直流系统接地的危害分析与处理

直流系统接地的危害分析与处理
直流系统接地的危害分析与处理

直流系统接地的危害分析与处理

发表时间:2018-09-12T16:54:40.007Z 来源:《基层建设》2018年第24期作者:贾可君解卫利段慧琴田贵

[导读] 摘要:分析了变电站的直流系统接地故障的原因和危害,并根据现场工作经验提出了直流接地故障的处理方法。

国网山西省电力公司运城供电公司山西运城 044000

摘要:分析了变电站的直流系统接地故障的原因和危害,并根据现场工作经验提出了直流接地故障的处理方法。

关键词:直流接地;供电;故障;处理方法

引言:直流电源作为电力系统的重要组成部分,为一些重要常规负荷、继电保护及自动装置、远动通装置提供不间断供电电源,并提供事故照明电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。

1.直流接地故障原因分析

(1)直流回路在运行中常常受到多种不利因素的影响而造成接地。如设备传动过程中的机械振动、挤压,设备质量不良,绝缘材料不合格,绝缘性能低,直流系统绝缘老化,或存在某些损伤缺陷(如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等),均可引起接地或成为一种接地隐患。

(2)由于气候因素造成接地是一种最常见的情况。如雨天或雾天,二次回路及设备严重污秽和受潮、端子箱进水,可能导致室外的直流系统绝缘降低,从而造成直流接地或引发直流接地。

(3)小动物爬入或小金属零件掉落在元件上造成直流接地故障。如老鼠、蜈蚣等小动物爬入带电回路造成接地;某些元件有线头、未使用的螺丝、垫圈等零件掉落在带电回路上造成接地。

(4)因工作人员疏忽造成的接地。在带电二次回路上工作,将直流电源误碰设备外壳,此种情况多为瞬间接地;在电缆沟施工将带电的控制电缆损伤,造成接地;检修人员清扫设备时,不慎将直流回路喷上水造成接地等。另外,检修人员检修质量差也会留下接地隐患,如室外设备未加防雨罩、二次回路漏接线头、误将控制电缆外皮绝缘损伤等。此时接地信号不一定立即发出,但具备一定外部条件(如潮湿或操作设备)时,就可能引起直流接地。

2、直流接地故障的危害

直流接地故障中,危害较大的是两点接地,可能造成严重后果。一点接地可能造成保护及自动装置误动或者拒动;而两点接地,除可能造成继电保护、信号、自动装置误动或拒动外,还可能造成直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。

(1)当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。如图 1所示,A、B 两点发生直流接地时,相当于将KA1、KA2接点短接,从而使 KM误动作跳闸。A、C两点接地时,则 KM接点被短接而误动作跳闸。A、D两点,F、D两点接地,同样都能造成开关误跳闸。同理,两点接地还可能造成误合闸,误报信号。

(2)直流负极接地,也可能造成保护及自动装置拒绝动作。因为断路器的跳、合闸线圈以及保护继电器会在这些回路再有一点接地时,线圈被接地点短接而不能动作。同时,直流回路短路电流会使电源保险熔断,并且可能烧坏继电器接点,保险熔断会失去保护及操作电源。如图 1所示,直流接地故障发生在 B、E两点,KM线圈被短接,保护动作时KM不能动作,开关将不能跳闸且保险将会烧坏。D、E 两点接地时,LT线圈被短接,保护动作及操作时开关拒跳。同理,两点接地开关也可能合不上。

直流系统接地故障,不仅对设备不利,而且对整个电力系统的安全构成威胁。因此,规定直流接地达到下述情况时,应停止直流网络上的一切工作,并选择查找接地点,防止造成两点接地:①直流电源为220 V,接地在 50 V以上;②直流电源为 24 V,接地在 6 V以上。

SA-控制开关;KS-信号继电器;KA1、KA2-电流继电器

KM-中间继电器;LT-跳闸线圈;QF-断路器辅助触点

XB-连接片;HR-红灯;R-电阻;FU1、FU2-熔断器

3、直流接地故障的处理

查找接地点要借助装置和手动拉路,新安装的变电站一般都有自动查找接地装置。自动查找接地装置是提高检查接地速度的一种有效手段。由于直流网络的庞大,自动装置往往只能检查到某些专用干路,对于具体细节或复杂的直流接地,更多的还是要靠手动拉路查找。在现场,当值班人员听到警铃响,看到直流接地光字牌发光时,首先应了解现场有无人员工作,然后切换接地监测电压表判断哪一极接地,再进行拉路查找。当检查到具体某一支路、某个设备或找不到接地点时,通知检修人员处理。不论运行人员还是检修人员检查接地之前,必须依据运行方式、操作情况、气候影响判断接地点的位置,应尽量一步到位,缩短查找时间。当判断不出接地点时,要用拉路法进行查找。有的单位采用负荷转移法检查接地,即将直流母线分段,将直流负荷从一条母线切到另一母线,当接地点随负荷转移时,证明接地点在该路上。采用此法必须将直流母线联络刀闸拉开,由蓄电池组带一条母线,浮充电机带另一母线,实际上由于浮充电机采用硅整流设备输出,直流电压含有交流成分,单独供电时会造成电压不稳,波动较大,所以一般不用此法。拉路时若负荷为环形供电,必须开环,本着先室外后室内的原则在切断各专用直流回路时,切断时间不得超过3s,此时不论回路接地与否均应合上。当发现某一专用回路接地时,应分别取下各支路保险后查找。

查找直流接地故障的一般顺序和方法:①分清接地故障的极性,分析故障发生的原因。②若站内二次回路有工作,或有设备检修试

直流系统接地详解

直流系统接地详解,绝对不容错过哟! 时常听着技术人员与客户沟通:当直流输电系统以单极大地方式运行时,在直流接地极附近有直流电流从地中经直接接地的中性点流入交流变压器中,会造成变压器出现直流偏磁问题,这其中的直流系统接地到底是怎么一回事儿,你弄明白了么? 1、直流系统的重要性 所谓直流系统,是可以为设备各种动作提供可靠稳定不间断的电源,直流系统自身的可靠性直接影响到整个系统的安全。 需要强调的一点是:直流电源是十分稳定可靠的,但是由于控制保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 2、什么是直流接地? 直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值这时我们称该直流系统有正接地故障或负接地故障。 3、直流接地故障的危害? 1、直流正极接地:有保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈与负极电源接通,若这些回路在发生一点接地,就可能引起误动、误跳; 2、直流负极接地,可能使继电保护、自动装置拒绝动作。同时,直流回路短接,使电源保险熔断,失去保护及操作电源,并且可能烧坏继电器接点。

3、直流系统正负极各有一点接地,会造成短路使电源保险熔断,使保护极自动装置、控制回路失去电源。 4、小编还从技术人员那里也曾了解过,变电站变压器主变中性点直流接地状况,如果遇上直流电流的超标入侵,产生的直流系统接地故障会使得变电站带来极大的功能电能损耗,这是需要及时安装直流偏磁抑制装置预防的。 安徽正广电作为直流偏磁治理的电力窗口,不断分享行业技术发展以及最新的直流偏磁仿真、测试、治理知识,安徽正广电励志成为客户们的最佳服务者,我们必将以合作共赢的原则,与大家携手畅游电力的海洋!

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其她电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行就是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防范策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其她电源与逻辑控制回路。直流系统就是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也就是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路与供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可就是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳

闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也就是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈就是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外部分闸条件被短接而误动作跳闸。A、D两点,A、F两点接地,同样都能造成开关误跳闸。

直流系统接地故障查找的方法处理原则

精心整理直流系统接地故障查找的方法、处理原则 电厂直流系统分支较多、涉及面广,绝缘水平很难保持得很高,特别是在空气潮湿的水轮机层,发生直流接地的机率较大,若不及时处理,会严重影响安全经济运行。直流系统发生一点接地后,若未及时发现和处理, 人员应先切换直流负荷屏上的接地电压表,判明直流接地的极性。若将该表转换开关切至“正”,电压表指示值为220V,则说明“负”极接地;反之,则“正”极接地。接地极性明确后,可进行以下处理:检查绝缘水平低(如水轮机层的各直流设备),存在设备缺陷及有检修工作的电气设备

和线路是否有接地情况;询问载波室是否有直流系统故障;依次切断直流负荷屏上各负荷开关;检查蓄电池、硅整流装置及充电机回路是否有接地现象等。在切断上述每一直流回路后,应迅速恢复送电。在切断每一回路过程中,工作人员应根据仪表和信号装置的指示,判断是否有接地。如切断时接地消失,恢复送电后接地又出现,则可肯定接地发生在该回路上, 掌。一般直流屏上输出的直流电源按其负荷性质分两路分别送到合闸母线(250V)和控制母线(220V),它们负极分开,正极共用。而且对于每台机组以及升压站等设备使用的不同直流电源也相对分开。这在设计之时也是方便于运行上查找直流系统接地故障。 (2)、判断接地极性。用万用表DC档测量直流电源“+”、“-”极对

地电压,若“+”极接地时,则“-”极对地电压为220V,若“-”极接地时,则“+”极对地电压为220V,据此判断出接地极性。为叙述方便,以下设“-”极接地。 (3)、用万用表测直流控制母线“+”极对地电压为220V,瞬时切除所有合闸电源开关后,如电压值下降很多甚至为0V,就说明接地点在合闸 ,说明接地点在主厂房的机组范围内;如所测电压值无变化,说明接地点在中控室范围内。 如接地点在机组范围内,则分别断开相关机组直流电源开关,以判定在哪台机组。之后测量接地点所在机组的自动屏上控制电源进线“+”极对地电压,瞬时解除至调速器、励磁调节屏、测温自动屏、闸阀控制系统、

10kV系统单相接地故障分析及处理

10kV系统单相接地故障分析及处理 随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。 标签:单相接地故障;危害;处理;注意事项 1 概述 电力系统在进行分类时常分大电流接地系统和小电流接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。 2 10kV系统发生单相接地故障的原因及危害 导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因: (1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。 (2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。 (3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。 (4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。 (5)人为操作失误致使发生单相接地故障等。 10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以

直流系统接地故障的分析与处理

直流系统接地故障的分析与处理 发表时间:2019-11-28T10:07:51.430Z 来源:《云南电业》2019年6期作者:滕飞[导读] 直流系统是控制及信号系统、继电保护及自动装置的工作电源,直流系统的可靠性直接影响整个发电机组系统的安全。 滕飞 (大唐长春第二热电有限责任公司吉林长春 130031) 摘要:直流系统是控制及信号系统、继电保护及自动装置的工作电源,直流系统的可靠性直接影响整个发电机组系统的安全。通过对直流系统接地故障的原因及危害进行分析,从现场实际出发,提出了处理原则及可行的处理方法,同时就几种直流系统接地故障检测方法及存在的问题进行了分析。 关键词:直流系统接地;危害;处理方法;监测装置 直流电源作为电力系统的重要组成部分,是发电厂主要电气设备的保安电源,是一个十分庞大的多分支供电网络。它是一个独立的电源,不受发电机、厂用电以及系统运行方式改变的影响,为一些重要的常规负荷、电力系统的控制回路、信号回路、继电保护、自动装置等提供可靠稳定的不间断电源,并提供事故照明电源,同时它还为断路器的分、合闸提供操作电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。 1.直流系统故障接地的原因 发电厂直流系统分布范围广、所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等,使得直流系统某些元件绝缘性能降低,而不可避免的发生直流系统接地。特别在发电厂机组大小修或机组扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 1.1 人为因素 人为因素即由于工作人员疏忽所造成的接地。如在带电二次回路上工作将直流电源误碰设备外壳,此种情况多为瞬间接地;较严重的情况如在电缆沟施工将带电控制电缆损伤造成接地;再如检修人员清扫设备卫生时不慎将直流回路喷上水等。,检修人员检修质量的不过关也会留下接地隐患。如室外设备未加防雨罩、二次回路漏接线头、误将控制电缆外皮绝缘损伤等,使二次回路及设备严重污秽和受潮、接线盒进水、汽,使直流对地绝缘严重下降。此时接地信号不一定立刻发出,但具备一定外部条件如潮湿或操作设备时就可能引起直流接地。 1.2 设备因素 二次回路绝缘材料不合格、绝缘性能低,或年久失修、严重老化。或存在某些损伤缺陷、如磨伤、砸伤、压伤、扭伤或过流引起的烧伤等,可能造成直流接地现象。直流回路在运行中常常受到多种不利因素的影响,如设备传动过程中的机械振动、挤压、设备质量不良、直流系统绝缘老化等都可引起接地或成为一种接地隐患。气候因素造成接地是一种最常见的情况,如雨天或雾天可能直接造成直流接地或引发直流接地。 1.3 其他因素 小动物进入或小金属零件掉落在元件上造成直流接地故障,;某些元件有线头、未使用的螺丝、垫圈等零件,掉落在带电回路上也会造成直流系统接地。 2 直流系统接地故障的危害 直流系统接地一般包括直流系统一点接地和直流系统两点接地。 2.1直流一点接地的危害 在直流系统中,直流正、负极对地是绝缘的,在发生一极接地时由于没有构成接地电流的通路而不引起任何危害。但一极在接地情况下长期运行是不允许的,因为在同一极的另一处又发生接地时,就可能造成信号装置、继电保护或控制回路的不正确动作。直流系统发生正极接地有造成保护误动作的可能。直流负极接地与正极接地同一道理,如果回路中再有一点发生接地,就可能使跳闸或合闸回路短路,造成保护或断路器拒绝动作,使事故扩大,甚至烧毁继电器或使熔断器熔断等。 2.2直流两点接地的危害 发生一点接地后再发生另一极接地就将造成直流短路。两极两点同时接地将跳闸或合闸回路短路,不仅可能使熔断器熔断,还可能烧坏继电器的接点直流系统发生两点接地故障,便可能构成接地短路,造成继电保护、信号、自动装置误动或拒动,或造成直流保险熔断,使保护及自动装置、控制回路失去电源。在复杂的保护回路中同极两点接地,还可能将某些继电器短接,不能动作于跳闸、致使越级跳闸。直流系统接地故障,不仅对设备不利,而且对整个电力系统的安全构成威胁。 3 直流系统接地故障的处理 排除直流接地故障,首先要找到接地的位置,这就是我们常说的接地故障定位。直流接地大多数情况不是一个点,可能是多个点,真正通过一个金属点去接地的情况是比较少见的。更多的会由于空气潮湿,尘土粘贴,电缆破损,或设备某部分的绝缘降低,或外界其它不明因素所造成。大量的接地故障并不稳定,随着环境变化而变化。因此在现场查找直流接地是一个较为复杂的问题。 3.1 处理原则 查找直流系统接地故障,由两人及以上配合进行,其中一人操作(切断时间为1-2秒),一人监护并监视表计指示及信号的变化。操作前应与有关值班人员联系,准备好安全工具,如绝缘鞋、绝缘手套、相关仪器等。如一点接地时,在查找过程中,防止人为造成短路或另一点接地,导致误跳闸。如需瞬间停电,应先拉合闸电源,后拉操作、信号电源。

直流系统接地处理(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 直流系统接地处理(标准版)

直流系统接地处理(标准版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 直流系统接地 A、象征: a)警铃响,“直流故障”光字牌亮; b)直流配电盘I组直流母线或Ⅱ组直流母线电压绝缘综合监测装置报警。 B、处理: a)根据直流母线电压绝缘综合监测装置报警情况确定接地母线组别及接地极性。 b)根据当时设备检修情况、气候情况及设备存在的缺陷,按照下列程序选择接地点: ⑴试拉检修人员所接之临时电源; ⑵联系机、炉、燃油、化学等直流用户,询问有无设备启、停及异常情况,以便进行查找; ⑶进行动力直流负荷的选择,采用“瞬停法”,按照先室外后室

内的顺序进行。对于直流油泵等动力负荷,必须通过值长通知机方采取必要的措施并得到明确许可、检查电动机确未运行后方可进行,拉开后迅速恢复,并汇报值长通知机方; ⑷进行操作直流负荷的选择,采用“转移法”,即先调整直流系统两组母线电压一致,推上母联刀闸,再切换直流母线上的某一路负荷至非接地母线上(推上该供电环状的解列点刀闸,然后拉开该供电环状接于接地母线的电源刀闸);此后拉开母联刀闸,看接地是否转移到另一母线,若已转移,再用“瞬停法”对该供电环状负荷的各分支逐一瞬停,直至找到故障点。 ⑸在进行操作直流负荷的选择时,主控楼操作直流电源一般应放在最后选择,且不得将环状供电的控制、信号电源长时间放在不同母线上运行。 ⑹在瞬停设备的直流操作电源前,应先与有关值班人员进行联系,以免设备误动作。在选择过程中,遇有故障发生时,应及时恢复供电。 ⑺当全部直流负荷选择完毕仍未找到接地点时,则应检查蓄电池、浮充硅、闪光装置、电压绝缘综合监测装置以及直流母线本身。此时可以采取瞬间拉开设备出口刀闸及取下直流保险的方法进行选择。若接地仍然不能消除,则为直流母线本身接地,经确证无疑后,应采取

高压线路单相接地故障分析

高压线路单相接地故障分析 一、高压线路接地故障的确定 1、接到值班调度员关于高压线路接地通知时,要询问清楚是哪条线路哪相接地,各相接地电压数值是多少,变化情况如何(数值是不断变化还是比较稳定),以便于对接地情况进一步分析。 2、排除变电所(发电厂)绝缘监视装置本身故障。 如果是一相对地电压为零值,另两相对地电压正常,这可能是绝缘监视装置本身故障引起。如果是一相对地电压为零或很低,另两相电压升高,或一相对地电压升高,另两相对地电压降低,这都表明是高压线路接地或一相断相。 3、排除高压用户内部高压接地故障。 ⑴向高压用户说明接地线路名称,接地相名称,责成高压用户对高压设备进行详细巡察,以查明是否有接地故障。 ⑵电缆进户的高压用户可用钳型电流表测全电缆电流。如等于零值或接近零值,则此高压用户无接地可能,如测电缆三相电流之和接近高压系统接地电流,则说明接地故障点在该用户内部。 ⑶对负荷性质不甚重要又极为可疑用户,可要求其暂停电1分钟(核准时间),用验电器检验开关电源三相电压,就可以确定该用户内部是否有接地故障。 ⑷要将高压线路缺相与接地故障很好区别。 高压线路上的跌落式熔断器熔断一相或高压发生断线,被断开的线路又较长,绝缘监视装置中的三相对地电压表也会发生指示数值不平衡,且类似接地情况。 如果三相对地电压表指示数值虽然不平衡,但又无明显的接地特征时,应当设法与该线路末端用户联系,如果用户三相电压正常,说明没发生高压断相而是接地所引起。 二、高压线路接地状态分析 1、一相对地电压接近零值,另两相对地电压升高3倍,这是金属性直接接地。 ⑴如果在雷雨时发生,可能是绝缘子被击穿,避雷器因受潮绝缘被击穿,或导线被击断电源侧落在比较潮湿的地面上引起的。 ⑵如果在有风天发生此类接地,可能是金属物被刮到高压带电体上;也可能是仍在高压设备上的金属物被风刮成接地;也有可能是避雷器、变压器,跌落式熔断器引线被刮断形成稳定性接地。 ⑶如果是在良好的天气里发生,可能是外力破坏扔金属物或吊车等撞断一相高压线落在接地较良好的物件上,也有可能是高压电缆击穿接地。 2、一相对地电压降低,但不是零值,另两相对地电压升高,但没升高到3倍。这是属于非金 属性接地特征。有以下几种可能: ⑴如果在雷雨天发生,可能是一相导线被击断电源侧落在不太潮湿的地面上;如伴有大风,也有可能是比较潮湿的树枝搭在导线与横担之间形成接地。 ⑵配变变压器高压绕组烧断后碰到外壳上或内层严重烧损主绝缘击穿而接地。 3、一相对地电压升高,另两相对地电压降低,这是非金属性接地和高压断相特征。 ⑴高压断一相但电源侧没落地,负荷侧导线落在潮湿的地面上,没断线的两相通过负载与已接地导线相连,构成非金属性直接接地。没断相对地电压降低,断线相对地电压反而升高。 ⑵高压断线没落地或落在导电性能不好的物体上,或者装在线路上的高压熔断器熔断一相。假如被断开线路较长,造成三相对地电容电流不平衡,促使三相对地电压也不平衡,断线相对地电容电流变小,对地电压相对升高,其它两相相对较低。

直流系统的作用及直流系统接地的危害

直流系统的作用及直流系统接地的危害 直流系统的作用 在发电厂和变电所中,直流系统在正常情况下为控制信号、继电保护、自动装置、断路器跳合闸操作回路等提供可靠的直流电源;当发生交流电源消失事故情况下为事故照明、交流不停电电源和事故润滑油泵等提供直流电源。直流系统可靠与否对发电厂和变电所的安全运行起着至关重要的作用,是安全运行的保证。 我厂220V控制直流和动力直流的主要作用是220V控制直流系统为操作、信号、继电保护及自动装置等设备提供可靠的电源。220V 动力直流系统为开关的传动机构、事故照明、汽轮机组的事故油泵及交流不停电电源等设备提供可靠的电源。 直流系统接地的危害 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 1、什么叫直流系统接地? 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个

地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地? 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害? 直流系统接地包括直流系统一点接地和直流系统两点接地两种情况。 在直流系统中,直流正、负极对地是绝缘的,在发生一点接地时由于没有构成接地电流的通路而不引起任何危害,但一极接地长期工作是不允许的,因为在同一极的另一地点又发生接地时,就可能造成信号装置、继电保护和控制回路的不正常动作;发生一点接地后再发生另一极接地就将造成直流短路。 如直流正极接地有造成继电保护误动作的可能,因为一般跳闸线

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

2021新版直流接地引发的一次“异常”现象分析

2021新版直流接地引发的一次“异常”现象分析 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0025

2021新版直流接地引发的一次“异常”现 象分析 1引言 变电站直流系统的稳定运行对继电保护及自动装置的可靠正确动作至关重要。对整个电网的安全运行起决定性作用,直流系统出现异常或故障,应尽快处理。一般情况下,直流接地故障是一个独立的故障现象,取决于直流二次回路对地的绝缘水平。直流接地故障(即使是重复接地)排除后直流系统即可恢复正常运行,很少出现连续接地故障。在一次220KV变电站35KV的3516馈线开关检修过程中发生了一次“直流母线接地故障”反复出现且受控于3516开关分合影响的异常现象。 2起因及经过 2002年11月29日该站一条35KV馈线(3516)发生BC相短路,

电流保护I段动作切除故障后启动重合闸装置,但重合未成功(原因:重合过程中开关拒合烧坏合闸线圈,未实现重合指令。该开关为户内少油式手车断路器,配CD-10型电磁合闸机构)。14:30分我们组织检修人员对开关机构进行检修调试,对烧坏的合闸线圈进行更换处理,16:30分事故抢修结束后在对3516开关进行分合试验过程中,直流装置及中央信号打出了“直流母线接地”的信号。直流系统异常现象出现后对直流母线接地故障先进行了处理。用UT-52型数字表直流1000V档对直流母线电压进行实测,结果:U=231V、U+=231V、U-=0V,得出了负极直接接地的结论。本着“先易后难、先次后主”的原则进行接地点查找:首先断开3516的控制、保护、合闸电源,直流接地依旧,排除了3516单元直流回路存在接地的可能,当拉开“10KVⅠⅡ段保护信号电源”时“一套直流母线接地"故障消失,直流母线负极对地电压上升为115V。进一步查找发现10千伏116电容器保护装置内部电源负极绝缘降低(10KV馈线及电容器保护装置型 号MDM—B1C,该型号保护装置曾多次出现过故障,运行极不稳定)。用数字表测得该装置电源负对地电阻值247Ω,断开装置的直流电源

直流系统两点接地可能带来的危害!

直流系统两点接地可能带来的危害 发电厂、变电站的直流系统为控制、保护、信号和自动装置提供电源,直流系统的安全连续运行对保证发供电有着极大的重要性。由于直流系统为浮空制的不接地系统,如果发生两点接地,就可能引起上述装置误动、拒动,从而造成重大事故。因此当发生一点接地时,就应在保证直流系统正常供电的同时准确迅速地探测出接地点,排除接地故障,从而避免两点接地可能带来的危害。 (1)正接地可能导致断路器误跳闸由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A 点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。 (2)负接地可能导致断路器的拒跳闸:如图所示,当图中的B点、E 点同时接地,这B、E点通过地连通后,将中间继电器KM短接,此时如果系统发生事故,保护动作,由于中间继电器KM被短接,KM 不动作,断路器不会跳开,产生拒动,使事故越级扩大。从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应立即排除。

(3)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 得福电气

变电站直流系统接地故障分析及对策

变电站直流系统接地故障分析及对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变电站直流系统接地故障分析及对策1.引言 直流电源作为电力系统的重要组成部分,为一些重要常规负荷、继电保护及自动装置、远动通讯装置提供不间断供电电源,并提供事故照明电源。直流系统发生一点接地,不会产生短路电流,则可继续运行。但是必须及时查找接地点并尽快消除接地故障,否则当发生另一点接地时,就有可能引起信号装置、继电保护及自动装置、断路器的误动作或拒绝动作,有可能造成直流电源短路,引起熔断器熔断,或快分电源开关断开,使设备失去操作电源,引发电力系统严重故障乃至事故。因此,不允许直流系统在一点接地情况下长时间运行,必须加强在线监测,迅速查找并排除接地故障,杜绝因直流系统接地而引起的电力系统故障。 2.造成变电站直流系统接地的几种原因 (1)雷雨季节,室外端子箱或机构箱内潮湿积水导致直流二次回路中的正电源或负电源对地绝缘电阻下降,严重者可能到零,从而形成接地。

(2)部分型号手车开关的可动部分与固定部分的连接插头或插座缺少可靠的绝缘隔离措施,手车来回移动导致其中导线破损,从而使直流回路与开关金属部分相接触,从而导致接地。 (3)部分直流系统已运行多年,二次设备绝缘老化、破损,极易出现接地现象。 (4)因施工工艺不严格,造成直流回路出现裸线、线头接触柜体等,引起接地。 3.查找接地故障的基本原则和方法 (1)一般处理原则:根据现场运行方式、操作情况、气候影响来判断可能接地的地点,按照先室外后室内,先合闸后控制,由总电源到分路电源,逐步缩小范围的原则,采取拉路寻找、处理的方法。应注意:切断各专用直流回路的时间不要过长(一般不超过3秒钟),不论回路接地与否均应合上。 (2)具体处理方法:首先,了解现场直流电源系统构成情况,通过直流系统绝缘监测装置或接地试验按钮初步判断是直流正极接地还是负极接地(以下假设绝缘监测可靠,并假设正接地)。然后,瞬时切除所有合闸电源开关,如接地信号消失,说明接地点在合闸回路,应对站内

直流系统接地处理正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.直流系统接地处理正式版

直流系统接地处理正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 直流系统接地 A、象征: a) 警铃响,“直流故障”光字牌亮; b) 直流配电盘I组直流母线或Ⅱ组直流母线电压绝缘综合监测装置报警。 B、处理: a) 根据直流母线电压绝缘综合监测装置报警情况确定接地母线组别及接地极性。 b) 根据当时设备检修情况、气候情况及设备存在的缺陷,按照下列程序选择接地点:

⑴ 试拉检修人员所接之临时电源; ⑵ 联系机、炉、燃油、化学等直流用户,询问有无设备启、停及异常情况,以便进行查找; ⑶ 进行动力直流负荷的选择,采用“瞬停法”,按照先室外后室内的顺序进行。对于直流油泵等动力负荷,必须通过值长通知机方采取必要的措施并得到明确许可、检查电动机确未运行后方可进行,拉开后迅速恢复,并汇报值长通知机方; ⑷ 进行操作直流负荷的选择,采用“转移法”,即先调整直流系统两组母线电压一致,推上母联刀闸,再切换直流母线上的某一路负荷至非接地母线上(推上该供电环状的解列点刀闸,然后拉开该供

10kV单相接地故障的分析

10kV单相接地故障的分析 贺红星贵州省榕江县电力局调度所(557200) 榕江县电力局调度所在调度运行日志记录中出现10kV单相接地信号62次,每次均发信号,但所测10kV每相电压却各不相同,这是为什么呢 1 故障分析 目前各县级电力企业,都是以110kV变电所为电源点,以35kV输电线为骨架,以10kV配电线为网络,以小水电站为补充的一个网架结构。由于电压等级较低,输配电线路不长,对地电容较小,因此,属于小接地电流系统。当小接地电流系统发生单相接地时,由于没有直接构成回路,接地电容电流比负载电流小得多,而且系统线电压仍然保持对称,不影响对用户的供电。因此,规程规定允许带一个接地点继续运行不超过2h。但是由于非故障相对地电压的升高,对绝缘造成威胁。因此,对已发生接地的线路,应尽快发现并处理。这就要借助系统中设置的绝缘监察装置,来对故障作出准确的判断和处理。 对于绝缘监察装置,我们通常采用三相五柱式电压互感器加上电压继电器、信号继电器及监视仪表构成。它由五个铁芯柱组成,有一组原绕组和二组副绕组,均绕在三个中间柱上,其接线方式是:ynynd。这种接线的优点是第一副绕组不仅能测量线电压,而且还能测相电压;第二副绕组接成开口三角形,能反映零序电压。当网络在正常情况下,第一副绕组的三相电压是对称的,开口三角形开口端理论上无电压,当网络中发生单相金属性接地时(假设A相),网络中就出现了零序电压。网络中发生非金属性单相接地时,开口两端点间同样感应出电压,因此,当开口端达到电压继电器的动作电压时,电压继电器和信号继电器均动作,发出音响及灯光信号。值班人员根据信号和电压表指示,便可以知道发生了接地并判定接地相别,然后向调度值班员汇报。但必须指出,绝缘监察装置是一段母线共用的,它必竟不是人脑,不可能选择鉴别故障类型,由于实际情况要比书本上的理论复杂得多,恶劣天气、网络中高压熔丝熔断、电网中的高次谐波及电压互感器本身的误差等一系列问题,都可能使电压互感器二次侧开口三角形绕组感应出不平衡电压,使电压继电器、信号继电器动作,发出虚假接地信号。 2 故障现象类型 根据运行经验及现场处理人员反馈的情况分析,把62例接地故障现象分为以下几种类型:

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法 在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其他电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其他电源和逻辑控制回路。直流系统是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路和供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂

保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外

变电站直流系统接地故障查找及处理

变电站直流系统接地故障查找及处理 摘要:直流系统在变电站内是很重要的也是相对独立的一个电源系统,主要作用是为变电站的控制、信号、自动装置以及 开关的分合闸操作等提供可靠的直流电源。接地直流系统干扰的 任务是变电站的安稳。本文主要对于变电站直流接地故障进行了 简要的分析,提出了其中存在的问题并且提出了相应的解决措 施,希望能够给相关部门带来一定的帮助,促进变电站更好的发展。 关键词:变电站;直流系统;故障处理 中图分类号:TM862 文献标识码:A 文章编号:1674-7712 (2014) 08-0000-01 对于人们的日常生活来说,变电站是十分重要的存在,他影响着人们的正常生活。在我们生活中的电源的供应就是经过变电 站运输而来的,由此可知变电站对于我们生活的重要性,一个没 有电源的城市将会是什么样的城市,我想没有人是愿意过着那样 的生活的。因此,变电站对于现代人来说是一个必不可少的设 备,只有拥有了变电站,才可以使得直流电源进行正常的供应从 而保障人们的生活。 一、变电站直流系统中存在的问题 (一)直流系统设备故障

变电站中存在着绝缘老化、破损的现象是运行多年的直流系统中常见的问题,这种情况下很容易出现接地的现象,从而引起直流系统设备发生故障。 (二)气候因素 这种意外情况的发生是由于气候原因产生的。当当地的气候为雷雨季节或者空气过于潮湿的时候,就会使得变电站内部充满了水汽,从而导致设备上存在着积水,这对于电力设备的影响是极大的,这种现象就可能造成接地,从而使得变电站无法正常的进行工作。 (三)工作人员的操作失误 工人在施工时工艺不严格,造成裸线、线头接地等,引起接地。 (四)零件掉落 小金属物件掉落在直流系统裸露的原件上造成的接地故障。 由于多种多样的原因导致的接地故障的类型也不尽相同:按接地的极性可以分为正、负接地。而在所有的接地事故中,两点接地的危害最为严重,造成的经济损失和人身伤害也最为严重。不同原因造成的事故产生的结果也不相同,比如正接地可能会导致断路器跳闸,而负接地可能导致断路器拒绝跳闸。在直流系统的过程中,如果只有一个变电站的系统发生了故障,那么所造成的影响还是可以控制的,一旦两个或者多个变电站在同一时间发生了接地故障,那么所带来的影响也是极大的,会严重的影响人们的正常生活。

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

相关文档
最新文档