因子分析例题
因子分析例题

?
因子分析分为两类,即R型因子分析(对变量作因子分析),Q型因子分析(对样品作因子分析)。
(3)公共因子 的方差贡献的统计意义
因子载荷矩阵中列的平方和。
称 为公共因子 对 的贡献,是衡量公共因子相对重要性的指标。
?
第三节第三节因子载荷的估计方法
这是常用的主成分法,设随机向量 的协方差为 , 的特征值为 其相应的特征向量为 (标准正交基)则:
当公共因子 有P个时,特殊因子为0,所以, A为因子载荷阵。
二、二、因子分析方法的计算步骤:
第一步:将原始数据标准化。
第二步:建立变量的相关系数R。
第三步:求R的特征根极其相应的单位特征向量。
第四步:对因子载荷阵施行最大正交旋转。
第五步:计算因子得分。
以下是我国各省市综合发展情况做因子分析。数据表中选取了六个指标分别是:人均GDP(元)X1,新增固定资产(亿元)X2,城镇居民人均年可支配收入(元)X3,农村居民机家庭纯收入(元)X4,高等学校数量(所)X5,卫生机构数量(所)X6。
因子旋转有方差最大正交旋转和斜交旋转,此处只介绍方差最大正交旋转。
先考虑两个因子的平面正交旋转,设因子载荷矩阵为:
,
为正交矩阵。
记
(*)
这样做目的是希望所得结果能使载荷矩阵的每一列元素按其平方值说或者尽可能大或者尽可能小,即向1和0两极分化,或者说因子的贡献越分散越好。这实际上是希望将变量 分成两部分,一部分主要与第一因子有关,另一部分主要与第二因子有关,这也就是要求 这两组数据的方差要尽可能地大,考虑各列的相对方差
因子分析在市场分析中的实际应用案例(五)

因子分析(Factor Analysis)是一种统计方法,用于发现数据集中潜在的模式或结构。
它可以帮助我们理解数据之间的关系,帮助我们简化数据集并找到隐藏的变量。
在市场分析中,因子分析可以帮助我们理解消费者行为和市场趋势,并为营销策略提供支持。
本文将通过几个实际的案例,介绍因子分析在市场分析中的应用。
案例1:消费者偏好分析一家汽车制造商希望了解消费者对汽车外观设计的偏好。
他们收集了一系列关于汽车外观设计的变量,例如车身长度、车窗玻璃面积、前脸设计等。
然后他们对这些变量进行了因子分析,发现这些变量可以归纳为几个潜在的因子,例如“动感性”、“奢华感”、“实用性”等。
通过这些因子,汽车制造商可以更好地了解消费者对汽车外观设计的偏好,从而设计出更符合市场需求的产品。
案例2:市场细分一家食品公司希望将他们的产品推向更多的消费者群体。
他们收集了消费者的购买数据,包括购买频率、购买金额、购买渠道等。
然后他们对这些数据进行因子分析,发现可以将消费者分为几个不同的群体,例如“高频购买者”、“高金额购买者”、“线上购买者”等。
通过这些不同的因子,食品公司可以更好地制定营销策略,针对不同的消费者群体进行定制推广。
案例3:品牌形象分析一家奢侈品牌希望了解消费者对他们品牌形象的认知。
他们收集了关于品牌形象的各种变量,例如品牌知名度、产品质量、价格水平等。
通过因子分析,他们发现这些变量可以归纳为几个潜在的因子,例如“高端形象”、“时尚形象”、“品质形象”等。
通过这些因子,奢侈品牌可以更好地把握消费者对他们品牌的认知,从而调整品牌形象和营销策略。
通过上面的案例可以看出,因子分析在市场分析中具有重要的应用价值。
它可以帮助我们理解消费者行为和市场趋势,为营销策略提供支持。
当然,在实际应用中,因子分析也面临一些挑战,比如如何选择合适的变量、如何解释因子等。
但是通过合理的数据收集和分析,因子分析可以成为市场分析工具中的重要一环。
总结起来,因子分析在市场分析中的应用案例丰富多样,从消费者偏好分析到市场细分再到品牌形象分析,都可以通过因子分析提供有力的支持。
因子分析例题

因子分析因子分析(Factor Analysis )是主成分分析的推广,它也是从研究相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合变量的一种多变量统计分析方法。
第一节 因子分析的基本思想 首先我们看下面两个实际例子:例1. 例1. 某企业招聘人才,对每位应聘者进行外貌、申请书的形式、专业能力、讨人喜欢的能力、自信心、洞察力、诚实、推销本领、经验、积极性、抱负、理解能力、潜在能力、实际能力、适应性等15个方面的考核。
这15个方面可归结为应聘者的外露能力、讨人喜欢的能力、经验、专业能力4个方面,每一方面称之为一个公共因子。
企业可根据这4个公共因子的情况来衡量应聘者的综合水平。
例2. 例2. 在企业经济效益的评价中,有经济效益的指标体系。
通常这个指标体系有八项指标:固定资产利税率、资金利税率、销售收入利税率、资金利税率、固定资产产值率、流动资金周转天数、万元产值能耗、全员劳动生产率等。
这八项指标可概括为盈利能力、资金和人力利用、产值能耗三个方面。
这三个方面在企业的生产经营活动中为主要因子,起着支配作用,企业要提高经济效益就要在这三个公共因子方面下功夫。
因子分析的基本思想:是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。
因子分析分为两类,即R 型因子分析(对变量作因子分析),Q 型因子分析(对样品作因子分析)。
第二节 第二节 因子分析的数学模型1. 1. 模型(R 型) 设),,,(21p x x x X =为观察到的随机向量,),,,(21m F F F F =是不可观测的向量。
有111111ε+++=m m F a F a x221212ε+++=m m F a F a xpm pm p p F a F a x ε+++= 11即ε+=AF X其中)',,(1p εεε =称作误差或特殊因子。
因子分析期末考试题及答案

因子分析期末考试题及答案# 因子分析期末考试题及答案一、选择题(每题2分,共20分)1. 因子分析的主要目的是()A. 减少数据集的维度B. 增加数据集的维度C. 保持数据集的维度不变D. 以上都不是答案:A2. 以下哪个不是因子分析中的因子旋转方法?()A. 方差最大化B. 方差最小化C. 正交旋转D. 斜交旋转答案:B3. 在因子分析中,哪个指标用于衡量因子的解释能力?()A. 因子载荷B. 因子得分C. 因子方差D. 因子相关答案:A4. 以下哪个不是因子分析的前提条件?()A. 变量间存在一定的相关性B. 数据集必须是正态分布C. 变量间不存在多重共线性D. 变量间存在线性关系答案:B5. 因子分析中,如果一个变量的因子载荷小于0.3,通常意味着()A. 该变量与因子高度相关B. 该变量与因子低度相关C. 该变量是因子分析中的噪声变量D. 该变量是因子分析中的主因子答案:B...(此处省略剩余选择题及答案)二、简答题(每题10分,共20分)1. 简述因子分析与主成分分析的区别。
答案:因子分析与主成分分析都是降维技术,但它们在目的和方法上有所不同。
因子分析旨在发现隐藏在变量背后的潜在因子,这些因子解释了变量之间的相关性。
而主成分分析则旨在找到数据集中的主要成分,这些成分是原始变量的线性组合,并且是无序的。
因子分析通常用于社会科学领域,而主成分分析则更多用于自然科学领域。
2. 描述因子载荷矩阵在因子分析中的作用。
答案:因子载荷矩阵是因子分析中的核心,它显示了每个变量与每个因子之间的关系强度。
通过因子载荷矩阵,我们可以了解哪些变量与特定因子高度相关,哪些变量与因子关系较弱。
载荷矩阵有助于我们理解数据的结构,并在解释因子时提供依据。
三、计算题(每题15分,共30分)1. 假设有一个变量集,包含变量X1, X2, X3, X4,它们的相关矩阵如下所示:| | X1 | X2 | X3 | X4 ||-|-|-|-|-|| X1 | 1 | 0.5| 0.7| 0.6|| X2 | 0.5| 1 | 0.6| 0.5|| X3 | 0.7| 0.6| 1 | 0.8|| X4 | 0.6| 0.5| 0.8| 1 |请计算因子载荷,并确定因子的数量。
第4章 因子分析

第四章因子分析一、填空题1.因子分析常用的两种类型为和。
2.因子分析是将具有错综复杂关系的变量(或样品)综合为数量较少的几个因子,以再现_____________与____________之间的相互关系。
3.因子分析就是通过寻找众多变量的来简化变量中存在的复杂关系的一种方法。
4.因子分析是把每个原始变量分解成两个部分即、。
5.变量共同度是指因子载荷矩阵中_______________________。
6.公共因子方差与特殊因子方差之和为_______。
7.求解因子载荷矩阵常用的方法有和。
8.常用的因子旋转方法有和。
9.Spss中因子分析采用命令过程。
10.变量X的方差由两部分组成,一部分为,另一部分为。
i二、判断题1.在因子分析中,因子载荷阵不是唯一的。
()2.因子载荷阵经过正交旋转后,各变量的共性方差和各个因子的贡献都发生了变化。
()3.因子分析和主成分分析的核心思想都是降维。
()4.因子分析有两大类,R型因子分析和Q型因子分析;其中R型因子分析是从变量的相似矩阵出发,而Q型因子分析是从样品的相关矩阵出发。
()5.特殊因子与公共因子之间是相互独立的。
()6.变量共同度是因子载荷矩阵列元素的平方和。
()7.公共因子的方差贡献是衡量公共因子相对重要性指标。
()8.对因子载荷阵进行旋转的目的是使结构简化。
()三、简答题1.因子分析的基本思想是什么,它与主成分分析有什么区别和联系?2.因子模型的矩阵形式ε+=X UF ,其中: ()()()u FF ij mp PmU F⨯='='=εεε,,,,11请解释式中F 、ε、U 的统计意义。
F l ,F 2,…,F m 叫做公共因子,它们是在各个变量中共同出现的因子。
εi (i=1,2,…,p )表示影响Xi 的独特因子。
u ij 做因子载荷,它是第i 个变量在第j 个主因子上的负荷,或者叫做第i 个变量在第j 个主因子上的权,它反映了第i 个变量在第j 主因子上的相对重要性。
因子分析练习

下表所示为20名大学生关于价值观的9项测验结果,包括合作性、对分配的看法、行为出发点、工作投入程度、对发展机会的看法、社会地位的看法、权力距离、对职位升迁的态度、以及领导风格的偏好。
1.检验以下数据是否适用于因子分析?若适用,根据85%的累积贡献率确定公共因子的个数,并解释共同度(communalities)
根据基本建设投资数据判断是否适合作因子分析,如果可以作,提取几个因子比
为研究全国各地区年人均收入的差异性和相似性,收集到1997年全国31个省市自治区各类经济单位包括国有经济单位、集体经济单位、联营经济单位、股份制经济单位、外商投资经济单位、港澳台经济单位和其他经济单位的年人均收入数据。
由于涉及的变量较多,直接进行地区间的比较分析较为繁琐,因此首先考虑。
第三节因子得分因子分析综合案例

pp
东北农业大学 理学院
bj1
b j 2
为第j个因子得分函数的系数
b
jp
a1 j
a2
j
为载荷矩阵的第j列
a
pj
注:共需要解m次才能解出 所有的得分函数的系数。 东北农业大学 理学院
(2) Bartlett法(即:加权最小二乘法)
选择的变量有:多子率、综合节育率、初中以上文化程度比例、 城镇人口比例、人均国民收入。下表是1990年中国30个省、自 治区、直辖市的数据。
东北农业大学 理学院
多子率(%)
0.94 2.58 13.46 12.46 8.94 2.8 8.91 8.82 0.8 5.94 2.6 7.07 14.44 15.24 3.16 9.04 12.02 11.15 22.46 24.34 33.21 4.78 21.56 14.09 32.31 11.18 13.8 25.34 20.84 39.6
东北农业大学 理学院
(1)运用回归分析思想求解
X1 11 12 1m F1 1
X
2
21
22
2m
F2
2
X
n
n1
n2
nm
其中: 1 ee
n
ቤተ መጻሕፍቲ ባይዱ
fˆ A 1A 1 A 1X *
最小二乘法
东北农业大学 理学院
案例分析:
因子分析案例

F2
0. 932 0.958 0.469 0.089 0.085 -0.068
教学水平
X1 X2 X3 X4 X5 X6
教学态度
8、因子得分
例2:In a job interview , 48 applicants were each judged on 15 variables. The variables were 1) 2) 3) 4) 5) 6) 7) 8) Form of letter of application Appearance Academic ability Likeability Self-confidence Lucidity Honesty Salesmanship
9) Experience 10) Drive 11) Ambition 12) Grasp 13) Potential 14) Keenness to join 15) Suitability
1、 求相关系数矩阵R
2、 计算R的特征值
Y1 特 征 根 7.50
Y2 2.06
Y3 1.46
Y4 1.21 0.74
Y2
0.538 0.500 0.492 教学水平
X4
X5 X6
0.518
0.538 0.477
-0.270
-0.212 -0.318 教学态度
4、 由特征向量写出主成分的表达式
y1 0.276x1 0.313x2 0.202x3 0.518x4 0.538x5 0.477x6 y2 0.538x1 0.500x2 0.492x3 0.270x4 0.212x5 0.318x6
y4
0.162 0.213 0.040 0.221 0.292 0.316 0.158 0.322 0.133 0.315 0.319 0.332 0.333 0.259 0.236
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因子分析例题公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-因子分析因子分析(Factor Analysis )是主成分分析的推广,它也是从研究相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合变量的一种多变量统计分析方法。
第一节 因子分析的基本思想首先我们看下面两个实际例子:例1. 例1. 某企业招聘人才,对每位应聘者进行外貌、申请书的形式、专业能力、讨人喜欢的能力、自信心、洞察力、诚实、推销本领、经验、积极性、抱负、理解能力、潜在能力、实际能力、适应性等15个方面的考核。
这15个方面可归结为应聘者的外露能力、讨人喜欢的能力、经验、专业能力4个方面,每一方面称之为一个公共因子。
企业可根据这4个公共因子的情况来衡量应聘者的综合水平。
例2. 例2. 在企业经济效益的评价中,有经济效益的指标体系。
通常这个指标体系有八项指标:固定资产利税率、资金利税率、销售收入利税率、资金利税率、固定资产产值率、流动资金周转天数、万元产值能耗、全员劳动生产率等。
这八项指标可概括为盈利能力、资金和人力利用、产值能耗三个方面。
这三个方面在企业的生产经营活动中为主要因子,起着支配作用,企业要提高经济效益就要在这三个公共因子方面下功夫。
因子分析的基本思想:是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。
因子分析分为两类,即R 型因子分析(对变量作因子分析),Q 型因子分析(对样品作因子分析)。
第二节 第二节 因子分析的数学模型1.1. 模型(R 型)设),,,(21p x x x X =为观察到的随机向量,),,,(21m F F F F =是不可观测的向量。
有即其中)',,(1p εεε =称作误差或特殊因子。
满足假设:1)p m ≤2)0),cov(=εF ,3)m I F =)var(,),,()var(221p diag σσε =。
称i F 为第i 个公共因子,ij a 为因子载荷。
因子分析与主成分的关系:联系:两者都可以看作逼近协方差矩阵∑。
差别:主成分分析的数学模型是一种变换,因子分析模型是描述X 的协方差∑的结构的一种模型。
其次,主成分中ij a 唯一确定,但因子分析中,每个因子的系数不是唯一的。
与多变量回归分析不同,此处的“自变量”F 是不可观测的。
2.公共因子:因子载荷和变量共同度的统计意义。
假定因子模型中,所有变量和因子都已标准化。
(1) (1) 因子载荷的统计意义设i m in i i F a F a x ε+++= 11 p i ,,1 =则ij F F m K ik j k m K ik j i a r a F F E a F x E j k ===∑∑==)(11)()( 由于k F ,j F 不相关,且1)(1=F F j r 即j i F x ij r a ,= 因子载荷ij a 是第i 个变量与第j 个公共因子的相关系数。
(2)变量共同度的统计意义:∑==m j ij i a h 122(p i ,,1 =)称作变量i x 的共同度:22212221)var()var()var()var(i i i m j ij i j ij mj i j ij i h a F a F a x σσσε+=+=+=+=∑∑∑== 即221i i h λ+= 即共同度是公共因子所占的i x 的方差,其共同度越大,说明公共因子包含的i x 的信息就越多。
(3)公共因子j F 的方差贡献的统计意义因子载荷矩阵中列的平方和。
称j s 为公共因子j F 对i x 的贡献,是衡量公共因子相对重要性的指标。
第三节 第三节 因子载荷的估计方法这是常用的主成分法,设随机向量)',(,1p x x X =的协方差为∑, ∑的特征值为021>≥≥≥p λλλ 其相应的特征向量为,,,21p e e e (标准正交基) 则:当公共因子i F 有P 个时,特殊因子为0,所以,AF X = A 为因子载荷阵。
因此,'')var()var()(AA A F A AF X D === 所以,'AA =∑, 因此,A 为(p p e e λλ,,11 ),所以,),,(11p p e e A λλ = 所以第j 列因子载荷为第j 个主成分j e 与j λ的乘积。
所以称为主成分法。
当最后m p -个特征根很小时,去掉p p m m e e λλ,,11 ++ 此时,),,(11m m e e A λλ =,方差ε∑+=∑'AA =),,(11m m e e λλ )'',,'(11m m e e λλ +diag ),,(221p σσ另外,当∑未知时,用样本协方差s 代替∑,或样本相关阵R 代替。
一般设p λλˆˆ1≥≥ 为样本相关阵R 的特征根,相应的标准正交化特征向量为p e e ˆ,,ˆ1 。
设p m ≤,则因子载荷阵的估计为)ˆ(ˆij a A =即)ˆˆ,,ˆˆ(11m m e e A λλ =第四节 第四节 因子旋转建立因子分析数学模型的目的不仅是为了找出公共因子,更重要的是要知道每个公共因子的意义,以便对实际问题进行分析。
如果每个公共因子的涵义不清,不便于对实际背景进行解释,这时根据因子载荷阵的不唯一性,可对因子载荷阵实行旋转,即用一个正交阵右乘使旋转后的因子载荷阵结构简化,便于对公共因子进行解释。
所谓结构简化就是使每个变量仅在一个公共因子上有较大的载荷,而在其余公共因子上的载荷比较小。
这种变换因子载荷的方法称为因子旋转。
因子旋转有方差最大正交旋转和斜交旋转,此处只介绍方差最大正交旋转。
先考虑两个因子的平面正交旋转,设因子载荷矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2122211211p p a a a a a a A ,⎪⎪⎭⎫ ⎝⎛-=Γϕϕϕϕcos sin sin cosΓ 为正交矩阵。
记⎪⎪⎪⎭⎫ ⎝⎛=∆211211p p b b b b (*)这样做目的是希望所得结果能使载荷矩阵的每一列元素按其平方值说或者尽可能大或者尽可能小,即向1和0两极分化,或者说因子的贡献越分散越好。
这实际上是希望将变量p x x x ,,,21 分成两部分,一部分主要与第一因子有关,另一部分主要与第二因子有关,这也就是要求),,(),,,(2221221211p p b b b b 这两组数据的方差要尽可能地大,考虑各列的相对方差这里取2αi b 是为了消除符号不同的影响,除以2i h 是为了消除各个变量对公共因子依赖程度不同的影响。
现在要求总的方差达到最大,即要求使21V V G +=达到最大值,于是考虑G 对ϕ的导数,求出最大值。
如果公共因子多于2个,我们可以逐次对每2个进行上述的旋转,当公共因子数2>m 时,可以每次取2个,全部配对旋转,旋转时总是对A 阵中第α列、β列两列进行,此时公式(*)中只需将αj j a a −→−1, βj j a a −→−2就行了。
因此共需进行次旋转,但是旋转完毕后,并不能认为就已经达到目的,还可以重新开始,进行第二轮2m c 次配对旋转。
依次进行,可以是总的方差越来越大,直到收敛到某一极限。
例:考察我国各省市社会发展综合状况一、 一、运用方法:多元统计—因子分析因子分析的基本思想:通过变量的相关系数矩阵内部结构的研究,找出能够控制所有变量的少数几个随机变量的少数几个随机变量去描述多个变量之间的相关关系,但在这里,这少数.几个随机变量是不可观测的,通常称为因子。
然后根据相关性的大小把变量分组,只得同组内的变量之间相关性较高,但不同组的变量相关性较低。
二、二、因子分析方法的计算步骤:第一步:将原始数据标准化。
第二步:建立变量的相关系数R。
第三步:求R的特征根极其相应的单位特征向量。
第四步:对因子载荷阵施行最大正交旋转。
第五步:计算因子得分。
以下是我国各省市综合发展情况做因子分析。
数据表中选取了六个指标分别是:人均GDP(元)X1,新增固定资产(亿元)X2,城镇居民人均年可支配收入(元)X3,农村居民机家庭纯收入(元)X4,高等学校数量(所)X5,卫生机构数量(所)X6。
1、将原始数据标准化2、建立六个指标的相关系数阵R3、共因子方差4、总方差解建立因子载荷阵:5、建立因子载荷阵:由于前三个特征值的累计贡献率已达93.505%,所以取前三个特征值建立因子载荷阵如下:6、对因子载荷阵施行方差最大旋转,旋转后得正交因子表矩阵如下:由此有:X1=0.947F1+0.178F2-0.115F3X2=0.940F1+0.105F2+0.261F3X3=0.893F1-0.0747F2+0.404F3X4=0.0364F1+0.967F2+0.09455F3X5=0.212F1+0.830F2+0.345F3X6=0.222F1+0.493F2+0.806F37、输出因子成份得分系数矩阵最后,由上述表可见,每个因子只有少数几个指标的因子载荷较大,因此可根据。