管线钢.

合集下载

什么是「管线钢」

什么是「管线钢」

什么是「管线钢」管线钢是一种专门用于制造输送油气、水等液体或气体的管道的钢材。

它具有良好的耐压、耐腐蚀和耐高温性能,广泛应用于石油、天然气、化工、水利等领域的管道工程。

管线钢根据不同的强度等级和用途可以分为几个不同的材质。

其中最常见的是API 5L管线钢,它是美国石油学会(American Petroleum Institute)制定的一套用于输送油气的管线钢标准。

API 5L管线钢根据强度等级分为两种类型,分别为API 5L X42和API 5L X52,它们具有不同的化学成分和机械性能。

管线钢主要由碳素钢和合金钢组成,其中碳素钢是最常见的材质之一、碳素钢含有较高的碳含量,能够提供良好的强度和韧性。

合金钢则在碳素钢的基础上添加了其他元素,如铬、钼、钢等,以提高其耐腐蚀性和抗高温性能。

管线钢的制造过程通常包括炼钢、连铸、轧制、管坯热处理、上浮层、精整、管坯成型和管线钢管的焊接等步骤。

炼钢是将铁矿石经过冶炼、还原等工艺处理得到的钢,连铸则是将炼钢得到的钢液连续注入到连铸机中,通过冷却和拉拔过程得到方便加工的钢坯。

制造的管坯经过热处理后,通过精整、成型等工艺得到最终的管道产品。

管线钢管的焊接是重要的制造环节,通常使用焊接工艺,如埋弧焊、气体保护焊等进行。

焊接后的管道会进行无损检测和其他质量检验才能投入使用。

管线钢的应用非常广泛。

在石油和天然气行业,它用于输送原油、天然气和液化天然气等能源资源。

在化工行业,管线钢用于输送各种化工液体和气体。

在水利工程中,管线钢则用于输送清水、污水和脏水等。

管线钢的使用可以提高输送效率,减少能源损耗,降低对环境的影响。

总结而言,管线钢是一种用于制造输送油气、水等液体或气体的管道的特殊钢材。

它具有良好的耐压、耐腐蚀和耐高温性能。

管线钢的制造过程经过炼钢、连铸、轧制、管坯热处理、上浮层、精整、管坯成型和管线钢管的焊接等步骤。

管线钢的应用广泛,主要用于石油、天然气、化工和水利等领域的管道工程。

管线钢文档

管线钢文档

管线钢管线钢的定义管线钢是一种特殊的钢材,被广泛应用于石油、天然气和水等管道系统中。

它具有一系列重要的特性,如高强度、耐蚀性和耐高温等,在管道运输领域发挥着重要作用。

管线钢的分类根据其化学成分和主要性能,管线钢可分为多个类别。

常见的分类方法有以下几种:1.根据化学成分的分类:包括低合金管线钢、中合金管线钢和高合金管线钢等。

2.根据强度等级的分类:按照其抗拉强度来划分,一般有X42、X46、X52、X56等等级。

3.根据应用的分类:分为石油管线钢、天然气管线钢和自来水管线钢等。

管线钢的特性高强度管线钢具有优异的强度特性,能够承受高压和重大荷载。

其抗拉强度较高,可以保证管道在各种恶劣环境下的稳定运行。

耐蚀性管线钢在潮湿、酸碱性环境中,仍能保持较好的耐蚀性能。

这使得它在管道系统中具有长寿命的优势,能够有效防止钢材的腐蚀和磨损。

耐高温管线钢能够在高温环境下维持良好的性能,不易发生变形和断裂。

这使得它在高温管道输送中得到广泛应用。

易焊性管线钢的易焊性使得其在施工和维修过程中更加方便,同时减少了工时和成本。

良好的韧性由于其优异的韧性,管线钢在极端条件下仍能保持较好的韧性和延展性,确保了管道系统的安全运行。

管线钢的生产工艺管线钢的生产工艺主要包括以下几个步骤:原料选用生产管线钢的原料通常为低合金钢带或矩形钢坯等。

原料的选用直接影响着管线钢的质量。

钢坯加工原料经过热轧、热处理等工艺加工,使其形成符合规格要求的钢坯。

管材制备将钢坯经过穿孔、螺旋焊接等工艺制备成管材。

其中,螺旋焊接是一种常用的管材制备方法,能够确保焊缝的质量和管材的一体性。

管材热处理管材经过淬火和回火等热处理工艺,提高其强度和韧性。

热处理过程可以在管材制备前或制备后进行。

检测和质量控制对管线钢进行化学成分、机械性能、无损检测等多个方面的检测,确保产品的质量和符合相应标准。

管线钢的应用领域管线钢主要应用于以下几个领域:1.石油和天然气管道系统:管线钢是构建石油和天然气输送管道的主要材料,其高强度和耐蚀性能能够保证管道的安全运行。

管线钢生产流程

管线钢生产流程

管线钢生产流程
管线钢生产流程:
①原料准备:选用高品位铁矿石、废钢等作为主要原料,确保化学成分和物理性质符合管线钢的标准要求。

②铁水冶炼:在高炉中进行还原反应,将铁矿石转化为铁水,去除大部分杂质,得到初步的生铁。

③转炉炼钢:将生铁与废钢、石灰石等辅料送入转炉,在氧气的作用下进一步氧化去碳,调整化学成分,制成钢水。

④真空脱气:通过真空处理去除钢水中的气体和非金属夹杂物,提高钢材的纯净度和性能。

⑤连铸连轧:将钢水注入连铸机,冷却固化成坯料,随后直接送入热连轧机进行连续轧制,减少中间环节,提高效率。

⑥热处理:对轧制后的钢板进行退火、正火或淬火等热处理,以改善其力学性能,如强度、韧性、焊接性等。

⑦冷轧:对于部分要求更薄厚度和更高表面质量的产品,可进行冷轧,以达到精确的尺寸和表面光洁度。

⑧酸洗与平整:使用酸洗去除冷轧板表面的氧化皮,再进行平整处理,改善板形和平直度。

⑨涂镀防腐:为了提高管线钢的耐腐蚀性能,可在表面进行镀锌、涂漆或其他防腐处理。

⑩质量检测:进行化学成分分析、力学性能测试、无损检测等,确保产品质量符合国家和行业标准。

⑪裁剪与包装:根据客户需求,将板材裁剪成规定尺寸,进行捆扎或木箱包装,准备发运。

⑫物流配送:安排物流车辆,将管线钢安全、准时地运送至客户指定地点,完成交付。

管线钢产品介绍

管线钢产品介绍
3)按焊缝分——直缝焊管、螺旋焊管;
4)按用途分类——石油天然气输送用钢管、钻探用 钢管、油井管、套管。
1 管线钢分类
焊接钢管 焊接钢管也称焊管,是用钢板或钢带经过卷曲成型后焊接制成 的钢管。
焊接钢管生产工艺简单,生产效率高,品种规格多,投资少。
20世纪30年代以来,随着优质带钢连轧生产的迅速发展以及 焊接和检验技术的进步,焊缝质量不断提高,焊接钢管的品种 规格日益增多,并在越来越多的领域代替了无缝钢管。
➢套管钢:API 5CT ➢牌号 H40、J55、N80、P110、Q125等
3、技术标准、主要牌号 与质量等级
牌号表示意义
API是美国石油学会(American Petroleum Institute)的英文缩写 牌号表示:美制单位屈服强度最小值前两位 。以X80为例: X80即管线钢管最小屈服强度80000psi(552MPa)。 PSI英文全称为Pounds per square inch。P是磅pound,S是平方 square,I是英寸inch。把所有的单位换成公制单位就可以算出: 1psi=6.895kPa=0.06895bar欧美等国家习惯使用psi作单位 1bar=0.1MPa M——热机械控制轧制(TMCP 控轧控冷) N——正火 Q——调质(淬火+高温回火)
2 管线钢用途
• 2010~2013年主要需求预测
项目
里程(公里) 钢级
里海-土耳其
3500 X70/X80
中亚(哈萨克斯坦-新 疆)
1500
X70
中缅
2500
X70
印度环印度洋管线 3600 X70/X80
国内
6000 X52-X65
其它
6000 X52-X65

管线钢综述

管线钢综述

综述管线钢指用于输送石油、天然气等的大口径焊接钢管用热轧卷板或宽厚板。

管线钢在使用过程中,除要求具有较高的耐压强度外,还要求具有较高的低温韧性和优良的焊接性能。

随着石油、天然气消费量的增长,其输送的重要性显越发突出,尤其是长距离输送。

而提高输送效率,提高输送的经济效益就要通过加大输送管道口径,提高输送压力来解决。

从而提高了对高级别、高性能管线钢的需求。

国外高级别管线钢呈现强劲的发展趋势,从20世纪70年代初期X65管线钢开始投入使用,80年代X70级管线钢逐渐被引入工程建设,1985年API标准中增加了X80钢级,随后X80开始部分在一些管线工程中使用,并很快就投入到X100和X120管线钢的开发试制工作。

有关X100最早的研究报告发表于1988年,通过大量工作已形成很好的技术体系。

高级别管线钢概述我国管道建设正处于大力发展阶段,因此管线钢的发展也非常迅速。

20世纪50~70年代管线钢主要采用A3钢和16Mn钢;70年代后期和80年代采用从日本进口的TS52K钢(相当于X52级钢);90年代,管线钢主要采用的X52、X60、X65级热轧板卷主要由宝钢和武钢生产供应。

“八五”期间成功研制和开发了X52~X70级高韧性管线钢,并逐步得到广泛应用。

西气东输工程采用了X70级管线钢并逐渐向X80过度。

国内管线钢生产技术现状分析由于市场要求单管输气量不断提高。

我国早期四川、西北地区的天然气管道采用X52及以下钢级、426mm以下管径的管线钢管,设计年输气量在10亿m3/a以下;陕京一线第一次采用了X60钢级、D660mm管线钢管设计年输量提高到33亿m3/a;西气东输一线采用X70钢级、D1016mm管线钢管,设计年输量提高到170亿m3/a;最近建设的西气东输二线管道,采用X80钢级、D1219 mm管线钢管,设计年输量提高到300亿m3/a。

这种单管输气量不断提高的趋势仍在持续。

当前国际上新一轮巨型天然气长输管道,单管输气量将达到450亿-500亿m3/a的水平。

管线钢材质对照表

管线钢材质对照表

管线钢材质对照表管线钢材质是指用于制造管线的钢材的材质标准和对照表。

管线钢材质的选择非常重要,它直接影响到管线的使用寿命和安全性能。

为了帮助大家更好地了解不同管线钢材质的特点和应用范围,下面是一份管线钢材质对照表。

1. 标号:X42,X46,X52,X56,X60,X65,X70,X80这些标号代表了不同强度等级的管线钢材质。

根据API规范,这些标号中的数字表示最低屈服强度,单位为千磅每平方英寸(ksi)。

例如,X42对应的最低屈服强度为42 ksi。

这些钢材质主要用于输送高压气体和液体的管道中。

随着输送压力和温度的升高,强度等级也会相应提高。

2. 标号:L245,L290,L360,L415,L450,L485这些标号代表了不同级别的管道钢材质。

这些材质中的L表示线管(Linepipe),数字表示最低屈服强度。

这些材质主要用于输送石油、天然气和水等液体的管线中。

L245是常见的中等屈服强度级别,适用于一般情况下的输送需求。

而L415和L485属于高强度材质,适用于高压和高温的工作环境。

3. 标号:J55,N80,L80,C90,T95,P110这些标号代表了不同的油井管材质。

J55是普通碳钢,N80是中等碳钢,L80是中碳质量耐硫化钢,C90是高强度耐硫化碳钢,T95是高耐硫化碳钢,P110是高强度碳钢。

这些材质主要用于石油和天然气开采中的油井和油田管道。

不同的材质具有不同的耐腐蚀性能、耐高温性能和强度等级。

4. 标号:H40,J55,K55,M65,L80,C95,N80,C90,T95,P110,Q125这些标号代表了不同的套管管材质。

套管主要用于油井和天然气井中,用于保护井壁,并使油气正常流出。

这些材质具有不同的强度等级、耐腐蚀性能和耐高温性能。

根据钻井和采油的实际需求,可以选择合适的套管管材质。

总结:管线钢材质对照表涵盖了不同应用领域的钢材,包括输送管道、油田管道和套管等。

选择合适的管线钢材质对于确保管道的安全运行和长期使用至关重要。

2024年管线钢市场分析现状

2024年管线钢市场分析现状

2024年管线钢市场分析现状引言管线钢是一种广泛应用于石油、天然气、水利等领域的重要材料。

其优良的力学性能和耐腐蚀性使其成为输送介质的理想选择。

本文将对当前管线钢市场的现状进行分析,以期为相关产业及投资者提供参考。

市场规模管线钢市场在过去几年一直保持着稳定的增长态势。

根据数据统计,全球管线钢市场规模从2016年的XXX亿美元增长到2020年的XXX亿美元。

而预计到2025年,全球市场规模将达到XXX亿美元。

这一趋势显示出了管线钢市场的强劲增长潜力。

市场驱动因素石油和天然气产业的发展石油和天然气仍然是全球能源产业的重要支柱。

随着全球能源需求的增长,石油和天然气的开采和输送需求也将进一步增加。

这将直接促进管线钢市场的增长。

基础设施建设随着城市化进程的加速和新兴经济体的崛起,基础设施建设规模不断扩大。

水利、城市供水等领域对管线钢的需求持续增长。

这也成为推动管线钢市场增长的重要驱动因素。

市场挑战环保限制管线钢的生产过程中会产生大量的废水和废气,对环境造成一定的污染。

随着环境保护意识的提高,政府对环境标准的要求越来越严格,这给管线钢企业带来了一定的压力。

替代品的崛起在一些特定领域,如塑料管、复合材料管等,替代品的应用也在逐渐增多。

这可能会对传统管线钢市场造成一定的冲击。

市场趋势技术升级随着科技的进步,管线钢的生产工艺和材料性能得到了不断改善。

高强度管线钢、耐腐蚀管线钢等新型产品对市场需求的增加,也推动了市场的进一步发展。

区域市场发展不平衡全球不同地区对管线钢市场的需求并不一致。

发达地区和新兴经济体对管线钢市场的需求较高,而一些落后地区需求较低。

这导致市场发展存在一定的区域性差异。

市场竞争格局管线钢市场竞争激烈,主要企业包括AAA、BBB和CCC等。

这些企业在产品质量、技术研发和市场渠道方面具有一定的优势。

同时,一些新的参与者也在市场中崭露头角,这增加了竞争的压力。

结论管线钢市场在持续增长的趋势下面临一些挑战和机遇。

管线钢材的组织结构

管线钢材的组织结构

管线钢材的组织结构管线钢材是一种重要的建筑材料,广泛应用于石油、天然气、水务等各种管道工程中。

它的组织结构对于保证管道的稳定性、耐久性和安全性起着关键作用。

下面我们将详细介绍管线钢材的组织结构。

首先,管线钢材的组织结构可以分为晶粒组织和套管组织两部分。

晶粒组织是指钢材内部的结晶颗粒排列方式,它直接影响着钢材的力学性能和物理性能。

较大的晶粒有助于提高钢材的韧性和强度,而细小的晶粒则有助于提高钢材的塑性和耐腐蚀性。

因此,在生产过程中,需要通过控制冶炼和热处理工艺,使得钢材的晶粒尽可能细小而均匀。

套管组织是指钢材内部的管壁结构,它主要包括细晶套管和粗晶套管两种。

细晶套管由于晶粒较小,材料的韧性和抗拉强度都较高,适用于承受较大冲击和压力的管道。

粗晶套管由于晶粒较大,材料的塑性较好,适用于对弯曲变形要求较高的管道。

根据不同的工程需求,选择合适的套管组织可以有效提高管线钢材的使用寿命和安全性。

其次,管线钢材的组织结构还与其碳含量和热处理工艺有关。

普通的碳钢管线材的碳含量较高,因此其晶粒较大,这种材料适用于一些普通的管道工程。

控制碳含量在较低水平的低碳钢管线材,由于其晶粒较小,可提高材料的韧性和抗腐蚀性能,适用于一些特殊环境下的管道工程。

钢材经过热处理工艺后,可以进一步改变其组织结构。

正火处理可以使晶粒更加均匀,并提高钢材的强度和韧性;淬火处理能够使晶粒变细,并提高钢材的硬度和强度,但会减低其韧性;回火处理可以减轻淬火带来的脆性,恢复钢材的韧性和塑性。

因此,在管道工程中,根据具体的要求和使用环境,选择合适的热处理工艺,能够使管线钢材的组织结构达到最佳状态。

最后,为了保证管线钢材的组织结构符合设计要求,需要进行严格的质量控制和检测。

常用的检测方法包括金相检查、显微组织分析、力学性能测试等。

通过这些检测手段,能够评估钢材的晶粒尺寸、套管组织以及力学性能的指标,从而确保管线钢材的质量和可靠性。

综上所述,管线钢材的组织结构是保证其稳定性、耐久性和安全性的重要因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)生产工艺 • 焊接钢管按工艺区分主要有电阻焊 (ERW)、螺旋埋弧焊(SSAW)和直缝 埋弧焊(LSAW)三种工艺。这三种工 艺生产的焊管,因其原料、成型工 艺、口径大小以及质量的不尽相同, 在应用领域里各有定位。
• 1.直缝电阻焊管(ERW) 电阻焊管是我国最早生产、应用范围最广、生产机组最 多(2000余家)、产量最高(占焊管总产能的80%左右)的钢管 品种,产品规格为Ф 20~610mm,在国民经济建设中发挥 了重要作用。ERW219-610mm机组自20世纪80年代以 来,约有30余套是从国外引进的较先进技术。经过多年生 产实践,装备技术水平又有较大进步,产品质量也在不断 改善。因其投资少,见效快,应用范围广而发展迅猛。

7 加入适量的铜, 可以显著改善管线钢抗HIC的能力。随着铜含 量的增加,可以更有效地防止氢原子渗入钢中, 平均裂纹长度明显减少。当铜含量超过0.2%时, 能在钢的表面形成致密保护层,HIC会显著降 低,钢板的平均腐蚀率明显下降,平均裂纹长 度几乎接近于零。
• 但是,对于耐CO₂腐蚀的管线钢,添加 Cu会增加腐蚀速度。当钢中不添加Cr 时,添加0.5%Cu会使腐蚀速度提高2倍。 而添加0.5%Cr以后,u小于0.2%时, 腐蚀速度基本不受影响,当Cu达到 0.5%时,腐蚀速度明显加快。
• 对于微合金化钢,低的碳含量可以提高 抗HIC的能力和热塑性。按照API标准 规定管线钢中的碳通常为0.025一0.12, 并趋向于向低碳方向或超低碳方向发展。 在综合考虑管线钢抗HIC性能、野外可 焊性和晶界脆化时,最佳C应控制在 0.01一0.05之间。

2 钢中低的含碳量,通常是以锰代碳,Mn的 加入引起固溶强化,用锰来提高其强度。锰 在提高强度的同时,还可以提高钢的韧性。 但如果锰含量过高对管线钢的焊接性能造成 不利影响,有可能导致在管线钢铸坯内发生 锰的偏析,且随着碳含量的加,这种缺陷会 更显著。因此,根据板厚和强度,管线钢中 锰的加入量一般是1.1-2.0。
• 利用转炉CO气泡沸腾脱氢和炉外精炼脱气过程可很好 地控制钢中的氢含量。采用RH、DH或吹氩搅拌等均 可控制[H]≤1.5ppm。 另外,要防止炼钢的其它阶段增氢。采用钢包和中间包 预热烘烤可以有效降低钢水的吸氢量。连铸过程中, 在钢包和中间包系统中对保护套管加热和同一保护套 管的反复使用可明显降低钢液的吸氢量。
• 钙处理可以很好地控制钢中夹杂物的形态,从 而改善管线钢的抗HIC和SSCC能力。当钢中含 硫0.002~0.005%时,随着Ca/S的增加,钢的 HIC敏感性下降。但是,当Ca/S达到一定值时, 形成CaS夹杂物,HIC会显著增加。因此,对 于低硫钢来说,Ca/S应控制在一个极其狭窄的 范围内,否则,钢的抗HIC能力明显减弱。
• 钛与钢中的C、N等形成化合物,为了 降低钢中固溶氮含量,通常采用微钛处 理,使钢中的氮被钛固定。钢中加入微 量的钛,可以通过提高提高钢板强度和 韧性的目的,尤其是对提高焊接热影响 区的韧性具有独特的贡献。
• 钼也是管线钢中主要的合金元素之 一,随着钼含量的升高,抗拉强度 升高。钢中钼有利于针状组织的发 展,随着钢中钼的质量分数增加, 针状铁素体的含量增加,因而能在 极低的碳含量下得到很高的强度。

6 钢中氧含量过高,氧化物 夹杂以及宏观夹杂增加,严重影响管线钢的洁净度。钢中 氧化物夹杂是管线钢产生HIC和SSCC的根源之一,对钢的 50μ m后,严重恶化钢的各种性能。为了防止钢中出现直径 大于50μ m10-6 m的氧化物夹杂,减少氧化物夹杂数量, 一般控制钢中氧含量小于0.0015。
• 采用炉外精炼可获得较低的氧含量,国外许多厂家经炉外 精炼处理后成品钢中T[O]最低可达5ppm10-6 %的水平。 另外,由于耐火材料供氧,钢水在运输和浇注过程中应尽 量减少二次氧化。通过改进以及选择良好的中间包覆盖渣 和连铸保护渣,取得较好的效果。目前工业上已能生产杂 质含量小于0.01的高纯钢,预计到21世纪中叶有可能生产 出杂质含量只有百万分之几的高纯钢。
• 在炼钢整个过程中均可脱磷,如铁 水预处理、转炉以及炉外精炼,但 最终脱磷都是采用炉外精炼来完成。

5 ,管线钢中氢 的质量分数越高,HIC产生的几率越大,腐蚀 率越高,平均裂纹长度增加越显著,自真空处 理技术出现以后,钢中氢已可稳定控制在 0.0002%以下。钢中氢是导致白点和发裂的主 要原因。管线钢中的氢含高,HIC产生的几率 越大,腐蚀率越高,平均裂纹长度增加越显著。
• 随着板材CSP生产工艺的发展,为其提供了低 本钱、质量可靠的原料,并为其今后进一步发 展创造了良好的条件。这部分产品已由流体输 送、结构领域向无缝管应用领域的油井管、管 线管发展。其典型生产工艺流程应为:板带原 料→原料预处理→冷弯成型→焊接→焊缝热处 理→焊W) 螺旋埋弧焊管设备投资较少,因采用价格较 低的窄带(板)卷连续焊接生产大口径(Ф 1016~ 3200mm)焊管,生产工艺简单、运行用度低, 具有低本钱运行上风。目前,我国油气输送螺 旋焊管已形成了以石油系统所属钢管厂为主的 基本格式。
• 钢中加入钙、锆、稀土金属,可以改变硫化 物和氧化物的成分,使其塑性降低。采用这 种方法,可以使钢板的各向异性大大减轻, 使横向夏比冲击功增加一倍,达到或接近纵 向夏比冲击功数值。为了使钢板各向异性达 到最小,稀土与硫的比例控制在2.0左右最 为合适。

9 在大多数 情况下,HIC都起源于夹杂物,钢中的塑性夹 杂物和脆性夹杂物是产生HIC的主要根源。分 析表明HIC端口表面有延伸的MnS和Al2O3点 链状夹杂,而SSCC硫化物应力腐蚀开裂的形 成与HIC的形成密切相关。因此,为了提高抗 HIC和抗SSCC能力,必须尽量减少钢中的夹杂 物、精确控制夹杂物形态。

8 管线钢中其它元素的作用与 控制 化学成分中的碳和铌是控制钢 板的强度、韧性、可焊性和焊接热 影响区裂纹敏感性及对氢诱裂纹和 应力腐蚀裂纹敏感性的主要因素。
• 微合金元素Nb、V、Ti、Mo在管线钢 中的作用与这些元素的碳化物、氮化物 和碳氮化物的溶解和析出行为有关。管 线钢除了以上三种普遍使用的合金元素 外,还应根据钢的性能要求加入其它少 量合金元素,例如B、Mo、Ni、Cr、 Cu等。
• 硫还影响管线钢的冲击韧性,硫含量升高 冲击韧性值急剧下降。管线钢中硫的控制 通常是在炉外精炼时采用喷粉、真空、加 热造渣、喂丝、吹气搅拌进行,实践中常 常是几种手段综合使用。此外,条状硫化 物是产生氢致裂纹的必要条件,对钢水进 行钙处理将其改变为球形,可降低其危害。

4 由于磷在管 线钢中是一种易偏析元素,在偏析区其淬 硬性约为碳的二倍。由二倍磷含量与碳当 量2P+Ceq,对管线钢硬度的影响可知,随 着2P+Ceq的增加,含碳0.12~0.22%的管 线钢的硬度呈线性增加,而含0.02~0.03% 的管线钢,当2P+Ceq大于0.6%时,管线 钢硬度的增加趋势明显减缓。
• 磷还会恶化焊接性能,对于严格要求焊接性 能的管线钢,应将磷限制在0.04%以下。磷 能显著降低钢的低温冲击韧性,提高钢的脆 性转变温度,使钢管发生冷脆。而且低温环 境用的高级管线钢,当磷含量大于0.015% 时,磷的偏析也会急剧增加。对于高质量的 管线钢应严格控制钢中的磷含量越低越好。 通常采用铁水预处理去除鳞。
一、管线钢 一、管线钢

管线钢是指用于输送石油、天然气等 的大口经焊接钢管用热轧卷板或宽厚板。 管线钢在使用过程中,除要求具有较高 的耐压强度外,还要求具有较高的低温 韧性和优良的焊接性能。
• 制造石油、天然气集输和长输管或煤炭、建材浆体输 送管等用的中厚板和带卷称为管线用钢 (steelforpipeline)。一般采用中厚板制成厚壁直缝 焊管,而板卷用于生产直缝电阻焊管或埋弧螺旋焊管。 国内拥有70万t/a口径在1800mm以内的螺旋焊管的 生产能力,近年已建立了口径在1600mm以内的直缝 厚壁焊管的生产线。国内能生产符合API5L标准的管 线工程设计要求的管线钢仅有10多年的历史,首推宝 钢,还有鞍钢、武钢、攀钢、酒钢、舞钢等,稳定生 产X60~X70级管线钢并在国际市场上占有一定的地位, 目前已投入生产的X80级管线钢质量也达到了国际先 进水平,X100级管线钢已经研制出来,尚未投入批量 生产。
• 铌是管线钢中不可缺少的微合金元 素,能改善低温韧性。API标准中 规定的管线钢铌含量下限为0.005%
0.03~0.05%之间,为标准中的下 限值的6~10倍。
• 钒有较高的沉淀强化和较弱的细化晶粒 作用,一般在管线钢设计中不单独使用 钒。管线钢中加入微量的钒,可以通过 增加沉淀硬化效果来提高钢板的强度。 国外实物钢板中的含钒量多数控制在 0.05~0.10%之间,为API标准中的下 限值的2.5~5.0倍。

3 硫是管线钢中影响 抗HIC能力和抗SSC能力的主要元素。随着硫含量的 增加,HIC敏感性显著增加,只有当S<0.0012时, HIC明显降低。值得注意的是硫易与锰结合生成 MnS夹杂物。当MnS夹杂变成粒状夹杂物时,随着 钢强度的增加,单纯降低硫含量不能防止HIC。如 X65级管线钢,当硫含量降到20ppm 度比仍高达30%以上。
管线钢的技术要求
• 现代管线钢属于低碳或超低碳的微合金化钢,是高技术含量和高 附加值的产品,管线钢生产几乎应用了冶金领域近20多年来的一 切工艺技术新成就。目前管线工程的发展趋势是大管径、高压富 气输送、高寒和腐蚀的服役环境、海底管线的厚壁化。因此现代 管线钢应当具有高强度、低包申格效应、高韧性和抗脆断、低焊 接碳素量和良好焊接性、以及抗HIC和抗H2S腐蚀。优化的生产 策略是提高钢的洁净度和组织均匀性,C≤0.09%、S≤0.005 %、P≤0.01%、O≤0.002%,并采取微合金化,真空脱气+ CaSi、连铸过程的轻压下,多阶段的热机械轧制以及多功能间歇 加速冷却等工艺。目前国内外管线规范中没有管线用钢材的韧性 指标,仅对管材有具体要求:
相关文档
最新文档