新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册
高中物理:求解变力做功的几种方法

高中物理:求解变力做功的几种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法。
一、动能定理法例1、如图1所示,质量为m的物体从A点沿半径为R的粗糙半球内表面以的速度开始下滑,到达B点时的速度变为,求物体从A运动到B的过程中,摩擦力所做的功是多少?图1解析:物体由A滑到B的过程中,受重力G、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A运动到B的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A运动到B的过程中,弹力不做功;重力在物体由A运动到C的过程中对物体所做的正功与物体从C运动到B的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A运动到B的过程中对物体所做的功,就等于物体动能的变化量,则有:即可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
小结:利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这是动能定理比牛顿运动定律优越的一个方面。
二. 微元求和法例2、如图2所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
图2解析:在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移……都与当时的F方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:小结:变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用计算功,而且变力所做功应等于变力在各小段所做功之和,化曲为直的思想在物理学研究中有很重要的应用,研究平抛运动和单摆的运动时,都用到了这种思想。
求解变力做功的四种方法

联立解得 d′=( 2-1)d. [归纳提升] 当力为变力,应用平均值法求功时,
F
=F1+ F2
2
只能用于 F 与位移 l 成线性关系的情况,不能用于 F 与时间 t
成线性关系的情况 .
*
栏目 导引
图象法求变力做功
第七章 机械能守恒定律*
• 变力做旳功W可用F-l图线与l轴所围成旳面积 表达.l轴上方旳面积表达力对物体做正功旳多 少,l轴下方旳面积表达力对物体做负功旳多少 .
第七章 机械能守恒定律*
• 1.做功旳两个必要原因 • (1)作用在物体上旳力. • (2)物体在力方向上旳位移. • 2.功旳体现式:W=Flcos α,α为力F与位移l旳
夹角. • (1)α<90°时,W>0. • (2)α>90°时,W<0. • (3)α=90°时,W=0.
*
栏目 导引
第七章 机械能守恒定律*
• [答案] 50 J
• [易错提醒] F做功旳位移等于左边绳旳变短旳部分,而 不等于物体旳位移.
*
栏目 导引
[解析] (1)将圆弧 AB 分成很多小段 l1、l2、…、ln,拉力在每 小段上做的功为 W1、W2、…、Wn,因拉力 F 大小不变,方向 始终与物体所在位置的切线方向成 37°角,所以: W1=Fl1cos 37°,W2=Fl2cos 37°,…,Wn=Flncos 37°, 所以 WF= W1+ W2+…+Wn =Fcos 37°(l1+l2+…+ln) =Fcos 37°·π3R=20π J=62.8 J. (2)重力 mg 做的功 WG=-m gR(1-cos 60°)=-50 J. (3)物体受的支持力 FN 始终与物体的运动方向垂直,所以 WFN = 0.
变力做功问题的解法

变力做功问题的解法高中物理教材利用恒力对物体做功的物理模型推导出功的计算式。
如果力的大小是变化的,那么公式中的F就无法取值;如果力的方向是变化的,公式中角就无法取值。
因此其公式仅适用于恒力做功过程,而对于变力做功问题又经常出现,那我们该如何求解呢?本文现就计算变力所做功的方法及到底采用哪种方法进行求解作如下阐述。
一、将变力处理成恒力将变力处理成恒力的方法,一般只在力的大小一直不变,而力的方向遵循某种规律的时候才用。
例1如图1所示,有一台小型石磨,某人用大小恒为F,方向始终与磨杆垂直的力推磨。
假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?解析:由于力F方向不断变化,因此是一个变力做功问题,如果将推力作点的轨迹分成无限多小段,每一段曲线近似为直线,力F的方向也近似与这一小段的轨迹重合,则每小段均可看作恒力做功过程。
运用恒力作功的计算式求出各小段推力做的功:.则转动一周过程中推力做的功:。
二、力的平均值法通过求力的平均值,然后求变力的平均力做功的方法,一般是用于力的大小与位移成一维线性关系的直线运动中。
例2如图2所示,劲度系数为的轻质弹簧一端固定在墙上,另一端连接一质量为的滑块,静止在光滑水平面上O点处,现将滑块从位置O拉到最大位移处由静止释放,滑块向左运动了s米().求释放滑块后弹簧弹力所做的功。
解析:弹簧对滑块的弹力与弹簧的形变量成正比,求出弹力的平均值为:用力的平均值乘以位移即得到变力的功:。
三、动能定理法动能定理求变力的功是非常方便的,但是必须知道始末两个状态的物体的速度,以及在中间过程中分别有那些力对物体做功,各做了多少功。
例3如图3所示,质量为的物块与转台之间能出现的最大静摩擦力为物块重力的倍,它与转轴相距R,物体随转台由静止开始转动,当转速增加到一定值时,物块开始在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为多少?解析:由题意知物块即将滑动时受到的摩擦力为,设此时物块运动的速度为,则有,于是有。
求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。
力可以改变物体的状态,让物体移动、加速或减速。
做功就是施加力使物体移动的过程中能量的转移。
以下将介绍几种常见的变力做功的方法。
1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。
例如,我们推车子或推行李箱时,就是通过推力来做功。
2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。
例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。
3.重力做功:重力是地球吸引物体向地心运动的力。
当一个物体从高处下落时,重力对物体做功。
在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。
4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。
弹力做功是将弹性势能转化为动能的过程。
例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。
5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。
摩擦力做功是将机械能转化为热能的过程。
例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。
6.磁力做功:磁力是磁体之间的相互作用力。
当磁场改变时,施加在物体上的磁力会做功。
例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。
7.电力做功:电力是在电子之间产生的相互作用力。
当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。
例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。
总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。
通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。
科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。
求变力做功的8种思路

求变力做功的8种思路张家港市塘桥高级中学施 坚功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.物体受到力的作用,并且在力的方向上发生一段位移,就叫做力对物体做了功. αcos Fs W =,式中F 应是恒力.但实际问题中经常遇到变力,那变力做功如何求解呢?下面结合典型问题,指明求变力做功的八种思路.思路1、微元法:若参与做功的变力,其仅力的大小不变,而方向改变,且力与位移的夹角确定不变,则可通过微分累积W N W ∆⋅=求解.【例1】 在一粗糙的水平面上,动摩擦因素为μ,一小滑块质量为m 在某小孩手的水平拉力的作用下做匀速圆周运动,则一小滑块转动一周的过程中,水平拉力、摩擦力分别做功多少?[解析]:手的水平拉力始终在圆周的切线方向上,故可以把圆周均匀分割成N 段(N 足够大),每段位移为s ∆,则每一小段s ∆上都可以认为水平拉力(滑动摩擦力)方向不变且与位移s ∆方向一致(相反),且mg f F μ==.每一小段上拉力做功s F W∆⋅=∆,所以,Rmg R F s N F W N W W f F πμπ22⋅=⋅=∆⋅⋅=∆⋅==,即:水平拉力、摩擦力分别做功:R mg πμ2,R mg πμ2-.点评:手的拉力和摩擦力是变力,但经微分后将变力转化为恒力,再用公式求解.思路2、均值法:若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式θscos F W =求解.【例2】 用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1cm .问击第二次时,能击入多少深度?(设铁锤每次做功相等)[解析]:此题可根据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,kx f F =-=,可用平均阻力来代替. 如图1-1,第一次击入深度为1x ,平均阻力1121kx F =,做功为2111121kx x F W ==.第二次击入深度为1x 到2x ,平均阻力)(21212x x k F +=,位移为12x x -,做功为)(21)(21221222x x k x x F W -=-=.两次做功相等:21W W =.得:cm x x 41.1212==,即:cm x x x 41.012=-=∆.点评:对于线形变化的变力,可以取其平均值,将变力转化为恒力,进而求该力的功. 思路3、图象法(示功图求解):若参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图1-2,那么所示的阴影面积,即为变力做的功.【例3】图所示,做直线运动的物体所受的合外力与物体运动距离的对应关系.已知物体的质量为kg 4.10.开始处于静止状态,求s 12末物体的速度多大?[解析]:物体所受的合外力是变力.根据s F -图中曲线下所围的“面积”表示力的功的物理意义,可求得)()()(总J W 52612426622=-⨯+-⨯+⨯=,再由动能定理求得102==mW v 总)/(s m点评:根据示功图中曲线所围的“面积”表示功的物理意义,直接求变力的功.例2也可以利用图象法,类似匀变速直线运动的t v -图象而作出x F -图象.[解析]:因为阻力kx F =,以F 为纵坐标,F 方向上的位移x 为横坐标,作出x F -图象(图1-4),曲线上面积的值等于F 对铁钉做的功.由于两次做功相等,故有:21S S =(面积),即:))((2121121221x x x x k kx -+=,即:cm x x x 41.012=-=∆.思路4、t P Pt W==公式法:已知恒定功率或平均功率的条件下,机车等的变力做功转化为功率求解,化难为易.【例4】 质量为M 的汽车,沿平直的公路加速行驶,当汽车的速度为1v 时,立即以不变的功率行驶,经过距离s ,速度达到最大值2v .设汽车行驶过程中受到的阻力f 始终不变.求汽车的速度由1v 增至2v 的过程中所经历的时间及牵引力做的功.[解析]:汽车以恒定功率运动,此过程中的牵引力是变力.当加速度减小到0时,即牵引力等于阻力时,速度达到最大值.由于汽车的功率恒定,故变力(牵引力)的功可用Pt W=计算.对汽车加速过程中由动能定理有22122Mv Mv fs Pt -=-又2P f = 联立得:221222)(v s P v v M t +-=22122)(v Ps v v M Pt W +-==点评:运用Pt W =,将恒定功率作用下的机械做功转化为易确定的因素,另辟蹊径. 思路5、动能定理法:若参与做功的变力,方向与大小都变化,导致无法直接由αcos Fs W =求变力F 做的功.这时可利用动能定理:αscos F W 合总合=∆==k E W ;但此法只能求合力做的功.【例5】 如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为2R ,在此过程中,外力对物体做的功为: A .27FRB 、47FR C 、23FR D 、FR 4 解析:该题显然是一个变力问题,但通常有学生利用平均力法求解,即θscos F W =.此题中绳上拉力需提供向心力,方向时刻改变,不能利用平均力法求解.则可以从功能关系入手,而且绳上拉力是合外力,则动能定理:20212121mv mv W -=合,又圆周运动:Rv mF 02=;2821R v m F =,结合以上三式,得:FR FR FR mv mv W 2321221212021=-=-=合.故选C .点评:对于物体的始末状态的动能是已知的,则在这种情境下的变力做功用动能定理显得方便简捷.思路6、功能关系法:能是物体做功的本领,功是能量转化的量度.因此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.【例6】 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:A .θcos mgLB .()θcos 1-mgLC .θsin FLD .[解析]:解物理题必须注意把握题中的关键词,比如此题中“很缓慢”三字,表明拉力F 所做的功并未增加物体的动能,根据题意恰恰是提高了势能,即:)cos 1(θ-=∆=mgl E W P F (或理解成据功能原理:F 的功增加了小球的机械能),B 正确.C 选项则是利用了恒力做功公式W=Fscos θ,但事实上F 不是恒力.如图,三球受T mg F 、、,且θmgtg F =,则在上拉过程中,↑↑F ,θ.C 选项不正确.故选B .点评:如果系统所受的外力和内力(除重力、弹力外)所做的功的代数和等于系统的机械能的增量,且这些力中有变力做功,机械能的增量易求,用功能关系(或功能原理)求解简便. 思路7、等效替代法:等效思想是物理教学中一种重要思维方法.当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功.【例7】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角为α,经一段时间后,绳与水平面间的夹角为β,已知图中的高度为h ,求绳的拉力T 对物体做的功.(绳的质量、滑轮质量及绳与滑轮间的摩擦不计)[解析]:物体由初态运动到终点,所受的绳子拉力是变力(变方向),但在题设条件下,人的拉力F 对绳的端点做的功就等于绳的拉力T 对物体做的功.故可用恒力F 的功替代变力T 的功.绳端的位移大小为)sin 1sin 1(21βα-=-=∆h s s s 则:)sin 1sin 1(βα-=∆⋅==Fh s F W W F T点评:当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功. 思路8、借助守恒定律求解:能量守恒定律、机械能守恒定律是物理学中极为重要的规律,为求功提供了另一条重要思路,尤其是变力做功问题.【例8】 如图所示,一根轻的刚性杆长为l 2,中点和右端各固定一个质量为m 的小球,左端O 为水平转轴.开始时杆静止在水平位置,释放后将向下摆动,求从开始释放到摆到竖直位置的过程中,杆对B 球做了多少功?[解析]:如果没有A 球,杆上只有B 球,摆到最低点B 球的速度为1v ,根据机械能守恒定律有.21212mv l mg =所以gl v 21= 现在杆上有A 、B 两球,设摆到最低点时B 球速度为2v ,则A 球速度为22v ,系统仍满足机械能守恒的条件,有22.22)2(21212v m mv mgl l mg +=+ 解出gl v 5242=B 球两次末动能之差就是轻杆对B 球做的功,即mgl mv mv W B 5221212122=-=杆对 点评:系统内只有重力和弹力做功,当弹力是变力时,求这个变力功可借助能量守恒定律(尤其是机械能守恒定律).小结:变力做功的求解对学生的思维鉴别力、跳跃性提出了较高的要求,采用平均力法、图象法、动能定理还是功能关系,必须对物理情景分析透彻,而后决定取舍.当然.有时方法不是单一的,如例2,而且适当地一题多解可以提高学生的思维深度和开阔性.图8。
求解变力做功的几种常用方法

求解变力做功的几种常用方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=Flcos α,但是只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,但高考中变力做功问题也是经常考查的一类题目。
现结合例题分析变力做功的五种求解方法。
方法一:化变力为恒力求变力功变力做功直接求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功,可以用W=Flcos α求解。
此法常常应用于轻绳通过定滑轮拉物体的问题中。
【题目】如图所示,某人用大小不变的力F拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角是α,当拉力F 作用一段时间后,绳与水平面间的夹角为β。
已知图中的高度是h,求绳的拉力T对物体所做的功。
假定绳的质量、滑轮质量及绳与滑轮间的摩擦不计。
【解析】本题中,显然F与T的大小相等,且T在对物体做功的过程中,大小不变,但方向时刻在改变,因此本题是个变力做功的问题。
但在题设条件下,人的拉力F对绳的端点(也即对滑轮机械)做的功就等于绳的拉力T(即滑轮机械)对物体做的功。
而F的大小和方向都不变,因此只要计算恒力F对绳做的功就能解决问题。
设绳的拉力T对物体做的功为WT,由题图可知,在绳与水平面的夹角由α变到β的过程中,拉力F作用的绳端的位移的大小为则可知拉力做功为方法二:用平均力求变力功在求解变力功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,即力均匀变化时,则可以认为物体受到一大小为F平均=(F1+F2)/2,恒力作用,F1、F2分别为物体初、末态所受到的力,然后用公式W=F平均Lcosθ求此力所做的功。
【题目】把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k。
问此钉子全部进入木板需要打击几次?【解析】在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功。
求变力做功的六种方法

求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图1-2 【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况
功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等.
一、求解变力做功的几种方法 法1.用公式W =F -
l cos α求变力做功
如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2
2来计
算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力.
【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( )
A .(3-1)d
B .(2-1)d C.
5-1d
2
D.
22
d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F -
2d ′=kd +k d +d ′2
d ′,联立解得d ′
=(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确.
【答案】 B
法2.用图象法求变力做功
在F x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v t 图象求位移的原理相同.
【典例2】 用质量为5 kg 的均匀铁索,
从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2
)
【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002
N =225 N
故该过程中拉力做功:W =F -
h =2 250 J.
方法二 由F h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200
2×10
J =2 250 J.
【答案】 2 250 J
法3.用微元法求变力做功
圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.
【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功.
【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF .
【答案】 2πRF .
变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块
缓慢移动了x 2=0.4 m ,求上述过程中拉力所做的功.
解析:木块刚要滑动时,拉力的大小F =kx 1=200×0.2 N=40 N ,从开始到木块刚要滑动的过程,拉力做的功W 1=
0+F 2x 1=40
2
×0.2 J=4 J ;木块缓慢移动的过程,拉力做的功W 2=Fx 2=40×0.4 J=16 J .故拉力所做的总功W =W 1+W 2=20 J.
答案:20 J 变式训练2
如图所示,一质量为m =2.0 kg 的物体从半径为R =5.0 m 的圆弧的A 端,在拉力作用下沿圆弧缓慢运动到B 端(圆弧AB 在竖直平面内).拉力F 大小不变始终为15 N ,方向始终与物体在该点的切线成37°角,圆弧所对应的圆心角为60°,BO 边为竖直方向,g 取10 m/s 2
.求这一过程中:
(1)拉力F 做的功; (2)重力G 做的功;
(3)圆弧面对物体的支持力F N 做的功.
解析:(1)将圆弧A B ⌒分成很多小段l 1、l 2、…、l n ,拉力在每小段上做的功为W 1、W 2、…、
W n ,因拉力F 大小不变,方向始终与物体在该点的切线成37°角,所以W 1=Fl 1cos 37°,W 2
=Fl 2cos 37°,…,W n =Fl n cos 37°,所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos 37°·π
3
R =20π J=62.8 J.
(2)重力G 做的功W G =-mgR (1-cos 60°)=-50 J.
(3)物体受的支持力F N 始终与物体的运动方向垂直,所以W FN =0. 答案:(1)62.8 J (2)-50 J (3)0 二、摩擦力做功的情况 1.静摩擦力做功的特点:
(1)静摩擦力可以对物体做正功(静摩擦力为动力),也可以做负功(静摩擦力为阻力),还可以不做功.
(2)相互作用的一对静摩擦力做功的代数和总等于零. 2.滑动摩擦力做功的特点:
(1)滑动摩擦力可以对物体做正功(滑动摩擦力为动力),也可以做负功(滑动摩擦力为阻力),还可以不做功.
(2)相互摩擦的系统内,一对滑动摩擦力所做的总功为负值,其绝对值等于滑动摩擦力与相对位移的乘积.
(3)滑动摩擦力、空气阻力等,在曲线运动或者往返运动时,所做的功等于力和路程的乘积.
3.摩擦力做功的求法:
(1)摩擦力大小、方向都不变:应该用W Ff =F f l cos α求F f 做的功.
(2)摩擦力大小不变、方向改变:由微元法,可将变力功等效成恒力功求和,从而求得
F f 做的功.
【典例4】
如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传
送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,
g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:
(1)摩擦力对物块做的功. (2)摩擦力对传送带做的功.
【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为
F f =μmg =0.1×2×10 N=2 N
加速度为a =F f m
=μg =0.1×10 m/s 2=1 m/s 2
当物块与传送带相对静止时的位移为x =v 22a =2
2
2×1
m =2 m
摩擦力对物块做功为W =F f x =2×2 J=4 J.
(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a
=-8 J.
【答案】 (1)4 J (2)-8 J
变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )
A .0
B .-fh
C .-2mgh
D .-2fh
解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh . 答案:D。