。

6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,其具有普遍的适用性。

在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。

二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。

B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。

C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。

2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。

求解变力做功的六种方法

求解变力做功的六种方法
• [答案] 50 J
• [易错提醒] F做功的位移等于左边绳的变短的部分,而 不等于物体的位移.
13:02
栏目 导引
第七章 机械能守恒定律13:02
五、用公式W=Pt求解
对于机器以额定功率工作时,比如汽车、轮船、火车启动时,虽然它们的牵引力 是变力,但是可以用公式W=Pt来计算这类交通工具发动机做的功。对于交通工具 以恒定功率运动时,都可以根据来求牵引力这个变力所做的功。
动到B端(圆弧AB在竖直平面内).拉力F大小不变始
终为15 N,方向始终与物体所在位置的切线成37°
角.圆弧所对应的圆心角为60°,
• BO边为竖直方向,g取10 m/s2.求这一过程中:
• (1)拉力F做的功;
• (2)重力mg做的功;

13:02
(3)圆弧面对物体的支持力FN做的功.
栏目 导引
第七章 机械能守恒定律13:02
例6. 一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从
平衡位置P点很缓慢地移到Q点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力
F所做的功为:( )
A: mgL cos
B: mgL(1 cos )
C.: FLsin
D: FL cos
13:02
栏目 导引
当力的大小不变,力的方向时刻与速度同向(或 反向)时,把物体的运动过程分为很多小段,这 样每一小段可以看成直线,先求力在每一小段 上的功,再求和即可.
13:02
栏目 导引
第七章 机械能守恒定律13:02
• 例如:如图所示,物体在大小不变、方向始终沿着圆 周的切线方向的一个力F的作用下绕圆周运动了一圈 ,又回到出发点.已知圆周的半径为R,求力F做的功 时,可把整个圆周分成很短的间隔Δs1、Δs2、Δs3…在 每一段上,可近似认为F和位移Δs在同一直线上并且 同向,故

(完整)求解变力做功的十种方法

(完整)求解变力做功的十种方法

求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。

那么就可以用重力做的功替代拉力做的功。

解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。

小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。

二。

微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。

解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。

(完整版)五种方法搞定变力做功问题

(完整版)五种方法搞定变力做功问题

五种方法搞定变力做功一.微元法思想。

当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w •=来求解,但是可以将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。

例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。

求此过程中摩擦力所做的功。

思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果 图1图2把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功二、平均值法当力的大小随位移成线性关系时,可先求出力对位移的平均值221F F F +=,再由αcos L F W =计算变力做功。

如:弹簧的弹力做功问题。

例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则小物块运动到x 0处时的动能为 ( ) A .0 B .021x F mC .04x F m πD .204x π【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为04m F x π.C 答案正确.三.功能关系法。

功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。

例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体,物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系一定是:A .E KB -E KA =E KC -E KB B .E KB -E KA <E KC -E KB C .E KB -E KA >E KC -E KBD .E KC <2E KBF x 0FxF •Ox 0图2-甲图2乙【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD.四.应用公式Pt W =求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变力做功的求解途径
变力做功的求解问题是高中物理教学中的重点和难点,不能简单的套用公式
c o s W F S α=,但这类问题对培养学生的思维能力,考查学生应用数学知识解决物
理问题的能力,培养学生的独立思考和创新能力却有着十分重要的作用。

在教学过程中通过笔者的不断归纳,反复实践,对变力做功的求解途径进行了探讨,现总结如下:
一、用图象法求功
例1 力F 随物体的位移S 的变化关系如图1所示,求该物体在发生位移50m 的过程中,力F 做的功是多少?
分析与解答 我们知道在速度—时间图象中面积的物理意义表示位移,那么在力—位移图象中面积的物理意义应该表示功,则: ()51010
101030104252
2
W J
+⨯⨯=
+⨯+
=
二、用功是能量转化的量度求功
功是能量转化的量度的确切含义是“做了多少功就有多少能量发生转化,反之,转化了多少能量就做了多少功”,这就给我们提供了一种从能量转化的角度求功的方法。

例2、如图2所示,n 块厚度为d 的相同的砖块,每块砖的质量为m ,靠在一起平放在水平地面上,现将它们一块一块的向上叠起,至少要做多少功?
分析与解答 将砖叠起后,砖的重力势能增加,根据
功是能量转化的量度,我们知道增加的重力势能就等于所
做的功,则:()12
22
n n m gd
nd d W nm g nm g -=⋅
-⋅
=
图2
三、用动能定理求功
用动能定理求解变力做功,不必考虑运动过程的细节,重点把握运动物体在初态和末态的动能,动能定理是求解变力做功的主要途径之一。

例3 如图3所示,汽车从静止开始由A 点向B 点加速运动,并通过绳、定滑轮从井中吊起质量为m 的物体,开始时定滑轮左侧绳的竖直长度为H ,假定绳的总长不变,当汽车通过水平距离H 到达B 点时,车的速度为V 。

求在车由A 移到B 的过程中,绳的拉力对物体所做的功。

分析与解答 汽车由A 点向B 点做加速运动,绳对物体的拉力是一个变力。

当汽车到达B 点时,物体上升的速度1v 等于V 沿绳方向的分
量,则:0
1cos 45V v V ==
由几何关系知物体上升的高度:
)
1sin 45
H h H H =
-=
对物体应用动能定理:2
1102
W m gh m V -=
-
由以上各式得拉力对物体所做的功为:)
2
114
W m gH m V =
+
四、将变力转化为恒力求功
有一些变力,力的大小随位移的变化而变化。

但它们的变化关系呈线性关系,这种变力称为线性变力,其平均值为()1212
F F F =
+,该变力所做的功
cos W F S α=。

例4 在一个边长为b 的立方体容器中盛有密度为2ρ的某种液体,一个边长为a (a<b )、密度为1ρ(1ρ<2ρ)的立方体A 浮于液面上,如图4所示,今欲将立方体全部压入液体中,并且假设液体没有溢出,问力F 最少要做多少功?
图3
分析与解答:随着立方体A 不断地被压入水中,A 受到的浮力将逐渐增大,力F 也随之增大,F 是一个变力。

设立方体开始时浸入水中的深度为h ,据平衡条件,有:3212a g a hg ρρ= 得:12
h a ρρ=
立方体全部浸入后水面升高h ∆,由体积关系知:()2
2
b h a
a h ⋅∆=-
得:()
2
3212
2
2
a
a h a h b
b
ρρρ--∆=
=

设在F 的作用下将立方体再压入x , 则得:()3
2
12F a g a g h x ρρ+=+,由3
2
12a g a hg ρρ= ,得:2
2F a gx ρ=,即:
F 与立方体被压入的深度x 成正比,呈线性关系。

故:
()()2
33
23
12
21210012
2
2
2
a
a h g
F F a g a g
F a g ρρρρρ+-++-=
==
=
⋅-,力F 至
少做的功为: ()()
()()()
4
2
23
2
1212
2
2
2a g b a
a g W F a h h a h h
b ρ
ρρρρ---=--∆=
⋅--∆=
五、用微元分析法求功
微元分析法是一种重要的思维方法,是高等数学中的极限思想在中学物理教学中的体现。

例5 质量为m 的小球以恒定的速率v 沿半径为R 的竖直圆环作圆周运动,且与轨道的动摩擦因素为μ,求小球从最低点运动到最高点的过程中,摩擦力做了多少功?
分析与解答 小球受到重力、支持力和摩擦力的作用,重力或重力沿半径方向的分力与支持力共同提供小球做圆周运动的向心力,摩擦力的变化很复杂。

但注意到运动轨道的对称性,考查小球在与水平直径对称的A 、B 两处在微小
位移下摩擦力所做的功。

如图5所示,设OA 、OB 与水平直径的夹角为α,在A 、B
图 4
两处各取一段对称的足够短的圆弧l ∆,l ∆可看作直线,摩擦力可视为恒力,圆弧所对的圆心角为α∆,有:l R α∆=⋅∆ 根据动力学方程,知:2
1sin v
N mg m
R
α-= 2
2s i n v
N m g m R
α-=
小球在A 、B 两处所取的l ∆上,摩擦力做功之和为:()12W N N l μ∆=-+⋅∆
由以上各式得:2
2
22v
W m
R mv R
μαμα∆=-⋅⋅∆=-⋅∆
即:W ∆与α的大小无关,从最低点到最高点2
π
α∆=∑,摩擦力对小球所做的功
是:()
22
2
2
2222
W W m v m v m v m v π
μα
μαμπμ=
∆=
-⋅∆=-⋅∆=-⋅
=-∑


巩固练习:
1、如图6所示,质量为m 的物体用细绳经过光滑小孔而牵引,且在光滑的水平面上做匀速圆周运动。

拉力为某个值F 时转动半径为2R ,当拉力逐渐增大到6F 时,物体仍做匀速圆周运动,此时半径为R ,求拉力对
物体所做的功为多大?(答案:2FR )
2、如图7所示,力F=20N 作用在半径R=0.5m 的转盘的边缘上,力F 的大小保持不变,且方向保持任何时刻均与作用点的切线方向一致,拉动后使转盘转动一周,F 做的功是多少?(答案:62.8 J )
3、将长为d 的铁钉钉入墙中,若铁钉受到墙壁的阻力与钉入的
深度成正比,且比例系数为K ,求将铁钉全部钉入墙中需要做多少功?(答案:2
2
K d W =

4、一只盛满水的圆柱形水桶,桶底和壁都很轻很薄,桶的半径为R ,高为h ,桶的上缘处在湖面下深度为H 处,如果用轻绳将它缓慢地向上提,直到桶的底面刚好离
开水面,若不计水的阻力,求上提过程中拉力所做的功是多少?(提示:桶未离开水
F
图7
面时不需做功,答案:22
12
W gR h πρ=

5、某物体在力F 的作用下做直线运动,F 随物体的位移S 变化的图象如图8所示,物体在发生位移m S 的过程中,F 对物体做
的功:
(A )()122
m
F F S W +<
(B )()122
m
F F S W +>
(C )()122
m
F F S W +=
(D )条件不足,无法判断
(答案:(B ))
F F 0
m S
F
图8。

相关文档
最新文档