线面平行
线面平行的性质定理

AB1C,求线段EF的长度
应用巩固
例3、如图所示的一块木料中,棱BC平行于 面A´C´.
(1)要经过面A´C´内的一点P和棱BC将木 料锯开,应怎样画线?
(2)所画的线和平面AC有什么关系?
F
E
课堂小结:
1.直线与平面平行的性质定理
判定定理:找(作) 面内一条直线与已知
2.线线平行 直线平行
性质定理:找(作) 一个过已知直线的平 面,确定其与已知平 面的交线
应用巩固
例1、已知平面外的两条平行直线中的一 条平行于这个平面,求证:另一条也平行于这 个平面.
如图,已知直线a,b,平面 α ,且a//b, a//α, a,b都在平面α外,求证:b//α.
ab
应用巩固
例变式2、:如如图图,,用用平一行个于平四面面去体截A四B面C体D 的一组对 棱ABACBD,,C得D 的到平的面截截面此M四NP面Q体是.平求行证四:边截面 M形N.P求Q证是:平AB行//M四N边形.
若如“果共一面条”直必线平和行一,个换平句面话平说行,,如经果过过该直直线线a的平面
的某个平面与平面相交,则直线a就和这条交
线平和行这.个平面相交,那么这条直线和交线平行.
线面平行的性质定理: 一条直线和一个平面平行,则过这条直线 的任一平面与此平面的交线与该直线平行.
β a
b α
作用:判定直线与直线平行的重要依据. 关键:寻找平面与平面的交线.
*
1. 定义: 直线与平面无公共点.
2. 判定定理: 线线平行 线面平行
若平面外一条直线与此平面内的
一条直线平行,则该直线与此平面
平行.
a
b
a /
b
a
//
线面平行的性质

• 在判断方向向量与法向量是否垂直时,需要计算向量的点积 • 在判断方向向量与法向量所成的点积是否为零时,需要计算向量的点积
利用空间几何性质判定线面平行
利用空间几何性质判定线面平行的方法有以下几种
• 判断直线与平面内的任意一条直线是 否不相交 • 判断直线与平面内的任意一条直线是 否平行
• 判断一条直线是否与一个平面平行,需要考虑直线与平面内的其他直线的关系 • 判断一条直线是否与一个平面平行,需要考虑直线与平面内的其他直线的关系
线面平行的几何表示
线面平行的几何表示方法有多种
• 利用角度关系表示线面平行,即直线与平面内的任意一条直线所成的同位角相等 • 利用向量关系表示线面平行,即直线的方向向量与平面的法向量垂直 • 利用空间几何性质表示线面平行,即直线与平面内的任意一条直线都不相交
• 在工程制图中,往往需要判断线与平面是否平行 • 在工程制图中,往往需要利用线面平行的性质进行绘图和计算
线面平行在立体几何中有广泛应用
• 在求解立体几何问题时,往往需要判断直线与平面是否平行 • 在求解立体几何问题时,往往需要利用线面平行的性质进行推理和计 算
线面平行在解析几何中也有广泛应用
• 在求解解析几何问题时,往往需要判断直线与平面是否平行 • 在求解解析几何问题时,往往需要利用线面平行的性质进行推理和计 算
线面平行解题技巧主要包括:
• 熟练掌握线面平行的性质和判定方法 • 灵活运用线面平行的性质和判定方法解决问题 • 注意解题步骤,避免计算错误
线面平行相关习题精选与解答
线面平行相关习题精选包括:
• 判断直线与平面是否平行的题目 • 利用线面平行性质进行推理和计算的题目 • 求解线面平行问题的题目
证明线面平行的三种方法

证明线面平行的三种方法一、平行线的定义在欧几里得几何中,平行线是指在同一个平面中,永不相交的两条直线。
如果两条直线在平面上的任意一点处的夹角都相等,则这两条直线是平行线。
二、方法一:同位角定理同位角定理是证明线面平行中常用的一种方法。
同位角是指两条平行线被一条横截线所切割的角,它们在同一边的对应角。
1.假设有两条直线AB和CD,以及一条平行于AB和CD的横截线EF。
2.判断同位角:观察EF与AB和CD所形成的角,如果这些角相等,则可以得出AB和CD是平行线。
3.证明同位角相等:可以利用已知角度相等的定理,如垂直角定理(两条直线相交时,所形成的四个角中相对的角度相等)或同旁内角互补定理(两条直线切割同位角时,同位内角和邻补角的和为180度)来证明同位角相等。
三、方法二:转角定理转角定理也是证明线面平行中常用的一种方法。
该定理表明,如果两条直线所形成的转角相等,则这两条直线是平行线。
1.假设有两条直线AB和CD,以及一条与AB相交的横截线EF。
2.观察EF与AB和CD所形成的转角,如果这些转角相等,则可以得出AB和CD是平行线。
3.证明转角相等:可以利用已知角度相等的定理,如同位角定理、垂直角定理或同旁内角互补定理来证明转角相等。
四、方法三:等边三角形法等边三角形法是证明线面平行的另一种常用方法。
该方法利用了等边三角形的性质,即等边三角形的对边是平行的。
1.假设有两条直线AB和CD,以及一条与AB相交的横截线EF。
2.构造一个等边三角形AEF,其中AE=EF=AF,使得EF与CD重合。
3.由于AEF是等边三角形,所以DE=DF。
4.由于DE=DF且EF与CD重合,可以得出DE与CD重合,即DE和CD是平行线,从而得出AB和CD是平行线。
五、总结通过同位角定理、转角定理和等边三角形法,我们可以方便地证明线面平行的关系。
这些证明方法在几何学中的应用非常广泛,可以帮助我们研究和解决与平行线有关的问题。
在实际生活中,平行线的概念和性质也有着广泛的应用,如建筑、制图等领域。
证明线面平行的方法

证明线面平行的方法线面平行是几何学中一个重要的概念,它在解决各种几何问题中起着重要的作用。
在实际问题中,我们经常需要证明两条直线或两个平面是否平行,因此了解证明线面平行的方法是非常重要的。
本文将介绍几种常见的证明线面平行的方法,希望能够帮助读者更好地理解和运用这一概念。
首先,我们来看一种常见的证明线面平行的方法——使用平行线性质。
根据平行线性质,如果两条直线被一条截线所截,那么同侧内角相等,则这两条直线是平行的。
这一性质在证明线面平行时也同样适用。
当我们需要证明两个平面平行时,可以先找到它们的交线,然后证明同侧内角相等,从而得出结论。
其次,我们可以利用垂直平分线的性质来证明线面平行。
垂直平分线是指一个线段或者一条直线被另一条直线垂直平分成两个相等的部分。
当两个平面被同一条直线垂直平分时,我们可以利用垂直平分线的性质来证明它们是平行的。
这种方法在实际问题中应用较为广泛,可以帮助我们快速准确地证明线面平行的关系。
另外,我们还可以使用平行四边形的性质来证明线面平行。
根据平行四边形的性质,对角线互相平分,那么它们所在的平面是平行的。
因此,当我们需要证明两个平面平行时,可以先构造一个平行四边形,然后证明对角线互相平分,从而得出结论。
最后,我们可以利用平行线的性质来证明线面平行。
平行线的性质是指如果两条直线被一条截线所截,同侧内角相等,则这两条直线是平行的。
这一性质同样适用于证明线面平行的问题。
当我们需要证明两个平面平行时,可以先找到它们的交线,然后证明同侧内角相等,从而得出结论。
综上所述,证明线面平行的方法有很多种,我们可以根据具体的问题选择合适的方法进行证明。
通过掌握这些方法,我们可以更好地理解和运用线面平行的概念,从而解决各种几何问题。
希望本文介绍的方法能够对读者有所帮助,谢谢阅读!。
证明线面平行的方法

证明线面平行的方法
要证明线面平行,可以采用以下方法:
1. 使用向量法:设直线L上一点为P,平面M上一点为Q,
其中从直线L的方向向量可以得到直线L的法向量nL,从平
面M的法向量可以得到平面M的法向量nM。
若nL与nM相
互垂直,则可以判断直线L与平面M是平行的。
2. 使用点法式:设直线L的方程为Ax + By + Cz + D = 0,其
中(A,B,C)为直线方向向量,(x,y,z)为直线上任意一点的坐标。
设平面M的方程为Ax + By + Cz + D' = 0,其中(A,B,C)为平面的法向量,(x,y,z)为平面上任意一点的坐标。
如果直线L的法
向量与平面M的法向量平行,则直线L与平面M是平行的。
3. 使用斜率法:对于直线L,找出直线上两点的坐标(x1, y1,
z1)和(x2, y2, z2),计算直线的斜率mL = (y2 - y1) / (x2 - x1)。
对于平面M,找出平面上两点的坐标(x1, y1, z1)和(x2, y2, z2),计算平面的斜率mM = (z2 - z1) / (y2 - y1)。
如果直线L和平面
M的斜率相等,则直线L与平面M是平行的。
以上三种方法可以用来证明直线与平面之间的平行关系,其实质上是通过分析向量或者坐标的关系来判断直线和平面是否平行。
线面平行的性质定理

• 可以理解为直线与平面之间距离恒定的一种关系。
的所有直线都保持相同的距离。
线面平行的性质及证明
线面平行的性质
• 性质1:如果一条直线与一个平面平行,那么这条直线与这个平面内的所有直线都平行。
• 性质2:如果一条直线与一个平面平行,那么这条直线与这个平面的任意一个投影都平行。
• 性质3:如果两条直线分别与一个平面平行,那么这两条直线平行。
• 利用线面平行的性质定理,可以求解立体几何中的角度问题,如求
圆锥曲线、球面曲线等的角度。
应用实例1:求解三垂线问题
• 利用线面平行的性质定理,可以证明三垂线相互平行,从而求解三垂
线的长度关系。
应用实例2:证明空间中的相似三角形
• 利用线面平行的性质定理,可以证明空间中的两个三角形相似,从而
求解未知长度和角度。
视觉效果。
升力。
感。
02
线面平行性质定理的证明
线面平行性质定理的
表述
• 线面平行性质定理的表述
• 定理:如果一条直线与一个平面平行,那么这条直线与这个平
面内的所有直线都平行。
• 定理:如果一条直线与一个平面平行,那么这条直线与这个平
面的任意一个投影都平行。
• 定理:如果两条直线分别与一个平面平行,那么这两条直线平
用价值。
教学方法
• 利用板书讲解,清晰地展示线面平行性质定理的证明过程,帮助学生理解定理。
• 利用多媒体教学,通过动画、视频等形式,形象地展示线面平行性质定理的应用,
提高学生的学习兴趣。
线面平行性质定理的教学评价与反馈教学评价教学反馈
• 通过课堂提问,了解学生对线面平行性质定理的理解程
• 通过学生反馈,了解学生对线面平行性质定理的疑惑和
线面平行_精品文档
线面平行概述线面平行是几何学中的一个重要概念。
它指的是一条线段与一个平面之间的关系,即线段与平面的方向平行。
线面平行的概念在数学、物理学、工程学等学科中都有广泛的应用。
本文将介绍线面平行的定义、性质以及在实际问题中的应用。
一、线面平行的定义线面平行是指一条线段与一个平面之间的关系,即线段与平面的方向平行。
具体而言,线段的方向向量与平面的法向量平行,线段上的任意一点到平面的距离相等。
这样的线段与平面被称为线面平行。
二、线面平行的性质1. 线面平行的判断方法:要判断一条线段与一个平面是否平行,可以计算线段的方向向量和平面的法向量之间的内积,如果内积等于零,则线段与平面平行。
2. 线面平行的性质:a) 线面平行的两个必要条件是线段的方向向量和平面的法向量平行且线段在平面上的任意一点到平面的距离相等。
b) 线面平行的两个充分条件是线段的方向向量和平面的法向量平行。
c) 如果一条线段与一个平面平行,那么线段上任意两点到平面的距离都相等。
3. 线面平行的性质的证明:a) 对于线面平行的两个必要条件,可以通过向量的内积性质和距离的定义来进行证明。
b) 对于线面平行的两个充分条件,可以通过向量的平行性质来进行证明。
c) 对于线面平行的性质c),可以通过线面平行的定义和线段的方向向量与平面的法向量的平行性质来进行证明。
三、线面平行的应用线面平行的概念在实际问题中有很多应用。
以下是其中的几个常见应用:1. 空间几何问题:在空间几何问题中,线面平行的概念可以用来解决线段与平面之间的关系。
例如,在计算线段与平面的交点时,可以先判断线段与平面是否平行,如果平行,则线段与平面没有交点;如果不平行,则可以计算线段与平面的交点。
2. 工程设计:在工程设计中,线面平行的概念可以用来解决平面上的线性问题。
例如,设计一条平行于给定平面的线段,可以先求出平面的法向量,然后构造与法向量平行的线段。
3. 物理学中的力学问题:在物理学中,线面平行的概念可以应用于力学问题中。
线面平行知识点总结
线面平行知识点总结一、线面平行的定义1. 线面平行是指在三维空间中,两条直线或者一个直线与一个平面的关系。
如果两条直线在同一个平面上且不相交,则它们是线面平行的;如果一条直线与一个平面平行,则它们是线面平行的。
2. 线面平行的判断方法:- 根据定义,两条直线在同一个平面上且不相交即为线线平行,可以通过观察二维平面投影来进行判断;- 通过向量的性质来判断,如果两条直线在同一个平面上且它们的方向向量平行,则它们是线线平行的;- 对于线面平行,直线的方向向量与平面的法向量平行。
3. 线面平行的特点:- 对于线线平行,它们在同一个平面上且不相交;- 对于线面平行,直线的方向向量与平面的法向量平行。
二、线面平行的应用1. 几何形状的判断- 在空间几何中,线面平行的概念常常用于判断几何形状的性质。
例如,在判断一个立方体的对角线是否在同一个平面上时,就可以利用线面平行的性质来进行推理。
2. 建模与设计- 在工程建模和设计中,线面平行的概念也有着重要的应用。
例如在建筑设计中,为了保证构件的安装与连接,需要考虑构件之间的线面平行关系,以确保各构件之间的准确配合。
三、线面平行的相关定理1. 平行线性质定理- 定理1:两条直线在同一个平面上且平行,则它们的方向向量成比例;- 定理2:如果一条直线与一个平面平行,则直线上的任意一点到平面的距离等于这个点到平面的法向量的点积的绝对值。
2. 平面平行性质定理- 定理1:如果两个平行的平面被交叉一条直线所截,则它们的法向量成比例;- 定理2:如果两个平面平行,那么它们的法向量成比例,且它们之间的距离是相等的。
3. 线面平行的性质定理- 定理1:如果一条直线与一个平面平行,则直线上的任意一点到平面的距离等于这个点到平面的法向量的点积的绝对值;- 定理2:如果一条直线与一个平面平行,并且与这个平面内的直线相交,则这两条直线的夹角等于直线的方向向量与平面的法向量的夹角。
四、线面平行的相关问题1. 直线在平面内的投影问题- 给定一个直线和一个平面,在平面上求直线的投影。
谈谈证明线面平行问题常用的几种方法
证明线面平行的问题侧重于考查同学们的空间想象能力与数学运算能力.根据直线与平面平行的定义可知,要判断直线与平面是否平行,只需判定直线与平面有没有公共点.但由于直线是无限延伸的,平面是无限延展的,因此利用定义法不易快速证明线面平行,需运用转化思想,把线面平行问题转化为线线平行问题、面面平行问题、空间向量之间的位置关系问题,利用线面平行的判定定理、面面平行的性质定理,通过空间向量运算来求解.下面谈一谈证明线面平行的三种方法.一、利用线面平行的判定定理进行证明线面平行的判定定理:如果平面外一条直线与平面内的一条直线平行,那么该直线与该平面平行.利用线面平行的判定定理,可由线线平行推出线面平行.在证明线面平行时,可根据题意和几何图形的特点,添加合适的辅助线,利用中位线的性质、平行四边形的性质寻找或作出平行线,以利用线面平行的判定定理证明线面平行.例1.如图1,在四棱锥P-ABCD中,底面ABCD为平行四边形,O为AC的中点,M为PD的中点,证明:PB//平面ACM.证明:如图1,连接MO,BD.在平行四边形ABCD中,O为AC的中点,∴O为BD的中点,∵M为PD的中点,∴MO为ΔPBD的中位线,∴PB//MO,又PB⊄平面ACM,MO⊂平面ACM,∴PB//平面ACM.想要证明PB//平面ACM,需在平面ACM内找到一条与直线PB平行的直线,于是添加辅助线,作出ΔPBD的中位线MO.由三角形中位线的性质可知MO//PB,即可利用线面平行的判定定理证明线面平行.例2.如图2,四棱锥P-ABCD的底面ABCD为直角梯形,侧棱AP⊥平面ABCD,AB⊥AD,AD=2BC.若点E为棱PD的中点.求证:CE//平面ABP.证明:如图2所示,取PA的中点F,连接BF,EF,在ΔPAD中,点F,E分别是PA,PD的中点,∴EF为ΔPAD的中位线,∴EF//AD,EF=12AD,∵ AD=2 BC,∴AD//BC,BC=12AD,∴EF//BC,EF=BC,∴四边形EFBC是平行四边形,∴CE//BF,∵CE⊄平面ABP,BF⊂平面ABP,∴CE//平面ABP.通过作辅助线构造出平行四边形EFBC,再利用中位线的性质和平四边形的性质即可证明EF//AD、CE//BF.而CE在平面ABP外,BF在平面ABP内,利用线面平行的判定定理,就能证明CE//平面ABP.例3.如图3,S是平行四边形ABCD外一点,M,N分别是SA、BD上的点,且AMSM=BN ND,求证:MN//平面SDC.证明:连接AN,并延长AN延长线交CD于点P,连接SP,∵四边形ABCD是平行四边形,∴AB//PD,∴ΔABN∽ΔPDN,∴BNND=AN NP,又AMMS=AN NP,∴AMAS=AN AP,∴MN//SP,∵MN⊄平面SDC,SP⊂平面SDC,∴MN//平面SDC.通过作辅助线,构造出两个相似三角形ΔABN与ΔPDN,再根据相似三角形的性质可证明MN//SP.而图1图2图346方法集锦图4三、利用空间向量进行证明若几何图形中有两两垂直的三条线,为坐标轴,建立空间直角坐标系,分别求出直线的方向向量和平面的法向量的方向向量与平面的法向量垂直,平面平行.。
线面平行的性质定理
A
如何画线? 如何画线?
在平面A 解:在平面A’C’内, 过P点作EF//B’C’, 点作EF//B’ EF//B A’ 交A’B’、C’D’于E,F 连接BE,CF, BE,CF,则 连接BE,CF,则 CF是应画的线 是应画的线. EF, BE, CF是应画的线
A D’
E
D
P
F
C’
C B
因为BC//平面A 平面BC //平面 BC’ 因为BC//平面A’C’, 平面BC’//平面 BC//平面 =B’ A’C’=B’C’ 所以BC//B BC//B’ EF//B’ 所以// BC ’C’,且EF//B’C’,由 EF BC//B EF ⊄ 平面AC ⇒ EF // 平面AC. BC ⊂ 平面AC CF与平面AC相交 与平面AC BE, CF与平面AC相交
平行
两种证明方法: 两种证明方法:
1.从正面证明 2.反证法
α
b
a
β
线面平行的性质定理
一条直线和一个平面平行, 一条直线和一个平面平行,则过这条直线的任一 平面与此平面的交线与该直线平行。 平面与此平面的交线与该直线平行。 β α∩β= m
l⊂β
l ∥α
l
l ∥m
m
α
线面平行线线平行线平行的性质定理又 ∵a∥b ∴b∥c ∥ ∥ ∵ b ⊄α, c a c β b
α
⊂ α
∴b∥α. ∥
典例剖析
如果两个相交平面分别经过两条平行直线中的一条, 如果两个相交平面分别经过两条平行直线中的一条,那么它 们的交线和这两条直线平行. 们的交线和这两条直线平行 ⊂ 已知:平面 平面α∩ 平面 l, a α, b β, ⊂ b(如图)求证: 平面β= a∥ (如图)求证: 已知 平面 ∥ ∥ ∥ 例3 a∥l , b∥l. 证明: 证明:∵a∥b,b ⊂β,a ∥ , , β ⊄ l ∴a∥β ∥ 平面β= 又∵a ⊂α,平面 ,平面α∩ 平面 l ∴a∥l ∥ 同理b∥ 同理 ∥l 故a∥l , b∥l . ∥ ∥ a b β
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学内容分析
本节内容在立体几何学习中起着承上启下的作用,具有重要的意义与地位。
本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。
本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
任教的学生在年段属中下程度,学生学习兴趣较低,并且学习立体几何所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
二、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。
培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
三、教学重难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
四、教学过程
(一)知识准备、新课引入
我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为a⊄α提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。
(二)判定定理的探求过程
1、提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
学生1:例举日光灯与天花板,树立的电线杆与墙面。
学生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
(此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面
可能共面的情形及门要离开门框的位置等情形。
)
2、教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。
又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
(设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。
)
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线 ②平面内一条直线 ③这两条直线平行
(2)如果平面外的直线a 与平面α内的一条直线b 平行,那么直线a 与平面α平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行⇒线面平行
α⊄a
符号表示:αα||||a b a b ⇒⎪⎭⎪
⎬⎫⊂ (三)定理运用,问题探究
1、想一想:
(1)判断下列命题的真假?说明理由:
①如果一条直线不在平面内,则这条直线就与平面平行( )
②过直线外一点可以作无数个平面与这条直线平行( )
③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )
(2)若直线a 与平面α内无数条直线平行,则a 与α的位置关系是( )
A 、a ||α
B 、a ⊂α
C 、a ||α或a ⊂α
D 、α⊄a
(设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。
此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。
)
2、设a 、b 是二异面直线,则过a 、b 外一点p 且与a 、b 都平行的平面存在吗?若存在请画出平面,不存在说明理由?
先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
(这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性)
3、例1:已知空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,求证:EF || 平面BCD 。
变式一:空间四边形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 中点,连结EF 、FG 、GH 、HE 、AC 、BD 请分别找出图中满足线面平行位置关系的所有情况。
(共6组线面平行)
变式二:在变式一的图中如作PQ EF ,使P 点在线段AE 上、Q 点在线段FC 上,连结PH 、QG ,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH 、PQGH 分别是怎样的四边形,说明理由。
(设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。
)
例2:如图,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱BC 与C 1D 1中点,求证:EF || 平面BDD 1B 1
分析:根据判定定理必须在平面BDD 1B 1内找一条线与EF 平行,联想到中点问题找中点解决的方法,可以取BD 或B 1D 1中点而证之。
思路一:取BD 中点G 连D 1G 、EG ,可证D 1GEF 为平行四边形。
思路二:取D 1B 1中点H 连HB 、HF ,可证HFEB 为平行四边形。
(根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。
平行问题找中点解决是个好途径好方法。
这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法)
4、练习:将两个全等的正方形ABCD 和ABEF 拼在一起,设M 、N 分别为AC 、BF 中点,求证:MN || 平面BCE 。
变式:若将练习2中M 、N 改为AC 、BF 分点且AM = FN ,试问结论仍成立吗?试证之。
(设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。
)
(四)总结
先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):
1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
α⊄a
2、定理的符号表示:ααα||||a b a b a ⇒⎪⎭
⎪⎬⎫⊂⊄
简述:(内外)线线平行则线面平行
3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。