322空间线面平行与垂直关系的判定

合集下载

空间几何线面平行面面平行线面垂直面面垂直的证明方法

空间几何线面平行面面平行线面垂直面面垂直的证明方法

空间几何线面平行面面平行线面垂直面面垂直的证明方法空间几何中,线、面、平行面、面平行线、面垂直面等概念是非常重要的。

在证明这些概念时,我们需要掌握一些基本的证明方法。

下面,我将介绍一些证明方法,帮助大家更好地理解这些概念。

一、线与面的关系1. 线与平面的关系线与平面的关系有两种情况:线在平面内或线与平面相交。

对于线在平面内的情况,我们可以通过以下证明方法来证明:(1)假设线与平面不在同一平面内,那么这条线必然与平面相交,与已知矛盾。

(2)假设线与平面在同一平面内,但不在同一直线上,那么这条线必然与平面相交,与已知矛盾。

(3)假设线与平面在同一直线上,但不在同一点上,那么这条线必然与平面相交,与已知矛盾。

因此,我们可以得出结论:线与平面必然在同一平面内且相交于一点或在平面内。

2. 线与直线的关系线与直线的关系有三种情况:相交、平行、重合。

对于线与直线相交的情况,我们可以通过以下证明方法来证明:(1)假设两条线不相交,那么这两条线必然平行,与已知矛盾。

(2)假设两条线重合,那么这两条线必然相交,与已知矛盾。

因此,我们可以得出结论:两条不同的线必然相交于一点或平行。

二、面与面的关系1. 平行面的关系平行面的关系有两种情况:平行或重合。

对于平行面的情况,我们可以通过以下证明方法来证明:(1)假设两个平面不平行,那么这两个平面必然相交,与已知矛盾。

(2)假设两个平面重合,那么这两个平面必然平行,与已知矛盾。

因此,我们可以得出结论:两个不同的平面必然平行或相交于一条直线。

2. 面垂直面的关系面垂直面的关系有两种情况:相交于一条直线或垂直。

对于面垂直的情况,我们可以通过以下证明方法来证明:(1)假设两个面不垂直,那么这两个面必然相交于一条直线,与已知矛盾。

(2)假设两个面相交于一条直线,那么这两个面必然不垂直,与已知矛盾。

因此,我们可以得出结论:两个不同的面必然相交于一条直线或垂直。

三、面平行线的关系面平行线的关系有两种情况:平行或相交。

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。

理解和掌握这些关系,对于解决相关的几何问题具有关键作用。

下面我们通过一些例题来深入探讨,并对相关知识点进行总结。

一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。

2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。

例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。

证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。

又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。

(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。

2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。

证明:连接 AC 交 BD 于 O,连接 MO。

因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。

又因为 M 是 PC 的中点,所以MO∥PA。

因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。

(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。

2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。

证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。

二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。

空间几何的平行与垂直判定

空间几何的平行与垂直判定

空间几何的平行与垂直判定空间几何是数学中的一个重要分支,涉及到直线、平面、点等概念的研究。

其中,平行和垂直是空间几何中常见的关系,本文将对平行和垂直的判定方法进行详细介绍。

一、平行的判定方法在空间几何中,平行是指两个线(线段)或两个平面永远不会相交的关系。

下面将介绍几种常见的平行判定方法。

1. 直线的平行判定给定两条直线l1和l2,如果它们的斜率相等且不相交,则可以判定l1与l2平行。

即若直线l1的斜率为k1,直线l2的斜率为k2,且k1≠k2时,则l1和l2平行。

2. 平面的平行判定对于两个平面P1和P2,如果它们的法向量相等或平行,则可以判定P1与P2平行。

二、垂直的判定方法在空间几何中,垂直是指两个线(线段)或两个平面之间的相互垂直关系。

下面将介绍几种常见的垂直判定方法。

1. 直线的垂直判定给定两条直线l1和l2,如果它们的斜率互为倒数且不相交,则可以判定l1与l2垂直。

即若直线l1的斜率为k1,直线l2的斜率为k2,并且k1·k2=-1时,则l1和l2垂直。

2. 平面的垂直判定对于两个平面P1和P2,如果它们的法向量互为倒数且不平行,则可以判定P1与P2垂直。

三、平行与垂直的应用举例平行和垂直关系在实际问题中经常被应用。

以下是几个应用举例。

1. 平行线与垂直线的交点问题当两条平行线相交时,它们的交点无穷多个;而当两条垂直线相交时,它们的交点只有一个。

这一性质在导弹拦截等领域具有重要意义。

2. 平行四边形及其性质平行四边形是指具有两对平行边的四边形。

它们的特点是相对边相等、对角线相交于对角线的中点、对角线互相平分等。

平行四边形的性质在建筑设计等领域有广泛应用。

3. 垂直投影与三视图在工程绘图中,垂直投影是指将物体在垂直方向上的投影。

根据垂直投影可以得到物体的平面图、前视图、左视图、右视图等,这些视图通常用于工程设计、建筑规划等领域。

4. 共线与共面条件若一条直线与一个平面相交,那么这条直线上的任意一点与该平面上的任意一点以及该平面上的任意一条直线都共线。

空间几何的平行与垂直关系

空间几何的平行与垂直关系

空间几何的平行与垂直关系空间几何是研究物体的形状、大小、位置以及它们之间的关系的数学分支。

在空间几何中,平行和垂直是两个非常重要的关系。

平行指的是两条直线或两个面在空间中永远不会相交,而垂直则表示两条直线或两个面之间存在90度的夹角。

本文将详细讨论平行和垂直的概念、特点以及它们在几何推理和实际生活中的应用。

一、平行的特点和推理方法在空间几何中,平行是指两条直线或两个平面在空间中永远不会相交。

平行具有以下特点:1. 平行的直线之间的距离相等:如果两条直线平行,那么它们之间的距离将保持不变。

2. 平行的平面之间的角度相等:如果两个平面平行,那么它们之间的夹角将始终保持相等。

在几何推理中,我们可以使用平行线的性质来证明其他几何关系。

例如,如果两条直线与同一条直线的交线分别垂直,则这两条直线也是平行的。

二、垂直的定义和性质垂直是指两条直线或两个平面之间存在90度的夹角。

垂直具有以下性质:1. 垂直的直线之间相互正交:如果两条直线相互垂直,它们将彼此正交,形成90度的夹角。

2. 垂直的平面交线与平面之间的夹角为90度:当两个平面的交线与其他平面之间的夹角为90度时,我们可以说这两个平面互相垂直。

三、平行与垂直的实际应用平行和垂直的概念在实际生活中有广泛的应用。

以下是几个应用实例:1. 建筑设计:在建筑设计中,平行的概念非常重要。

例如,墙壁之间的平行关系可以决定空间的布局和设计效果。

2. 电气工程:电气工程中常用到平行和垂直的概念。

例如,电路中的导线可以平行排列,以减小电阻;电路中的电压和电流相互垂直,通过正交性来进行计算和分析。

3. 地理导航:在地理导航中,平行和经纬度之间的关系是非常重要的。

经线是平行于地球赤道的线,而纬线是平行于地球的纬度圈。

4. 视觉艺术:平行和垂直的概念在绘画、摄影和设计中发挥重要作用。

艺术家常常利用平行和垂直的线条来创造平衡和对比效果。

总结:空间几何中的平行和垂直关系是我们理解和应用物体形状、大小和位置的重要基础。

空间几何学中的平行与垂直关系

空间几何学中的平行与垂直关系

空间几何学中的平行与垂直关系空间几何学是研究空间中点、线、面等几何对象的性质和关系的数学学科。

在空间几何学中,平行和垂直是两个基本的关系,它们在我们日常生活和工作中起着重要的作用。

本文将深入探讨空间几何学中的平行与垂直关系,包括定义、性质以及应用。

一、平行关系在空间几何学中,平行是指两条直线或两个平面永远不相交的关系。

具体来说,若两条直线在同一个平面内,且这两条直线上的任意两点的连线都在这个平面内,那么这两条直线是平行的。

同样地,若两个平面没有公共点,且它们上面的任意两点的连线都在这两个平面内,那么这两个平面是平行的。

平行关系具有以下性质:1. 平行关系是对称的。

如果直线l1与l2平行,那么l2与l1也平行;如果平面P1与P2平行,那么P2与P1也平行。

2. 平行关系是传递的。

如果直线l1与l2平行,l2与l3平行,那么l1与l3也平行;如果平面P1与P2平行,P2与P3平行,那么P1与P3也平行。

3. 平行关系与直线与平面的位置无关。

即使两条直线或两个平面不在同一个平面内,只要满足平行关系的定义,它们仍然是平行的。

平行关系在实际生活和工作中有着广泛的应用。

例如,在建筑设计中,平行的墙面可以增加空间的稳定性和美观性;在交通规划中,平行的道路可以提高交通效率;在物流运输中,平行的轨道可以确保车辆的安全行驶等。

二、垂直关系在空间几何学中,垂直是指两条直线或两个平面相交成直角的关系。

具体来说,若两条直线在同一个平面内相交,且相交的角度为90度,那么这两条直线是垂直的。

同样地,若两个平面相交成直角,那么这两个平面是垂直的。

垂直关系具有以下性质:1. 垂直关系是对称的。

如果直线l1与l2垂直,那么l2与l1也垂直;如果平面P1与P2垂直,那么P2与P1也垂直。

2. 垂直关系是传递的。

如果直线l1与l2垂直,l2与l3垂直,那么l1与l3也垂直;如果平面P1与P2垂直,P2与P3垂直,那么P1与P3也垂直。

空间几何中的平行与垂直关系

空间几何中的平行与垂直关系

空间几何中的平行与垂直关系空间几何是研究空间中点、线、面及其相关性质和关系的数学学科。

在空间几何中,平行和垂直是两个基本的关系。

本文将介绍平行和垂直的概念、性质以及它们在空间几何中的应用。

一、平行关系平行是指两条直线或两个面永远不会相交的关系。

在空间几何中,我们可以通过以下方式判断两条直线是否平行:1. 直线的斜率相等:如果两条直线的斜率相等,那么它们是平行的。

这是因为两条直线的斜率相等,意味着它们的倾斜角度相同,在空间中永远不会相交。

2. 直线的方向向量平行:如果两条直线的方向向量平行,那么它们是平行的。

我们可以通过计算两条直线的方向向量,并判断它们是否平行。

3. 直线的截距比相等:如果两条直线的截距比相等,那么它们是平行的。

我们可以通过计算两条直线的截距比,并判断它们是否相等。

平行的性质:1. 平行具有传递性:如果直线l1与直线l2平行,直线l2与直线l3平行,那么直线l1与直线l3平行。

2. 平行具有对称性:如果直线l1与直线l2平行,那么直线l2与直线l1平行。

平行的应用:1. 平行线在平面图形中的应用:平行线在平面图形中有着重要的应用,如矩形、平行四边形等。

在这些图形中,平行线的存在使得我们可以推导出图形的性质和定理。

2. 平行线在建筑设计中的应用:建筑设计中常常需要使用平行线来确定建筑物的边界、墙壁等。

二、垂直关系垂直是指两条直线或两个面之间存在直角的关系。

在空间几何中,我们可以通过以下方式判断两条直线是否垂直:1. 直线斜率之积为-1:如果两条直线的斜率之积为-1,那么它们是垂直的。

这是因为两条直线的斜率之积为-1,意味着它们相互垂直。

2. 直线的方向向量垂直:如果两条直线的方向向量垂直,那么它们是垂直的。

我们可以通过计算两条直线的方向向量,并判断它们是否垂直。

3. 直线的斜率之和为0:如果两条直线的斜率之和为0,那么它们是垂直的。

这是因为两条直线的斜率之和为0,意味着它们相互垂直。

空间直线的平行与垂直关系

空间直线的平行与垂直关系

空间直线的平行与垂直关系直线的平行与垂直关系是几何学中的基本概念之一,这个概念在我们日常生活中也是无处不在的。

在建筑、设计、城市规划、工程等领域中,了解直线的平行与垂直关系至关重要。

本文将介绍直线的平行与垂直的定义、性质以及应用。

首先,我们来看直线的平行关系。

当两条直线在平面上永不相交,且在同一平面上的任意两点之间连线都与这两条直线相交,我们可以说这两条直线是平行的。

以字母 "||" 表示直线的平行关系,如果直线a || 直线b,则可以写作 a || b。

直线的平行关系有以下几个重要性质:1. 平行性质一:如果两条直线都与同一平面上的第三条直线平行,那么这两条直线必定平行。

2. 平行性质二:如果两条直线分别与同一平面上的两条平行线平行,那么这两条直线也平行。

3. 平行性质三:如果直线a与b平行,直线b与c平行,那么直线a与c平行。

直线的垂直关系与平行关系相对应。

当两条直线在平面上相交且交角为90度,我们可以说这两条直线是垂直的。

以一个类似于 "⊥" 的符号表示直线的垂直关系,如果直线a ⊥直线b,则可以写作 a ⊥ b。

直线的垂直关系也有几个重要性质:1. 垂直性质一:如果两条直线都与同一平面上的第三条直线垂直,那么这两条直线必定垂直。

2. 垂直性质二:如果一条直线与平面上的一条直线垂直,那么与该平面上的另一条直线平行的直线也与该直线垂直。

3. 垂直性质三:如果直线a与b垂直,直线b与c垂直,那么直线a与c平行。

直线的平行与垂直关系在很多领域中都有广泛的应用。

以下是几个常见的应用实例:1. 建筑和设计:在建筑和设计中,了解平行和垂直关系对于设计合理的建筑和室内布局至关重要。

例如,在设计房间时,我们应该确保墙壁平行或垂直于地面,以获得更美观的效果。

2. 道路和交通:平行和垂直关系在规划和设计道路和交通系统时也非常重要。

道路的平行布局可以提高交通流畅性,而垂直的交叉路口可以确保交通的安全。

空间几何中的平行与垂直关系

空间几何中的平行与垂直关系

空间几何中的平行与垂直关系在空间几何中,平行和垂直关系是两个基本的概念,它们在我们的日常生活和数学应用中扮演着重要角色。

本文将探讨空间几何中的平行和垂直关系,并介绍其定义、特性以及相关的应用。

一、平行关系在空间几何中,平行关系是指两条直线或两个平面永远不相交。

如果我们将其数学表达,可以用以下方式表示:定义1:设直线l和m都在同一个平面内,如果l和m上的任意两点A和B的连线AB与l上的另一点C所在的直线相交,那么l与m平行,记作l ∥ m。

定义2:设平面α和β,如果平面α上任意一条直线与平面β上的任意一条直线所确定的两个轴线互相平行,那么平面α和平面β平行,记作α∥β。

平行关系具有以下特性:性质1:如果两条直线平行,则它们的任意一对相交线段的比值都相等。

性质2:如果一个平面与两个平行平面相交,则它们的任意一对相交线段的比值都相等。

性质3:如果两条直线分别与一组平行直线相交,那么它们的对应角相等。

段平行、平面平行以及平面与线段平行的基本依据。

在工程学和建筑学中,平行关系用于设计和绘图中的垂直标尺、平行线、平行导板等。

此外,在计算机图形学、地理学和导航系统等领域,平行关系也扮演着重要的角色。

二、垂直关系垂直关系是指两条直线或两个平面之间的关系,其中一条直线或一个平面与另一条直线或另一个平面的法线垂直。

我们可以用以下方式表示垂直关系:定义3:设直线l和m在同一个平面内,如果l和m上的任意一对相交直线的法线互相垂直,那么l与m垂直,记作l ⊥ m。

定义4:设平面α和β,如果平面α上的任意一条直线与平面β上的任意一条直线的法线互相垂直,那么平面α和平面β垂直,记作α⊥β。

垂直关系具有以下特性:性质4:如果两条直线垂直,则它们的任意一对相交角互为直角。

性质5:如果一个直线与一个平面垂直,则该直线上的任意一条边与该平面上任意一条边所确定的两个角互为直角。

性质6:如果两个平面垂直,则它们的任意一对相交线互为直角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 1 BC AD (0, a,0), CP ( a, a, a ). 2 2 3 1 则BF BC CP ( a ,(1 )a, a ) 2 2
F. 且 u BF 0
3 1 a 3(1 )a 6 a 0 2 2
攸县一中 洪开科
一、复习引入
用空间向量解决立体几何问题的“三步曲”。 (1)建立立体图形与空间向量的联系,用空间向
量表示问题中涉及的点、直线、平面,把立体几 何问题转化为向量问题; (化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题; (进行向量运算)
u ( x, y, z )
A N
设x 3解得u ( 3, 3,6)
易知平面DAC的法向量为 v (0,0,1)
uv 6 3 cos u, v 2 | u || v | 48

θ=30º .
例4.如图,在底面是菱形的四棱锥P-ABCD中, ∠ABC=60°, PA=AC=a , PB=PD= 2 a, 点E在PD上, 且PE:ED=2:1. , (1) 证明PA⊥平面ABCD; (2) 求以AC为棱,EAC与DAC为面的二面角θ的大小; (3) 在棱PC上是否存在一点F使BF//平面AEC?证明你的结论. z (3) 假设存在点F满足条件. P
(3)把向量的运算结果“翻译”成相应的几何意 义。 (回到图形)
例1.如图,在平行六面体ABCD-A1B1C1D1中, O是B1D1 的中点, 求证: B1C∥平面ODC1 D1 C1 O 分析(基底法):只要证明与平面 A1 , ODC 中的一组基底共面. B1 1
D A B C
又B1C平面ODC1, ∴B1C∥平面ODC1
(1)证明:因为ABCD是菱形, ∠ABC=60°且PA=AC=a, ∴菱形的边长为a. ∴ PA2+AB2=2a2=PB2. ∴ PA⊥AB. 同理PA⊥AD, ∴ PA⊥平面ABCD.
P F E C D
A
B
例4.如图,在底面是菱形的四棱锥P-ABCD中, ∠ABC=60°, PA=AC=a, PB=PD= 2 a, 点E在PD上, 且PE:ED=2:1. (1) 证明PA⊥平面ABCD; (2) 求以AC为棱,EAC与DAC为面的二面角θ的大小; (3) 在棱PC上是否存在一点F使BF//平面AEC?证明你的结论. (2)解: 过A作AN⊥AD交BC于N, z P 如图建立空间直角坐标系A-xyz.
NM NA AB BM (2a,0,c)
E
D y C
又平面CDE的一个法向量是 AD (0,3b,0)
由NM AD 0 得到NM AD
因为MN不在平面CDE内 所以MN//平面CDE
例4.如图,在底面是菱形的四棱锥P-ABCD中, ∠ABC=60°, PA=AC=a, PB=PD= 2 a, 点E在PD上, 且PE:ED=2:1. (1) 证明PA⊥平面ABCD; (2) 求以AC为棱,EAC与DAC为面的二面角θ的大小; (3) 在棱PC上是否存在一点F使BF//平面AEC?证明你的结论.
M
C
B y
A
AM A1 B 0
总结:用向量证明比几何方法证明简单、明了。
4.在正方体AC1中,E、F分别是BB1、CD的中点,求 证:面AED⊥面A1FD1 Z
D1 C1 B1
A1 D
A F
E
C
Y
X
B
5.如图,已知矩形
ABCD 和矩形 ADEF 所在平面互相垂直,点
M , N 分别在对角线 BD, AE 上,且 BM
例2.在正方体ABCD-A1B1C1D1中,E、F分别是BB1, CD中点,求证:D1F⊥平面ADE z 证明:设正方体棱长为2,如 图建立空间直角坐标系D-xyz
则 D1F (0,1, 2)
DA (2,0,0), DE (2, 2,1)
A
D1
C1
A1 D
B1 F E C y B
D1F DA 0, D1F DE 0
则 AC ( 3 1 2 1 a , a , 0), AE (0, a, a ). 2 2 3 3
3 1 ax ay 0 2 2 2 1 ay az 0 3 3
F B x
E C Dy
设平面EAC的法向量为
u AC 则 u AE
x
∵D1F⊥DA,D1F⊥DE 又DA∩ DE=D 所以D1F⊥平面ADE
例3. 如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线 AC=2,BD= 2 ,且CF⊥平面ABCD,CF=2. F z 求证:平面ABF⊥平面ADF (2009安徽卷理(1)) 证:∵ ABCD是正方形,∴AC⊥BD. 如图建立空间直角坐标系O-xyz B 则A(0,-1,0), C(0,1,0),F(0,1 ,2) A O C y D x
求证:MN // 平面CDE
1 1 BD, AN AE, 3 3
z 简证:因为矩形ABCD和矩形ADEF 所在平面互相垂直,所以AB,AD, F AF互相垂直。以 AB, AD, AF 为正交 N 基底,建立如图所示空间坐标系, A 设AB,AD,AF长分别为3a,3b,3c, B M 则可得各点坐标,从而有 x
3.在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°, BC=1, A1A= 6 ,M是CC1得中点。 求证:A1B⊥AM
z
证明:如图建立空间直角坐标系C-xyz
A1
C1
B1
6 A1 ( 3, 0, 6), B(0,1, 0), A( 3, 0, 0), M (0, 0, ) 2 6 AM ( 3, 0, ), A1 B ( 3,1, 6) 2
u ( 3, 3,6)
1 解得 2
又 BF平面AEC ∴ 存在点F是棱PC的中点,使BF//平面AEC.
五、迁移练习
1.下列判断不正确的是( D ) A.若两平面的法向量共线,则两平面平行. B.若直线的方向向量与平面的法向量共线, 则直线与平面垂直. C.若两平面的法向量垂直,则两平面垂直. D.若直线的方向向量与平面的法向量垂直, 则直线与平面平行. 2.棱长为a的正方体ABCD—A1B1C1D1中,在棱DD1 a 上找到一点P使B1D⊥面PAC,则DP的长为 ______
相关文档
最新文档