因子分析例题

因子分析例题
因子分析例题

因子分析例题

公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

因子分析

因子分析(Factor Analysis )是主成分分析的推广,它也是从研究相关矩阵内部的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合变量的一种多变量统计分析方法。

第一节 因子分析的基本思想

首先我们看下面两个实际例子:

例1. 例1. 某企业招聘人才,对每位应聘者进行外貌、申请书的形式、专业能力、

讨人喜欢的能力、自信心、洞察力、诚实、推销本领、经验、积极性、抱负、理解能力、潜在能力、实际能力、适应性等15个方面的考核。这15个方面可归结为应聘者的外露能力、讨人喜欢的能力、经验、专业能力4个方面,每一方面称之为一个公共因子。企业可根据这4个公共因子的情况来衡量应聘者的综合水平。

例2. 例2. 在企业经济效益的评价中,有经济效益的指标体系。通常这个指标体系

有八项指标:固定资产利税率、资金利税率、销售收入利税率、资金利税率、固定资产产值率、流动资金周转天数、万元产值能耗、全员劳动生产率等。这八项指标可概括为盈利能力、资金和人力利用、产值能耗三个方面。这三个方面在企业的生产经营活动中为主要因子,起着支配作用,企业要提高经济效益就要在这三个公共因子方面下功夫。

因子分析的基本思想:是通过变量(或样品)的相关系数矩阵(对样品是相似系数矩阵)内部结构的研究,找出能控制所有变量(或样品)的少数几个随机变量去描述多个变量(或样品)之间的相关(相似)关系,但在这里,这少数几个随机变量是不可观测的,通常称为因子。

因子分析分为两类,即R 型因子分析(对变量作因子分析),Q 型因子分析(对样品作因子分析)。

第二节 第二节 因子分析的数学模型

1.1. 模型(R 型)

设),,,(21p x x x X =为观察到的随机向量,),,,(21m F F F F =是不可观测的向量。 有

其中)',,(1p εεε =称作误差或特殊因子。

满足假设:

1)p m ≤

2)0),cov(=εF ,

3)m I F =)var(,),,()var(2

21p diag σσε =。

称i F 为第i 个公共因子,ij a 为因子载荷。

因子分析与主成分的关系:

联系:两者都可以看作逼近协方差矩阵∑。

差别:主成分分析的数学模型是一种变换,因子分析模型是描述X 的协方差∑的结构的一种模型。其次,主成分中ij a 唯一确定,但因子分析中,每个因子的系数不是唯一的。与多变量回归分析不同,此处的“自变量”F 是不可观测的。

2.公共因子:因子载荷和变量共同度的统计意义。

假定因子模型中,所有变量和因子都已标准化。

(1) (1) 因子载荷的统计意义

设i m in i i F a F a x ε+++= 11 p i ,,1 =

ij F F m K ik j k m K ik j i a r a F F E a F x E j k ===∑∑==)(11)()( 由于k F ,j F 不相关,且1)(1=F F j r 即j i F x ij r a ,= 因子载荷ij a 是第i 个变量与第j 个公共因子的相关系数。

(2)变量共同度的统计意义:

∑==m j ij i a h 122

(p i ,,1 =)称作变量i x 的共同度:2221222

1)var()var()var()var(i i i m j ij i j ij m

j i j ij i h a F a F a x σσσε+=+=+=+=∑∑∑== 即22

1i i h λ+= 即共同度是公共因子所占的i x 的方差,其共同度越大,说明公共因子

包含的i x 的信息就越多。

(3)公共因子j F 的方差贡献的统计意义

因子载荷矩阵中列的平方和。

称j s 为公共因子j F 对i x 的贡献,是衡量公共因子相对重要性的指标。

第三节 第三节 因子载荷的估计方法

这是常用的主成分法,设随机向量)',(,1p x x X =的协方差为∑, ∑的特征值为021>≥≥≥p λλλ 其相应的特征向量为,,,21p e e e (标准正交基) 则:

当公共因子i F 有P 个时,特殊因子为0,所以,AF X = A 为因子载荷阵。

因此,'')var()var()(AA A F A AF X D === 所以,'AA =∑, 因此,A 为(p p e e λλ,,11 ),所以,),,(11p p e e A λλ = 所以第j 列因子载荷为第j 个

主成分j e 与j λ的乘积。所以称为主成分法。

当最后m p -个特征根很小时,去掉p p m m e e λλ,,11 ++ 此时,),,(11m m e e A λλ =,

方差ε∑+=∑'AA =),,(11m m e e λλ )'',,'(11m m e e λλ +diag ),,(2

21p σσ

另外,当∑未知时,用样本协方差s 代替∑,或样本相关阵R 代替。一般设

p λλ??1≥≥ 为样本相关阵R 的特征根,相应的标准正交化特征向量为p e e ?,,?1 。设

p m ≤,则因子载荷阵的估计为)?(?ij a A =即

)??,,??(11m m e e A λλ =

第四节 第四节 因子旋转

建立因子分析数学模型的目的不仅是为了找出公共因子,更重要的是要知道每个公共因子的意义,以便对实际问题进行分析。如果每个公共因子的涵义不清,不便于对实际背景进行解释,这时根据因子载荷阵的不唯一性,可对因子载荷阵实行旋转,即用一个正交阵右乘使旋转后的因子载荷阵结构简化,便于对公共因子进行解释。所谓结构简化就是使每个变量仅在一个公共因子上有较大的载荷,而在其余公共因子上的载荷比较小。这种变换因子载荷的方法称为因子旋转。

因子旋转有方差最大正交旋转和斜交旋转,此处只介绍方差最大正交旋转。

先考虑两个因子的平面正交旋转,设因子载荷矩阵为:

??????? ??=2122211211p p a a a a a a A ,???? ??-=Γ????cos sin sin cos

Γ 为正交矩阵。

????? ??=?211211p p b b b b (*)

这样做目的是希望所得结果能使载荷矩阵的每一列元素按其平方值说或者尽

可能大或者尽可能小,即向1和0两极分化,或者说因子的贡献越分散越好。这实际上是希望将变量p x x x ,,,21 分成两部分,一部分主要与第一因子有关,另一

部分主要与第二因子有关,这也就是要求

),,(),,,(2221221211p p b b b b 这两组数据的方差要尽可能地大,考虑各列的相对方差

这里取2αi b 是为了消除符号不同的影响,除以2i h 是为了消除各个变量对公共

因子依赖程度不同的影响。现在要求总的方差达到最大,即要求使

21V V G +=达到最大值,于是考虑G 对?的导数,求出最大值。

如果公共因子多于2个,我们可以逐次对每2个进行上述的旋转,当公共

因子数2>m 时,可以每次取2个,全部配对旋转,旋转时总是对A 阵中第α列、

β列两列进行,此时公式(*)中只需将αj j a a ?→?1, βj j a a ?→?2就行了。因此

共需进行次旋转,但是旋转完毕后,并不能认为就已经达到目的,还可以重新开

始,进行第二轮2m c 次配对旋转。依次进行,可以是总的方差越来越大,直到收敛

到某一极限。

例:考察我国各省市社会发展综合状况

一、 一、运用方法:多元统计—因子分析

因子分析的基本思想:通过变量的相关系数矩阵内部结构的研究,找出能够控制所有变量的少数几个随机变量的少数几个随机变量去描述多个变量之间的相关关系,

但在这里,这少数.几个随机变量是不可观测的,通常称为因子。然后根据相关性的大小把变量分组,只得同组内的变量之间相关性较高,但不同组的变量相关性较低。

二、二、因子分析方法的计算步骤:

第一步:将原始数据标准化。

第二步:建立变量的相关系数R。

第三步:求R的特征根极其相应的单位特征向量。

第四步:对因子载荷阵施行最大正交旋转。

第五步:计算因子得分。

以下是我国各省市综合发展情况做因子分析。数据表中选取了六个指标分别是:人均GDP(元)X1,新增固定资产(亿元)X2,城镇居民人均年可支配收入(元)

X3,农村居民机家庭纯收入(元)X4,高等学校数量(所)X5,卫生机构数量(所)X6。

1、将原始数据标准化

2、建立六个指标的相关系数阵R

3、共因子方差

4、总方差解建立因子载荷阵:

5、建立因子载荷阵:

由于前三个特征值的累计贡献率已达93.505%,所以取前三个特征值建立因子载荷阵如下:

6、对因子载荷阵施行方差最大旋转,旋转后得正交因子表矩阵如下:

由此有:

X1=0.947F1+0.178F2-0.115F3

X2=0.940F1+0.105F2+0.261F3

X3=0.893F1-0.0747F2+0.404F3

X4=0.0364F1+0.967F2+0.09455F3

X5=0.212F1+0.830F2+0.345F3

X6=0.222F1+0.493F2+0.806F3

7、输出因子成份得分系数矩阵

最后,由上述表可见,每个因子只有少数几个指标的因子载荷较大,因此可根据

应用多元统计分析习题解答_因子分析

第七章 因子分析 7.1 试述因子分析与主成分分析的联系与区别。 答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、简化数据的技术。②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。因子分析可以说是主成分分析的姐妹篇,将主成分分析向前推进一步便导致因子分析。因子分析也可以说成是主成分分析的逆问题。如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。 因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标变换到变异程度大的方向上为止,突出数据变异的方向,归纳重要信息。而因子分析是从显在变量去提炼潜在因子的过程。此外,主成分分析不需要构造分析模型而因子分析要构造因子模型。 7.2 因子分析主要可应用于哪些方面? 答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。具体来说,①因子分析可以用于分类。如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对空气的优劣予以分类等等②因子分析可以用于探索潜在因素。即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。对我们进一步研究与探讨指示方向。在社会调查分析中十分常用。③因子分析的另一个作用是用于时空分解。如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判断各自的影响和变化规律。 7.3 简述因子模型中载荷矩阵A 的统计意义。 答:对于因子模型 1122i i i ij j im m i X a F a F a F a F ε=++++ ++ 1,2, ,i p = 因子载荷阵为11 12121 22212 1 2 (,, ,)m m m p p pm a a a a a a A A A a a a ????? ?==???????? A i X 与j F 的协方差为: 1Cov(,)Cov(,)m i j ik k i j k X F a F F ε==+∑ =1 Cov( ,)Cov(,)m ik k j i j k a F F F ε=+∑ =ij a

大学概率论习题五详解(1)

正文: 概率论习题五详解 1、设X 为离散型的随机变量,且期望EX 、方差DX 均存在,证明对任意0>ε,都有 ()2 εεDX EX X P ≤ ≥- 证明 设()i i p x X P == ,...2,1=i 则 ()()∑≥ -==≥-ε εEX x i i x X P EX X P ()i EX x i p EX x i ∑≥ --≤εε2 2 ()i i i p EX x ∑ -≤2 2ε=2 εDX 2、设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,请利用切比 雪夫不等式证明: ()12 16≤ ≥-Y X P 。 证 ()0=-Y X E ()1,cov ==DXDY Y X ρ ()()325,cov 2=-=-+=-Y X DY DX Y X D ()()()()()12 1 6662= -≤≥---=≥-Y X D Y X E Y X P Y X P 3、一枚均匀硬币要抛多少次才能使正面出现的频率与0.5之间的偏差不小于0.04的概率不 超过0.01? 解设n X 为 n 次抛硬币中正面出现次数,按题目要求,由切比雪夫不等式可得 01.004.05.05.004.05.02≤??≤??? ? ??≥-n n X P n 从而有 1562504.001.025 .02 =?≥n 即至少连抛15625次硬币,才能保证正面出现频率与0.5的偏差不小于0.04的概率不超过0.01。 4、每名学生的数学考试成绩X 是随机变量,已知80=EX ,25=DX ,(1)试用切比雪夫不等式估计该生成绩在70分到90分之间的概率范围;(2)多名学生参加数学考试,要使他们的平均分数在75分到85分之间的概率不低于90%,至少要有多少学生参加考试? 解 (1)由切比雪夫不等式 () 2 1ε εDX EX X P - ≥<- ()0>ε 又 ()()()101090709070≤-≤-=-≤-≤-=≤≤EX X P EX EX X EX P X P =()75.0100 25 11080=-≥≤-X P 即该生的数学考试成绩在70分到90分之间的概率不低于75% (2)设有n 个学生参加考试(独立进行),记第i 个学生的成绩为i X ()n i i ...2,=,则平均成绩

(完整版)SPSS因子分析法-例子解释

因子分析的基本概念和步骤 一、因子分析的意义 在研究实际问题时往往希望尽可能多地收集相关变量,以期望能对问题有比较全面、完整的把握和认识。例如,对高等学校科研状况的评价研究,可能会搜集诸如投入科研活动的人数、立项课题数、项目经费、经费支出、结项课题数、发表论文数、发表专著数、获得奖励数等多项指标;再例如,学生综合评价研究中,可能会搜集诸如基础课成绩、专业基础课成绩、专业课成绩、体育等各类课程的成绩以及累计获得各项奖学金的次数等。虽然收集这些数据需要投入许多精力,虽然它们能够较为全面精确地描述事物,但在实际数据建模时,这些变量未必能真正发挥预期的作用,“投入”和“产出”并非呈合理的正比,反而会给统计分析带来很多问题,可以表现在: 计算量的问题 由于收集的变量较多,如果这些变量都参与数据建模,无疑会增加分析过程中的计算工作量。虽然,现在的计算技术已得到了迅猛发展,但高维变量和海量数据仍是不容忽视的。 变量间的相关性问题 收集到的诸多变量之间通常都会存在或多或少的相关性。例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。例如,多元线性回归分析中,如果众多解释变量之间存在较强的相关性,即存在高度的多重共线性,那么会给回归方程的参数估计带来许多麻烦,致使回归方程参数不准确甚至模型不可用等。类似的问题还有很多。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。因子分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 因子分析的概念起源于20世纪初Karl Pearson和Charles Spearmen等人关于智力测验的统计分析。目前,因子分析已成功应用于心理学、医学、气象、地址、经济学等领域,并因此促进了理论的不断丰富和完善。 因子分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,名为因子。通常,因子有以下几个特点: ↓因子个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓因子能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓因子之间的线性关系并不显著 由原有变量重组出来的因子之间的线性关系较弱,因子参与数据建模能够有效地解决变量多重共线性等给分析应用带来的诸多问题。 ↓因子具有命名解释性 通常,因子分析产生的因子能够通过各种方式最终获得命名解释性。因子的命名解

大学概率论习题五详解(1)

正文: 概率论习题五详解 1、设X 为离散型的随机变量,且期望EX 、方差DX 均存在,证明对任意0>ε,都有 ()2 εεDX EX X P ≤ ≥- 证明 设()i i p x X P == ,...2,1=i 则 ()()∑≥ -==≥-ε εEX x i i x X P EX X P ()i EX x i p EX x i ∑≥ --≤εε2 2 ()i i i p EX x ∑ -≤2 2ε=2 εDX 2、设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为,请利用切比雪 夫不等式证明: ()12 16≤ ≥-Y X P 。 证 ()0=-Y X E ()1,cov ==DXDY Y X ρ ()()325,cov 2=-=-+=-Y X DY DX Y X D ()()()()()12 1 6662= -≤≥---=≥-Y X D Y X E Y X P Y X P 3、一枚均匀硬币要抛多少次才能使正面出现的频率与之间的偏差不小于的概率不超过 解设n X 为 n 次抛硬币中正面出现次数,按题目要求,由切比雪夫不等式可得 01.004.05.05.004.05.02≤??≤??? ? ??≥-n n X P n 从而有 1562504.001.025 .02 =?≥n 即至少连抛15625次硬币,才能保证正面出现频率与的偏差不小于的概率不超过。 4、每名学生的数学考试成绩X 是随机变量,已知80=EX ,25=DX ,(1)试用切比雪夫不等式估计该生成绩在70分到90分之间的概率范围;(2)多名学生参加数学考试,要使他们的平均分数在75分到85分之间的概率不低于90%,至少要有多少学生参加考试 解 (1)由切比雪夫不等式 () 2 1ε εDX EX X P - ≥<- ()0>ε 又 ()()()101090709070 ≤-≤-=-≤-≤-=≤≤EX X P EX EX X EX P X P =()75.0100 25 11080=-≥≤-X P 即该生的数学考试成绩在70分到90分之间的概率不低于75% (2)设有n 个学生参加考试(独立进行),记第i 个学生的成绩为i X ()n i i ...2,=,则平均成 绩为∑==n i i X n X 11,又8011==∑=n i i EX n X E , n DX n X D 251==

概率论七八章习题详解(王志刚版)

222 概率论与数理统计 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数 为 11 1211(,, ;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 1 1 ln (1) n n i i i i x nN x d L dp p p ==-=- -∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,, ,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数 为

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

杜邦分析法例题

杜邦财务分析案例 案例问题及资料 A公司为了确保在未来市场逐渐扩展的同时,使经济效益稳步上升,维持行业排头兵的位置,拟对公司近两年的财务状况和经济效益情况,运用杜邦财务分析方法进行全面分析,以便找出公司在这方面取得的成绩和存在的问题,并针对问题提出改进措施,扬长避短,以利再战,实现公司的自我完善。 A公司近三年的资产负债表和损益表资料如下: 资产负债表 金额单位:千元

损益表金额单位:千元

三、案例分析要求(资产类用平均值计算) 1.计算该公司上年和本年的权益净利润,并确定本年较上年的总差异 2.对权益净利率的总差异进行总资产净利率和权益乘数的两因素分析,并确定各因素变动对总差异影响的份额。 3.对总资产净利率的总差异进行销售净利率和总资产周转率的两因素分析,确定各因素变动对总资产净利率的总差异影响的份额。 4.运用上述分析的结果,归纳影响该公司权益净利率变动的有利因素和不利因素,找出产生不利因素的主要问题和原因,并针对问题提出相应的改进意见,使这些改进建议付诸实施,能促使该公司的生产经营管理更加完善,竞争力更加提高。 杜邦财务分析案例参考答案 (一)计算该公司上年和本年的权益净利率并确定本年较上年的总差异1.上年权益净利率 = 206430 / [(320910 + 1629100)/ 2 ]= 206430 / 975005 = 21.17% 2.本年权益净利率 = 224700 / [(1629100 + 1843200 )/ 2 ]= 224700 / 1736150= 12.94% 3.权益净利率本年较上年总差异 = 12.94% — 21.17% = -8.23% 计算结果表明本年较上年权益净利率下降了8.23%

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

概率论与数理统计经典考试题型

概率论经典考试题型 一,选择题 1 设A 、B 为互不相容的事件,且()0,()0,P A P B >>下面四个结论中, 正确的是( ) (A)(|)0P B A > (B)(|)0P A B = (C)(|)()P A B P A =(D)()()()P AB P A P B = 如果A 、B 为互不相容的事件,且 ()0,()0,P A P B >>则上述不正确的是( ) 2 总体),(~2 σμN X ,n X X X ,,,21 是来自总体的样本, ∑==n k k X n X 1 1,则n X /σμ- ~ ( ) (A) ),(2σμN (B) )1,0(N (C) )(n t (D) )1(-n t 3. 已知相互独立的随机变量 ~(1,16), Y ~(2,9), (2)X N N D X Y -=则

。 4. 设3.0)(=A P , 6.0)(=B P , 且事件A 与B 互不相容, ()P A B ?=则 。 5. 已知随机变量X 的概率密度为 2,0,()0,0.x ae x f x x -?>=?≤? 则a = . 6. 设随机变量X 满足2(),()E X D X μσ==, 则由切比雪夫不等式,有{||3}P X μσ-≥≤ 。 7.设总体),(~2σμN X ,2,σμ未知, n X X X ,,,21 是来自总体 X 的样本, 则 μ的矩估计量是 ,2σ最大似然估 计量 。

8 电路由电池A 、B 及两个并联的电池C 、D 串联而成, 设电池A, B, C, D 损坏与否是 相互独立的, 且它们损坏的概率依次为0.3, 0.2, 0.2, 0.5, 求这个电路发生间断的概率. 9 已知(,)X Y 的联合分布率如下: 求(1)边缘分布率; (2))(),(X D X E ; (3) Z X Y =+的分布率。

大学概率论习题八详解

大学概率论习题八详解 (A ) 1、某厂生产的化纤纤度服从正态分布)04.0,(2 μN 。某天测得25根纤维的纤度的均值39.1=x ,问与原设计的标准值1.40有无显著差异?(取05.0=α) 解 设厂生产的化纤纤度为X ,则总体)04.0,(~2 μN X ,且总体方差2 204.0=σ已知。顾客提出 要检验的假设为 40.1:0=μH , 40.1:1≠μH 因为已知总体标准差04.0=σ,所以选用U 检验,且在0H 成立的条件下有 )1,0(~25 04.00 N X U μ-= 针对备择假设40.1:1≠μH ,拒绝域的形式可取为 }/{0 c n X U W >-= =σμ 为使犯第一类错误的概率不超过05.0=α,就要在40.10=μ时,使临界值c 满足 ()05.0=>c U P 成立。由此,在给定显著性水平05.0=α时,得到临界值为 96.1975.02/1===-u u c α 故相应的拒绝域为 {}96.1>=U W 利用来自总体的样本值求得 25.125 /04.040.139.1-=-= u 即 975.096.125.1u u =<= 成立。显然,样本未落在拒绝域内,因此在05.0=α水平上认为纤维的纤度与原设计的标准值1.40没有显著差异。 2、设某厂生产的洗衣机的使用寿命(单位:小时)X 服从正态分布),(2 σu N 但2 ,σu 未知。随机抽取20台,算得样本均值1832=X ,样本标准差=S 497,检验该厂生产的洗衣机的平均使用时数“2000=μ”是否成立?(取检验水平05.0=α)

解 待检验假设2000:0=μH 2000:1≠μH 0H 的拒绝域:2 1α - >t T =2.093 T 的观测值512.1/2000 -=-= n S X T W ∈ 不能拒绝0H ,可以认为洗衣机的平均使用时数“2000=u ”. 3、在正常情况下,某炼钢厂的铁水含碳量(%)X ~),.(2 554σN (σ未知)。一日测得5炉铁水含碳量如下: 4.48,4.40,4.42,4.45,4.47 在显著水平050.=α下,试问该日铁水含碳量的均值是否有明显变化。 解: (1):0H 5540.==μμ :1H 5540.=≠μμ (2)选取检验统计量 )(~/10--= n t n S X T μ 给定α,查知776424197502 1.)()(.==-- t n t α 。 0H 的拒绝域为:W :)(12 1->- n t T α 。 计算|T |=7.054>2.7764, 所以显著水平05.0=α下,拒绝0H 。即该日铁水含碳量的均值有明显变化。 4、某厂产品需要用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不低于65。已知该指标服从正态分布),(2 σμN ,σ一直稳定于5.5。从近期来货抽查了100个样品,得样本均值06.55=x ,试问在050.水平下能否接收这批玻璃纸。 解 65:0≥μH 65.105.0-==u u α = *U n X σμ0 -=-18.07<-1.65 拒绝0H ,在050.水平下不能接收这批玻璃纸。 5、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm 。该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:1521,,,x x x 。经计算得知 ,4815 1 =∑i x 26.15615 1 2=∑i x 。

概率论经典试题

第一章 概率论的基本概念课外习题 一.单项选择题 1. 设1)|()|(,1)(0,1)(0=+<<<

概率论与数理统计习题 三解析【哈工大版】

习 题 三 1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。 解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k p p p p k --==-+-= 2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个 数X 的分布列。 解 从a b +个球中任取r 个球共有r a b C +种取法,r 个球中有k 个黑球的取法有k r k b a C C -,所以X 的分布列为 ()k r k b a r a b C C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+ , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。 3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1 (1,2,3)1 i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。 解 设i A =‘第i 个零件是合格品’1,2,3i =。则 1231111(0)()23424 P X P A A A === ??=, 123123123(1)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 1111211136 23423423424 = ??+??+??=, 123123123(2)()P X P A A A A A A A A A ==++ 123123123()()()P A A A P A A A P A A A =++ 12111312311 23423423424 = ??+???+??=, 1231236 (3)()23424 P X P A A A ===??=. 即X 的分布列为

因素分析法的计算例题多因素分析法研究

因素分析法的计算例题多因素分析法研究 多因素分析法研究 WTT为大家整理的相关的多因素分析法研究资料,供大家参考选择。 多因素分析 研究多个因素间关系及具有这些因素的个体之间的一系列统计分析方法称为多元(因素)分析。主要包括: 多元线性回归(multiple linear regression) 判别分析(disoriminant analysis) 聚类分析(cluster analysis) 主成分分析(principal ponent analysis) 因子分析(factor analysis) 典型相关(canonical correlation) logistic 回归(logistic regression) Cox 回归(COX regression) 1、多元回归分析(multiple linear regression) 回归分析是定量研究因变量对自变量的依赖程度、分析变量之间的关联性并进行预测、预报的基本方法。研究一个因变量对几个自变量的线性依存关系时,其模型称为多元线性回归。函数方程建立有四种方法:全模型法、向前选择法、向后选择法、逐步选择法。 全模型法其数学模型为:ebbbb++++=ppxxxyL22110 式中 y 为因变量, pxxxL21, 为p个自变量,0b为常数项,pbbbL21,为待定参数,

称为偏回归系数(partial regression coefficient)。pbbbL21,表示在其它自变量固定不变的情况下,自变量Xi 每改变一 个单位时,单独引起因变量Y的平均改变量。多因素分析法研究 e为随机误差,又称残差(residual), 它是在Y的变化中不能为自变量所解释的部分 例如:1、现有20名糖尿病病人的血糖(Lmmoly/,)、胰岛素(LmUx/,1)及生长素(Lgx/,2m)的数据,讨论血糖浓度与胰岛素、生长素的依存关系,建立其多元回归方程。 逐步回归分析(stepwise regression analysis) 在预先选定的几个自变量与一个因变量关系拟合的回归中,每个自变量对因变量变化所起的作用进行显著性检验的结果,可能有些有统计学意义,有些没有统计学意义。有些研究者对所要研究的指标仅具有初步知识,并不知道哪些指标会有显著性作用,只想从众多的变量中,挑选出对因变量有显著性意义的因素。 一个较理想的回归方程,应包括所有对因变量作用有统计学意义的自变量,而不包括作用无统计学意义的自变量。建立这样一个回归方程较理想的方法之一是逐步回归分析(stepwise regression analysis)

概率论典型例题第4章

第四章 大数定律与中心极限定理 例1.设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6{Y X P 。 分析:切比雪夫不等式:2{}DX P X EX εε?≥≤或2{}1DX P X EX εε?<≥?, 显然需用到前一不等式,则只需算出()E X Y +与()D X Y +即可。 解:由于 0)(=+Y X E , ()2(,)2XY D X Y DX DY Cov X Y DX DY ρ+=++=++14212(0.5)3=++×××?=, 故由切比雪夫不等式 1216 )(}6{2=+≤≥+Y X D Y X P 。 注:还是用到第三章数字特征的一些性质。 除了切比雪夫不等式本身,这也是另外的知识点。 例2.设()0(0)g x x ><<+∞,且为非降函数。 设X 为连续型随机变量且[()]E g X EX ?存在。 试证对任意0ε>,有 [()] {}()E g X EX P X EX g εε??≥≤。 分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的证明思想试试看。 证明:设随机变量X 的概率密度为()f x ,则有 {}()x EX P X EX f x dx εε?≥?≥= ∫ 由于()0g x >,且非降,故当X EX ε?≥时,有 ()()g X EX g ε?≥,() 1()g X EX g ε?≥, 所以

(){}()()()x EX x EX g X EX P X EX f x dx f x dx g εεεε?≥?≥??≥= ≤∫∫ 1()()()g X EX f x dx g ε+∞?∞ ≤?∫ [()] ()E g X EX g ε?=。 注:这是切比雪夫不等式的推广。 当2()g x x =时,即为切比雪夫不等式。 例3.设随机变量序列12,,,n X X X L 相互独立,且都服从参数为2的指数分 布,则当n →∞时,21 1n n i i Y X n ==∑依概率收敛于 。 (A ) 0 (B ) 12 (C ) 14 (D ) 1 分析:出现依概率收敛就要考虑应用大数定律,题设给出的是一列独立同分布的随机变量序列,自然会想到辛钦大数定律。 解:由题设12,,,n X X X L 独立同分布于参数为2的指数分布,因此22212,,,n X X X L 也都独立同分布,且它们共同的期望值为 2 22111()422i i i EX DX EX ??=+=+=????。 根据辛钦大数定律,当n →∞时,21 1n n i i Y X n ==∑依概率收敛于其期望值12,故应选择选项B 。 注:几个大数定律条件、结论都非常相似,下面对其条件进行一下比较: 伯努利大数定律和辛钦大数定律都要求随机变量序列有独立性、同分布和有限数学期望。 切比雪夫大数定律对条件有所放宽,不要求同分布,但要求有某种独立性。 但是只有辛钦大数定律不要求方差存在。 同时要注意大数定律中所给的假设条件都是大数定律成立的充分条件,切不

概率论参数分析例题

第六章例题 例6.8 有一大批糖果,现从中随机地取16 袋, 称得重量(单位克)如下: 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布,试求总体均值 的置信水平0.95为的置信区间。 例6.9某车间生产滚珠,从长期实践中知道,滚珠直径X可以认为服从正态分布,若已知方差为0.06,从某天的产品中随机抽取6个,测得直径为(单位cm) 14.6,15.1,14.9,14.8,15.2,15.1 例6.10 欲估计育苗大棚内2年生油松苗木高度,采用重复方式在大棚内抽测65株苗木,苗稿数据如下(cm) 12.3 16.6 12.0 17.1 12.6 10.8 11.0 11.7 12.2 14.8 11.5 12.6 12.3 11.9 12.9 13.9 12.8 15.0 13.6 12.4 16.6 13.2 16.6 13.5 14.0 12.7 11.3 13.9 11.4 13.9 13.9 13.5 13.6 15.4 14.8 16.8 14.8 15.3 12.6 14.5 12.6 14.5 12.9 16.4 18.2 17.8 13.5 11.8 17.2 13.6 13.5 13.6 15.5 12.9 15.8 13.6 15.4 16.1 15.6 12.9 12.9 14.6 15.1 15.0 13.6 试以95%的可靠性估计大棚内油松苗木的平均高。

例6.10 假设某片居民每月对某种商品的需求量X服从正态分布,经调查100家住户,得出每户每月平均需求量为10公斤,方差为9,如果某商店供应10000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01),并依此考虑最少要准备多少这种商品才能以99%的概率满足需求? 一个总体方差的估计 例6.11已知某种果树产量服从N(218,σ2),随机抽取6棵侧算其产量(单位公斤),获得数据如下: 221,191,202,205,256,236 试以95%的置信水平估计产量的方差。 例6.12设某灯泡的寿命X~N(μ,σ2),μ,σ2未知,现从中任取5个灯泡进行寿命试验,得数据:10.5,11.0,11.2,12.5,12.8(单位千小时), 求置信度为90%的灯泡寿命的方差σ2的区间估计。 例6.13某林区发生大面地松毛虫危害,现在发生区内抽样调查辽400株松树,结果发现有180株油松毛虫,试以95% 的置信度估计该林区松毛虫的发生率。

因素分析法(连环替代法和差额计算法)资料讲解

案例分析——因素分析法(抚钢) 抚顺特殊钢(集团)有限责任公司(下称抚钢)财务分析中常采用因素分析法,即把某一综合指标分解成若干个相互联系的因素,并分别计算、分析各个因素影响程度的方法。 例如,企业利用连环替代法对构成某种钢锭的原材料费用(金属料费用)进行分析,成本资料列于表1: 由表1可以看出,构成该种钢锭的原材料成本比目标超支了50 400元,影响这一指标变动的因素有产量、材料单耗、材料单价三个因素。在这三个因素中,应先替代起决定作用的产量因素,其次替代派生的单耗因素,最后代替单价因素。分析过程如下:钢锭中材料费目标总成本=目标产量×目标单耗×材料目标单价 =2 000×1.2×870 =2 088 000(元) (1)替代产量因素=实际产量×目标单耗×材料目标单价 =2 200×1.2×870 =2 296 800(元) 则产量变动对材料成本的影响数值=2 296 800-2 088 000=208 800(元) (2)替代单耗因素=实际产量×实际单耗×材料目标单价 =2 200×1.08×870 =2 067 120(元) 则单耗变动对材料成本的影响数=2 067 120-2 296 800=-229 680(元) (3)替代单价因素=实际产量×实际单耗×材料实际单价 =2 200×1.08×900 =2 138 400(元) 则单价变动对材料成本的影响数值=2 138 400-2 067 120=71 280(元) 将这三个因素的综合影响数值相加: 208 800+(-229 680)+71 280=50 400(元) 分析结果表明,该钢锭的实际材料成本比目标成本超支了50 400元。主要原因是:

因素分析法在财务分析中的运用

因素分析法在财务分析中的运用 ------企业财务管理讲座 企业财务分析的薄弱环节:一是财务人员缺乏分析能力,主要表现在不能熟练的运用分析方法,对财务指标的认识不够深入,透过现象分析本质能力不足。二是财务人员偏于核算,对企业营运情况了解不足,不能有效的将财务分析与经营联系起来,从而提供有价值的信息,以至于管理层对财务管理职能逐渐忽视。 一、企业财务分析简介 财务分析是根据有关信息资料,运用特定方法,对企业财务活动过程和结果进行分析和评介的一项工作。通过财务分析,可以掌握各项财务计划指标的完成情况,评价财务状况,研究和掌握企业财务活动的规律性,改善财务预测、决策、计划和控制,提高企业经济效益,改善企业管理水平。 财务分析的一般程序是:确立题目,明确目标;收集资料,掌握情况;运用方法,提示问题;提出措施,改进工作。 财务分析的方法主要包括对比分析(趋势分析)、比率分析、因素分析三种主要分析方法。三种方法相辅相成,可综合运用。 (一)关于趋势分析 利用连续的财务资料(2-10年)对比,确定增减变动的方向、数额和幅度。 1、重要财务指标的比较。连续多年的资产总额、销售收入、利润的趋势。 2、会计报表的比较。将两年或两年以上的资产负债表、利润表做对比。 3、会计报表项目构成的比较。先计算构成比率再相减看其变化。 注意:计算口径要前后期基本一致;剔除偶发性因素;运用例外原则,对某项显著变动的指标作重点分析。 (二)关于比率分析 1、构成比率。资产负债表以资产总额为基数,利润表以销售收入为基数计算各项目在总数中的比重。

2、效率比率。主要是投入与产出的比较,比如财务报表分析中的盈利能力分析:销售净利率、销售毛利率、总资产报酬率(息税前利润)、净资产收益率(净利润)。还有统计指标,如人均创利、劳动生产率等。 3、相关比率。相关的指标加以对比所得的比率。这是目前各类财务管理教科书主要介绍的方法,也是财务报表分析主要运用的方法。主要包括:变现能力比率或短期偿债能力分析,主要有流动比率、速动比率;资产管理比率或营运能力分析,主要有营业周期分析、流动资产周转率及总资产周转率等;负债比率或分析偿债能力分析,主要有资产负债率、产权比率、有形净值债务率、已获利息保障倍数等。另外还有现金流量分析等 4、相关比率综合分析:综合分析方法:杜邦财务分析体系(指标间的因素分析,或者说是净资产收益率的因素分析)与沃尔比重评分法(综合打分)。 (三)因素分析 从数量上确定各因素对分析指标影响方向和影响程度的一种方法。当多因素对分析指标产生影响时,先假定其他各因素保持不变,顺序确定每一个因素单位变化所产生的影响。运 用因素分析法的注意问题:因素分解的关联性、因素替代的顺序性、顺序替代的连环性、计算结果的假定性(表现为不同的顺序结果不同)连环替代法与差额分析法的运用。学会运用差额分析法,差额分析法是连环替代法的简化形式。 二、因素分析在财务分析中的运用 (一)因素分析法基本原理 因素分析法又称因素替换法或连环替代法,是指通过逐个替换因素,计算几个相互联系的因素对经济指标的影响程序有一种分析方法。 因素分析法的特点是:在测定各因素对经济指标的影响程序时,必须对各有关因素顺序地进行分析。当分析某一因素时,把其余因素的影响暂时当作不变。 因素分析法的基本程序是: 按照经济指标和影响变动的各因素之间的相互关系列出分析计算式;

概率论与数理统计精彩试题及问题详解

实用文档 文案大全考试时间 120 分钟 班级姓名学号 题号一二(1) 二(2) 二(3) 二(4) 二(5) 三四五总分 成绩 一. 填空题(每题3分,共24分) 1.设 A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8.则P(B) A . 2. 三人独立的破译一个密码,他们能译出密码的概率分别为1/5、1/4、1/3,此密 码能被译出的概率是= . 3. 设随机变量2(,)X???,X Ye?,则Y的分布密度函数为 . 4. 设随机变量2(,)X???,且二次方程240yyX???无实根的概率等于0.5,则?? . 5. 设()16,()25DXDY??,0.3XY??,则()DXY?=. 6. 掷硬币n次,正面出现次数的数学期望为 . 7. 某型号螺丝钉的重量是相互独立同分布的随机变量,其期望是1两,标准差是0.1两. 则100个该型号螺丝钉重量不超过10.2斤的概率近似为 (答案用标准正态分布函数表示). 8. 设125,,XXX是来自总体(0,1)X?的简单随机样本,统计量22212345()/~()CXXXXXtn???,则常数C= ,自由度 n? . 二计算题(共50分) 1.(10分)设袋中有m只正品硬币,n只次品硬币(次品硬币的两面均有国徽),从袋

中任取一只硬币,将它投掷r次,已知每次都得到国徽.问这只硬币是正品的概率是多少? 成绩评卷人 成绩评卷人 实用文档 文案大全 2.(10分)设顾客在某银行窗口等待服务的时间(以分计)X服从指数分布,其概率密度函数为 /5(1/5)0()0x exfx??????其它 某顾客在窗口等待服务,若超过10分钟,他就离开. 他一个月到银行5次.以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求{1}PY?. 3.(10分)设二维随机变量(,)XY在边长为a的正方形内服从均匀分布,该正方形的对角线为坐标轴,求: (1) 求随机变量X,Y的边缘概率密度; (2) 求条件概率密度|(|)X Y fxy. .

相关文档
最新文档