传动轴设计
传动轴设计算范文

传动轴设计算范文在机械设计中,传动轴是一种将旋转运动从一个部件传递到另一个部件的装置。
传动轴通常由金属材料制成,可以通过键槽和键来实现与相邻部件的连接。
传动轴的设计和选择需要考虑许多因素,如传递的力矩、转速、材料强度和耐用性等。
首先,在传动轴设计中,需要确定传动的类型和要求。
传动轴可用于传递转矩、速度或两者兼而有之。
这将决定轴的尺寸、形状和连接方式。
接下来,需要通过分析传递力矩来确定传动轴的直径。
传动轴的直径应根据传递的力矩和轴材料的强度来选择。
可以使用常见的轴材料,如碳素钢、合金钢或不锈钢,这些材料都具有良好的强度和耐磨性。
使用以下公式来计算传动轴的直径:d=(16*T)/(π*σ)其中,d是传动轴的直径,T是传递的力矩,σ是材料的允许应力。
选择合适的轴材料时,还应考虑对应的材料标准,以确保材料的质量和可靠性。
在设计传动轴时,还需要注意轴的转速和转矩分布。
高转速会引起轴的振动和疲劳,因此需要进行适当的轴承支撑和平衡设计,以确保传动的平稳运行。
另外,需要考虑轴的连接方式。
常见的连接方式包括键槽和键的使用。
键槽可以针对轴和相邻部件进行加工,以提供良好的连接强度。
键的尺寸和形状应根据传动轴的尺寸和承载能力来选择,并确保连接的可靠性。
此外,在传动轴设计中,也应考虑到轴的耐用性和使用寿命。
这涉及到材料的磨损和腐蚀特性。
合适的表面处理和涂层可以提高轴的耐用性,并延长使用寿命。
最后,进行传动轴的设计时,需要进行合适的安全系数选择。
安全系数能够考虑设计中的不确定因素,并确保传动轴在各种工作条件下的可靠性。
安全系数的选择应根据实际应用情况和相应的标准或规范进行。
综上所述,传动轴设计是一个综合考虑力学、材料和制造工艺的过程。
通过正确选择材料、计算尺寸和形状、选择连接方式和考虑耐用性等因素,可以设计出满足要求的传动轴,并确保传动系统的可靠运行。
传动轴设计指南范文

传动轴设计指南范文传动轴是一种将动力从发动机传输到车轮或其他驱动装置的机械装置。
在传动系统中,传动轴起着至关重要的作用。
本文将介绍传动轴设计的一些基本原则和指南。
首先,传动轴的设计必须符合所需的扭矩和转速要求。
传动轴必须能够承受所施加的扭矩,并将动力传输到所需的转速。
其次,传动轴的材料选择非常重要。
传动轴通常由高强度合金钢或碳纤维等材料制成。
材料的选择要考虑扭矩和转速的要求,以及轴的重量和成本。
第三,传动轴的直径和长度也需要仔细设计。
较大的直径可以增加传动轴的强度和刚度,从而承受更大的扭矩。
然而,直径过大可能会增加轴的重量和成本。
轴的长度可以影响传输功率的效率,较长的轴可能引起振动和弯曲问题。
第四,传动轴的设计中需考虑自平衡的需求。
如果传动轴存在不平衡,将会引起振动和噪音,并可能导致轴的损坏。
因此,设计师应该采取措施来平衡轴,例如在适当的位置安装平衡块。
第五,传动轴的连接方法也非常重要。
连接方法应有效地传递扭矩,并保持轴的正确定位。
常用的连接方法有键槽连接、伞齿轮连接和膨胀连接等。
第六,传动轴的润滑也是一个重要的设计因素。
适当的润滑可以减少传动轴的摩擦和磨损,并提高传动效率。
润滑剂选择应考虑工作条件和轴的材料。
第七,传动轴的安装和维护也需要注意。
传动轴的正确安装可以确保轴和其他部件的正常运行。
定期检查和维护传动轴可以延长其寿命并避免故障。
最后,传动轴设计时应考虑实际应用环境的影响。
例如,在恶劣的工作条件下,如高温、高湿度或腐蚀性环境中,轴的材料和设计必须能够适应这些条件。
综上所述,传动轴的设计是传动系统中不可或缺的一部分。
合理的设计可以保证传动系统的正常运行和高效性能。
设计人员应该充分考虑扭矩和转速要求、材料选择、直径和长度、自平衡、连接方法、润滑、安装和维护等因素,以确保传动轴的正常运行和长寿命。
传动轴加工工艺设计的设计

传动轴加工工艺设计的设计一、传动轴的结构和材料分析在进行传动轴加工工艺设计之前,首先需要对传动轴的结构和材料进行分析。
传动轴的结构一般包括轴体和轴头两部分,轴体一般为圆柱形,轴头则是一侧或两侧存在凸起的部分。
根据传动轴的用途和负载要求,还可以设计出T形、H形和L形等特殊结构的传动轴。
在选择传动轴的材料时,需要考虑其强度、硬度、韧性、耐磨性、耐蚀性等性能要求。
常见的传动轴材料有碳素钢、合金钢、不锈钢、铝合金等,在选择材料时需综合考虑其性能和经济性。
二、传动轴加工工艺流程设计传动轴加工工艺流程设计是指根据传动轴的结构和加工要求,按照一定的过程顺序确定加工方法和设备。
一般的传动轴加工工艺流程包括材料切割、车削、铣削、孔加工、齿轮切削(如果有)、热处理、表面处理和装配等工艺步骤。
1.材料切割:根据传动轴的长度要求,将材料按照设计要求进行切割。
2.车、铣削:根据传动轴的直径和长度要求,可以选择车床、铣床等设备进行车削和铣削加工。
车削一般用于加工轴体,铣削一般用于加工轴头。
3.孔加工:根据传动轴的结构和装配要求,进行孔的加工,一般包括拉孔、铰孔、成型孔、镗孔等。
4.齿轮切削(如果有):如果传动轴需要与齿轮进行传动,则需要进行齿轮的切削,一般可以选择齿轮铣刀或齿轮滚刀进行切削。
5.热处理:对于需要提高传动轴的强度和硬度的情况,可以进行热处理,包括淬火、回火、表面渗碳等。
6.表面处理:对于需要提高传动轴的耐磨性和耐腐蚀性的情况,可以进行表面处理,包括镀铬、镀锌、喷涂等。
7.装配:将加工好的传动轴与其他部件进行装配,完成最终产品。
三、传动轴加工工艺参数的选择在选择切削速度时,需要根据材料的硬度、切削刀具的材质和刀具的寿命要求进行选择。
进给速度的选择需要综合考虑材料的硬度、切削刀具的材质和负荷要求。
刀具大小和刀具材料的选择则需要根据加工工艺和材料要求进行选择。
冷却液的选择需要根据材料的热敏性、切削刀具的材料和负荷要求进行选择。
传动轴和万向节设计

传动轴和万向节设计一、传动轴的结构传动轴是连接发动机和驱动轴的重要传动部件,其主要结构包括中心轴、连接部件和连接套管。
中心轴是传动轴的主体,其外形通常为圆柱形。
连接部件用于连接中心轴与其他传动部件,常用的连接方式有接合螺母和套筒连接。
连接套管则用于安装传动轴,起到支撑和保护的作用。
二、传动轴的设计要求传动轴作为汽车传动系统的关键零部件,其设计需要满足以下几个主要要求:1.良好的刚度和强度:传动轴在传递发动机动力的同时,还需要承受车辆行驶过程中的各种载荷。
因此,传动轴的设计需要保证足够的刚度和强度,以防止变形和断裂。
2.良好的动平衡性能:传动轴在高速旋转过程中会产生振动和不平衡力,对汽车驾驶稳定性产生不利影响。
因此,传动轴的设计需要考虑动平衡性能,采取相应的平衡措施。
3.重量轻、体积小:随着汽车动力性能和燃油经济性要求的提高,传动轴的质量也要求尽量减小,以减轻整车质量,提高燃油经济性。
4.良好的耐久性和可靠性:传动轴在汽车使用过程中会受到多种因素的影响,如冲击、杂乱加载和腐蚀等。
因此,传动轴的设计需要保证其良好的耐久性和可靠性,减少故障发生的概率。
三、万向节的结构和工作原理万向节用于连接传动轴和车轮之间,是一种能够在不同角度下实现传动的装置。
常见的万向节结构有三个球式和常角度式两种。
其中,三个球式万向节是一种可以实现任意角度传动的结构,由两个内圈、两个外圈和三个转动球组成。
常角度式万向节则适用于需要固定角度传动的场合,常用于前驱汽车。
万向节的工作原理是通过球和轴之间的球座和滚道实现传递动力。
当传动轴转动时,球会在轴上转动,通过球面与内圈、外圈的滚道接触传递动力。
相对于三个球式万向节,常角度式万向节的结构相对简单,其工作原理类似。
四、常见问题及解决方法1.传动轴产生振动:造成传动轴振动的原因有很多,可能是由于不平衡、轴材质问题或连接部件松动等原因。
解决方法可以是进行动平衡修正或更换质量较好的传动轴。
传动轴设计计算范文

传动轴设计计算范文传动轴是通过连接两个轴组成的机械装置,用于传递动力和扭矩。
在设计传动轴时,需要考虑许多因素,包括应用环境、传动效率、可靠性和安全等。
下面我们将探讨传动轴的设计计算。
首先,在传动轴的设计计算中,需要确定扭矩传递的计算方法。
扭矩可以通过下式计算得到:T=P*9550/n其中,T为扭矩(N.m),P为功率(kW),9550为转速换算系数,n 为转速(rpm)。
在计算扭矩时,还需考虑传动系数(Kf)和动载系数(Km)。
传动系数是考虑传动装置的传动效率、工作条件以及装配质量等因素的系数,通常为1.2~1.6、动载系数是考虑传动过程中动态载荷的系数,通常为1.2~1.4确定了扭矩传递计算方法后,需要根据应用环境和工作条件确定传动轴的材料。
常见的传动轴材料包括钢、铝合金和碳纤维等。
不同材料的强度和刚度各有优缺点,需要根据实际需求做出选择。
接下来,需要根据传动轴的长度和直径来计算其弯曲刚度。
弯曲刚度可以通过公式:Φ=(π/32)*(G*d^4)/(L)其中,Φ为弯曲刚度(Nm/rad),G为剪切模量(N/m^2),d为传动轴的直径(m),L为传动轴的长度(m)。
根据传动轴的弯曲刚度,还可以计算得到传动轴的自然频率(f)f=(1/2π)*√(Φ/I)在进行传动轴的设计计算时,还需要考虑传动轴的安全系数。
传动轴的设计应该具有一定的安全储备,以保证传动轴在正常工作负载下不发生失效。
安全系数通常为1.5~2.0,根据实际情况可能有所不同。
最后,需要进行传动轴的强度计算。
强度计算的方法有多种,包括受力分析法、有限元分析法等。
在进行强度计算时,需要考虑各部件的受力情况,包括剪切力、弯矩、挤压力等。
根据受力分析结果,可以选择合适的传动轴尺寸和材料。
综上所述,传动轴的设计计算涉及许多因素,包括扭矩传递计算、材料选择、弯曲刚度计算、自然频率计算、安全系数考虑和强度计算等。
通过合理的设计计算,可以确保传动轴在工作过程中具有良好的传动性能和可靠性。
传动轴设计

Upe 许用不平衡量(g ·mm) M 传动轴质量(kg) G 平衡精度(mm/s) ω 角速度(rad/s) 2.4 传动轴布置角度 因十字轴万向节本身的不等速性,使传动轴部件产生扭转振动, 从而产生附加的交变载荷,影响零部件使用寿命。为改变这种不等速 性,而应尽量使传动轴两端万向节叉处于同一平面,使第一万向节两 轴间夹角与第二万向节两轴间夹角相等。 实际上变速箱输出轴和驱动 桥输入轴之间的相对位置是变动的,因此不可能设计夹角为零。但轴 间夹角越大,传动轴转动的不均匀性越大,产生的附加交变载荷也越 大,对传动件的使用寿命越不利,同时也降低传动效率,所以在汽车 总体布置上应尽量减小这些轴间交角。 轻型载货汽车设计的两轴线夹 角在空载静止时,一般不超过 6-8 度。
3 常见故障及解决方法 传动轴常见失效模型主要有以下几种: 3.1 传动轴管折 分析原因及解决方法:首选通过理论计算、试验及故障出现前后整车 的一现象来判断传动轴的失效原因, 出现该种失效模式多半是由扭矩 及临界转速引起的。 扭矩原因引起的传动轴失效模式多为轴管折或扭 成麻花,出现该现象时车速一般不高或在起步时,扭矩或冲击扭矩发 挥到最大。这时应采取加粗轴管的措施提高传动轴的承载扭矩。当由 临界转速原因导致该故障时,传动轴管多为扭成麻花,并且车速较高 行驶,当故障发生前整车会感觉到激烈的抖动。这时应采取将轴管加 粗管壁减薄的措施来提高传动轴的临界转速。当传动轴较长时,可采 取将传动轴分成两节来提高传动轴的临界转速。 3.2 十字轴滚针损坏 分析原因及解决方法:十字轴滚针损坏一般有以下几种原因:制造缺 陷、万向节间隙大、油封破损、注油不及时、万向节超负荷运转。当 万向节间隙较大时,会使传动轴动不平衡量值加大,出现该失效模式 一般在早期。这时要求厂家加强万向节质量控制。油封破损、注油不 及时都会导致万向节润滑不充分, 加剧轴承磨损, 导致滚针断裂失效。 这时应及时更换油封和按时注油,以使用润滑充分。万向节承载负荷 超过万向节的设计载荷时,会使用万向节的寿命大大缩小,导致滚针 失效。这时应从万向节结构、材料及工艺要求上做一些改进,以进一 步提高万向节的承载能力
传动轴设计

K’ —花键转矩分布不均匀系数,取1.3
花键许用挤压应力为 则 满足花键挤压强度。
STEP5 5
df — 滑动花键齿侧工作表面的中径 B — 花键齿宽
STEP1 1
长度一定时,传动轴断面尺寸的选择应保证传 动轴有足够的强度和足够高的临界转速。所谓临 界转速,就是当传动轴的工作转速接近于其弯曲 固有振动频率时,即出现共振现象,以致振幅急 剧增加而引起传动轴折断时的转速。
Dc dc Lc
— — —
传动轴轴管外径 传动轴轴管内径 传动轴的支撑长度
安全系数K取0.7
1-盖子;2槽; 8-油封;9-油封盖; 10-传动轴管
万向传动轴—花键轴结构简图
已知参数:
发动机的输出扭矩:最大扭矩594N·m/ 最高转速:4000r/min; 主减速器传动比:i0=6.1 主减速器从动齿轮到车轮的传动比:im=1
最大转速
由上可知,由于nmax < n 故传动轴的转速在安全转速范围内
STEP2 2
STEP3 3
传动轴扭转应力为
上式说明设计参数满足扭转强度要求
STEP4 4
花键轴的花键外径 Dh = 38mm 花键内径dh =30mm 花键有效工作长度 Lh = 103mm 花键齿数 n0 = 12
花键挤压强度校核
传动轴加工工艺设计的设计

传动轴加工工艺设计的设计
1.传动轴加工工艺设计
传动轴是工程机械运行中非常重要的零部件,机械性能的好坏主要取
决于传动轴的加工工艺。
传动轴加工工艺设计可以根据需要选择不同的加
工工艺,这些加工工艺可以实现用户的要求,满足传动轴部件的加工要求
并且加工出高质量的传动轴零部件。
本文将介绍传动轴加工工艺设计的具
体内容,并从两个方面进行阐述,即加工材料和加工工艺选择。
2.加工材料
传动轴部件的加工材料是受机械设计要素的重要考虑因素,因为它会
直接影响传动轴部件的性能参数。
常用的加工材料有碳素钢、合金钢、不
锈钢、钛合金、镍合金、铝合金、铜合金等。
根据部件的特性和要求,精
选合适的材料,有利于提高部件性能。
3.加工工艺
传动轴零部件加工工艺选择也很重要,常用的加工工艺有铣削、车削、转轮加工、磨削加工、激光加工、电火花加工等。
根据零件结构的复杂性
和功能要求,要选择一种或多种加工工艺,以达到最好的加工效果。
4.结论
传动轴是工程机械运行中的重要零部件,传动轴加工工艺设计非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计(论文)通过答辩课程设计题目:转向轴的设计学生:学号:院(系):专业:指导教师:2006年 12月 10日转向轴的设计陕西科技大学机械制造技术基础课程设计任务书题目:设计“转向轴”(年产10000件)内容:⑴零件图 1张⑵毛坯图 1张⑶工序图 1张⑷机械加工工艺卡片 1套⑸工艺规程 1套⑹课程设计说明书 1份陕西科技大学课程设计说明书目录第1章………………………………………设计说明第2章………………………………………零件分析第3章………………………………………工艺分析第4章………………………………………制定工艺路线第5章………………………………………机械加工余量的确定第6章………………………………………确定切削用量第7章………………………………………加工的几点说明第8章………………………………………总结第9章………………………………………参考文献转向轴的设计设计说明本次课程设计是在我们学完了大学的全部基础课、技术基础课之后进行的。
这是我们在进行毕业设计之前所学各课程的一次深入的综合性的总复习,也是一次理论联系实际的训练。
因此,它在我们四年的大学生活中占有重要的地位。
就我个人而言,我希望能通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己分析问题、解决问题的能力,为今后参加祖国的现代化建设打下一个良好的基础。
由于能力所限设计尚有许多不足之处,恳请各位老师给予指教。
1 .2.1 零件的分析1.2.1.1 生产类型本题目所要加工的为一阶梯轴,要求批,量为10000件,可确定其生产类型为大批量生产。
1.2.1.2 零件分析题目所给定的零件是一主要支撑传动件和传递扭矩的阶梯轴,轴类零件是旋转体零件,其长度大于直径,一般由圆柱面、圆锥面、螺纹、花键、沟槽等。
考虑到加工工艺,在车外圆时在两端车刀无法顺利退出所以零件在两端应加退刀槽,详见零件图。
1.2.1.3 零件的工艺分析阶梯轴零件图样的视图正确、完整、尺寸、公差及技术要求齐全。
本零件各表面的加工并不困难,但零件左边的键槽与其左端面距离只有3mm,有点小加工时估要精确的保证上述要求则比较困难。
分析该零件是作传动齿轮转矩所用,故可以将其键槽长度做的稍微小一点,也保证了阶梯轴的强度。
又零件图中的直线度精度要求较高,加工时比较困难,即定位基准要保证。
1.2.2 工艺规程的设计1.2.2.1 确定毛坯的制造形式陕西科技大学课程设计说明书该阶梯轴均匀分布三个键槽,要求有一定的强度,该零件材料为45钢,轮廓尺寸不大,形状亦不复杂,又属于大批量生产,考虑到轴在传递力矩中经常承受交变载荷及冲突性载荷,因此应选用锻件,以是金属纤维尽量不被切断,保证零件工作可靠。
由于零件年产10000件,已达到大批生产的水平,而且零件的轮廓尺寸不大,故采用模锻成型。
这对提高生产率、保证加工质量也是有利的。
毛坯尺寸通过确定加工余量后决定。
1.2.2.2 基准的选择粗基准的选择。
粗加工时,由于切削余量大,工件受的切削力也大,一般采用卡顶法,尾座顶尖采用弹性顶尖,可以使工件在轴向自由伸长。
但是,由于顶尖弹性的限制,轴向伸长量也受到限制,因而顶紧力不是很大。
在高速、大用量切削时,有使工件脱离顶尖的危险。
采用卡拉法可避免这种现象的产生。
精车时,采用双顶尖法(此时尾座应采用弹性顶尖)有利于提高精度,其关键是提高中心孔精度。
1.2.2.3制订工艺路线由于生产类型为大批生产,估采用万能机床配以专用工具夹,并尽量使工序集中提高生产率。
除此以外,还应降低生产成本。
(1)工艺路线方案一:工序1:下料。
L=1008mm,D=45mm的圆柱棒料。
工序2:锻造。
其毛坯尺寸详见机械工序卡片。
工序3:退火,因原料为45钢,故选用退火处理以消除内应力。
工序4:粗铣端面L=1008,精铣端面L=1000钻中心孔。
工序5:粗车、精车外圆Ф24×45、Ф28×45、Ф30×40、Ф35×63、Ф42×12、Ф35×657、Ф30×30、Ф28×45、Ф24×58。
工序6:画线、铣键槽45h8、53h10、50h8。
工序7:调质处理。
提高其机械性能。
HBS220~250工序8:钻螺纹M6深8。
工序9:去毛刺,工序10:磨外圆使其达到零件图对粗糙度的要求。
工序11:终检。
(2)工艺路线方案二:工序1:下料。
L=1008mm,D=45mm的圆柱棒料。
工序2:锻造。
其毛坯尺寸详见机械工序卡片。
转向轴的设计工序3:退火,因原料为45钢,故选用退火处理以消除内应力。
工序4:粗车外圆Ф24×45、Ф28×45、Ф30×40、Ф35×63、Ф42×12、Ф35×657、Ф30×30、Ф28×45、Ф24×58。
工序5:车端面,钻中心孔。
工序6:精车外圆Ф24×45、Ф28×45、Ф30×40、Ф35×63、Ф42×12、Ф35×657、Ф30×30、Ф28×45、Ф24×58。
倒角1×45°工序7:攻螺纹M6深8工序8:调质处理。
提高其机械性能。
HBS220~250工序9:去毛刺,工序10:磨外圆使其达到零件图对粗糙度的要求。
工序11:画线、铣键槽45h8、53h10、50h8。
工序12:终检。
(3)工艺方案的比较与分析上述两个工艺方案的特点在于:方案一是先加工端面然后已此为基面加工外圆;而方案二先以外圆为粗基准加工中心孔,然后以中心孔为精基准精加工外表面,经过比较可以看出方案二更能保证其精度。
但是方案二的键槽加工按照先粗后精原则尽可能向前按排,应该按排在精磨加工之前,最终所得的具体的工艺过程如下:工序1:下料。
L=1008mm,D=45mm的圆柱棒料。
工序2:锻造。
其毛坯尺寸详见机械工序卡片。
工序3:退火,因原料为45钢,故选用退火处理以消除内应力。
工序4: 铣端面,钻中心孔工序5:粗车、精车外圆Ф24×45、Ф28×45、Ф30×40、Ф35×63、Ф42×12、Ф35×657、Ф30×30、Ф28×45、Ф24×58。
倒角1×45°工序6:攻螺纹M6深8工序7:画线、铣键槽45h8、53h10、50h8。
工序8:调质处理。
提高其机械性能。
HBS220~250工序9:去毛刺,工序10:磨外圆使其达到零件图对粗糙度的要求。
工序11:终检。
以上加工方案比较合理,下面对其各个工序加工所用的夹具及加工工具详细列为如下:下料→锻造→退火→铣端面→钻中心孔→粗车外圆→精车外圆→倒角→攻螺纹→画线→铣键槽→磨外圆→去毛刺→终检。
工序1: 铣端面,钻中心孔。
选用铣端面钻中心孔联合机床XZ22.4型号陕西科技大学课程设计说明书工序2:粗车 Ф24、Ф28、Ф30、Ф35、Ф42。
选用C620-1卧式车床和专用夹具工序3:精车外圆 Ф24、Ф28、Ф30、Ф35、Ф42 , 倒角1×45°。
选用C620-1卧式车床和专用夹具工序4:攻螺纹M6深8mm 。
选用丝锥工序5:画线、铣键槽 。
选用立式铣床X51型号工序6:磨外圆。
工序7:磨床选用万能外圆磨床M131W 型号和专用夹具。
工序8:去毛刺。
钳工台工序9:终检以上工艺过程祥见机械加工工艺过程卡片和机械加工工序卡片。
1.2.2.4 机械加工余量、工序尺寸及毛坯尺寸的确定该零件材料为45钢,硬度HBS 为220~250HBS ,毛坯重量约为6.7kg ,生产类型为大批生产,采用在锻锤上合模模锻毛坯。
根据上述原始资料及加工工艺,分析确定各加工表面的机械加工余量、工序尺寸及毛坯尺寸如下:(1) 外圆表面(Ф24、Ф28、Ф30、Ф35、Ф42)查表《工艺手册》表2.2-14其中锻件质量为6.7kg ,锻件复杂形状系数为S1,锻件系数取M1, Ф24、Ф28、Ф30 外圆轮廓尺寸在0~30mm 范围内,估直径偏差为2.11.1+-Ф35、Ф42外圆轮廓尺寸在30~80mm 范围内,估直径偏差为直径方向余量查《工艺手册》2.2-25取单边余量 1.25mm 所以外圆将变为Ф26.5、Ф30.5、Ф32.5、Ф37.5、Ф44.5(2) 外圆表面沿轴线长度方向的加工余量级公差(Ф24的两端面)。
查表 《工艺手册》2.2-14,其中锻件质量为 6.7kg ,锻件复杂形状系数为S1,锻件系数取M1,锻件轮廓尺寸(长度方向)在800~1250mm 范围内,估长度偏差为 长度方向余量《工艺手册》2.2-25,其余量值规定为2.73~4.0mm 现取为3.2mm外圆表面 查表2.2-25 直径方向2.0~2.5mm 取 2.5 mm水平方向2.7~4.0mm 取3.2mm1.2.2.5 确定切削用量及基本工时工序1:铣端面、钻中心孔(1)加工条件转向轴的设计工件材料:45钢正火,b σ =0.60GPa ,模锻。
加工要求:铣端面Ф24mm ,长度方向尺寸达到100023+-钻中心孔,表面粗糙度值Ra=6.3m μ;两端面钻中心孔机床: 铣端面钻中心孔联合机床XZ22.4型号刀具: 工件材料YT15,刀杆尺寸为16mm ×25mm.kv=75°.Y 。
=15°.a 。
=12°(2)计算切削用量a 粗铣Ф24mm 的两端面 :确定端面最大加工余量,查表《工艺手册》2.2-25,可查得毛坯长度方向的加工余量为 3.2mm 。
实际端面最大加工余量为 1.6mm,以外圆为粗基准,同时铣两端面,保证工件长度尺寸为 fz=0.08mm/齿(参考《切削手册》表3.3)切削速度:参考有关手册,确定v=0.45m/s ,即27m/min 。
利用高速钢镶齿三面刃铣刀,dw=225mm ,齿数z=20。
ns=1000v dw π =100027225π⨯⨯=38(r/min ).现采用XZ22.4铣端面钻中心孔机床,根据机床使用说明书(见《工艺手册》表42-39)。
取nw=37.5r/min ,估实际切削速度为v=《切削手册》表1.27 dwNw 1000 =22537.51000π⨯⨯=26.5(m/min ). 当Nw=37.5(r/min )时,工件台的每分钟进给量fm: fm=fzzNw=0.08×20×37.5=60(mm/min ).查机床说明书,刚好有fm=60(mm/min ),估直接用该值 机动工时 tm=2560=0.42(min).b 粗车Ф26.5mm 左端外圆,同时应校验机床功率及机给机构强度切削速度:单边余量z=1.0mm ,可一次切除。