二年级奥数数字谜之加减法练习
二年级下册数学试题-奥数习题讲练:第五讲 数字谜(解析版)全国通用

第五讲数字谜数学乐园小红在家做计算题,不小心碰倒了墨水瓶,把这两道题弄得残缺不全.认真观察一下,你能将墨迹破坏的数字找回来吗?【说明】开课的时候,可用这道题来做引题,在学完例1后,可做为巩固练习来做.我们经常会看到一些残缺不全的算式,要求我们在方格内填上合适的数字,使算式成立.我们也经常看到在一个算式里面有很多的汉字或字母,要我们猜猜它们代表几,像这样的问题都是数字谜问题.在填数字时,要认真分析数字的特点,充分运在这一节课中,教材内容中主要是通过不同的符号,汉字或字母来组成各种不同的竖式数字谜,让学生根据竖式的结构来计算(求出)这些未知的数字.弄清楚加减法各部分之间的数量关系是我们学习数字谜的基础.解答数字谜的关键是找准突破口.通过这节课的学习,要使学生掌握解答竖式数字谜的一般技巧.先要观察数字的特点,然后找出“关键位置”认真分析,一般可以引导学生从各个不同的数位进行考虑.解答完题目以后,教师还要培养学生验算的好习惯.用加、减法之间的关系,巧妙地安排每一个数,很快就能求出方格里应填的数字.今天这节课我们就一起来解答数字谜问题.巧填方框里面的数【例1】在“庆元旦”晚会上,主持人小丽出了这样两道题目:请大家想一想,被纸片盖住的是什么数字?【分析】1、先填个位,已知6+口的个位为1,所以口=5,且个位向十位进1.再填十位,由于个位向十位进1,十位上数□+7+1的个位数为1,所以十位数□应填3,且十位向百位进1.最后填百位,由十位进1,可知百位□填1.2、我们可以从位数入手.被减数是一个三位数,减数是一个两位数,差是一个一位数,应能推出它的被减数应尽可能的小,减数应尽可能大.再从个位入手,可知,被减数的个位是2,且个位向十位借1,而差的百位、十位上均无数字,说明被减数的百位是1,而减数十位上的数字是9.当然此题也可反着想:□6+6=□0□,也可推出答案.由上面的解题过程可以看到,解这种题应按三个步骤分析思考:(1)审题审题就是找出算式中数字之间的关系和特征,挖掘题目中的隐含条件,它是确定各空格内应该填什么数字的主要依据.(2)选择解题突破口在审题的基础上,认真思考找出算式中容易填出或关键性的空格,做为解题的突破口.这一步是填空格的关键.(3)确定各空格填什么数字从突破口开始,依据竖式的已知条件,逐个填出各空格中的数字.【例2】用0、1、2、3、4、5、6、7、8、9这十个数字组成下面的加法算式,每个数字只许用一次,现已写出3个数字,请把这个算式补齐.【分析】解题关键:由算式知,和的千位数字只能是百位上数字之和向前进的数,因此把确定千位数字做为突破口(1)填千位据上分析,千位上只能填1.(2)确定百位为了能使百位向千位进l,所以第一个加数的百位可能是9或7.(因为8已用过) 试验:若百位上填9,则和的百位只可能是1或2,而1和2都已用过,因此百位上不能填9,只能填7.则和的百位为0,且十位向百位进1,这时竖式为:(3)确定剩下的4个空格现在只剩下四个数字没有用,它们是9、6、5、3.试验:若第二个加数的个位填5,和的个位为9,剩下的数字6、3不能满足十位上的要求. 若第二个加数的个位填9,和的个位为3,剩下的数字5、6正好满足十位上的要求,即第一个加数的十位填6,和的十位填5.此题的答案为【例3】在下面算式的空格内,各填入一个合适的数字,使算式成立.【分析】解题关键:这是一道四位数减去三位数差为两位数的减法,所以选择被减数的千位做为解题突破口.又由于个位上已知两个数字,因此先从个位入手填.①填个位由于个位这一列只有一个待定的数,减数的个位应为9,且个位向十位借1.②填千位四位数减去三位数差为两位数,所以被减数的千位数字是1,且百位向千位借1.③填百位由于差是两位数,所以被减数的百位数字为0,十位也向百位借1.这样百位向千位借1当10,十位又向百位借1,还剩9,9-9=0,因此减数的百位应填9.④填十位由于十位向百位借1,所以被减数的十位数字不得超过减数的十位数字,即被减数的十位数字是0或1,那么差的十位数字为8或9.此题有两个答案.【例4】把数字1~5分别填写在下面算式中的口里.【分析】这题限制了所需要填的五个数字,且个位这一列只有一个空格,因此把确定个位数字做为解题突破口.①填个位显然,差的个位上填1.②填百位由差的十位数字8知,十位上数相减时,要向被减数的百位借1,这样百位上有9-1-口=口知,减数的百位填3或5,相应的差的百位上填5或3.○3填十位现在只剩下2、4两个数,分别填在被减数和减数的十位上,正好满足题目要求.【例5】下面的算式里四个小纸片各盖住一个数字,问被盖住的四个数字的和是多少?【分析】求被盖住的四个数字的和,对于这四个数具体是几并不十分重要.而和149的个位是9,所以个位数相加没有进位,即个位上两个数的和是9.十位上两个数的和是14.因此,被盖住的四个数字的和是14+9=23.拓展练习下面方框可以填什么数?【分析】这道题两个加数都不知道,只知道两个数的和,我们要知道这两个加数是多少,就要先找到解决问题的突破口.两个两位数的和是191,两个加数十位上数字都必须是9,而个位上两个数字的和要进位才能使十位数字的和是9,这样个位上两个数字和应该是11.因为2+9=11,3+8=11,4+7=11,5+6=11,所以答案有:(答案不唯一,两个加数的顺序也可以颠倒写)【例6】在下面算式的空格内,各填入一个合适的数字,使算式成立.【分析】这是一道加减法混合运算的填空格题,我们把加法、减法分开考虑,使问题简化:1.加法①填十位从算式可以看出,第二个加数与和的十位上都是9,所以个位上数字之和一定向十位进了1,十位数字之和也向百位进了1,因此算式中十位上应是□+9+1=19,故第一个加数的十位上填9.②填个位由于个位上1+口的和向十位进1,所以口中只能填9,和的个位就为0.③填百位和千位由于两位数加三位数,和是四位数,所以百位上数相加后必向千位进1.这样第二个加数的百位应填9,和的千位填1,和的百位填0.2.减法①填个位由于被减数的个位是0,差的个位是4,因此减数的个位应填6.②填十位、百位由于被减数是四位数,减数是三位数,差是两位数,所以减数的百位必须是9,同时十位相减时必须向百位借1,这样减数与差的十位也只能填9.拓展练习下面的方框各应该填几?【分析】在这个题目中,我们要从低位开始考虑,而且一定要注意进位和退位的问题,除了方法更考察学生的口算能力.数字、符号代表几?【例7】算下面竖式中的汉字各代表多少?我=( ) 爱=( )数=( ) 学=( )【分析】先看千位数,两个相同数相加,不可能是9,那么一定是百位向千位进了1,所以千位上是4,由于百位向千位进了1,因此,爱+爱=10,则爱=5,十位没有向百位进1.再看十位数,和是5,肯定个位进上了1,所以十位上数=2,个位上的数,学+学=16,则学=8,即:4528+4528=9056.我=(4),爱=(5)数=(2),学=(8)拓展练习下面的符号和汉字各代表几?△=( 8 )迎=( 1 )奥=( 9 )我=( 2 )爱=( 6 )运=( 4 )北=( 3 )京=( 5 )【例8】求当它们各代表什么数字时,能够使算式成立?【分析】被减数是一个四位数,减数是个三位数,所得的差是一个三位数,说明百位要向千位借l,千位借走后无剩余,说明“儿”=1.因为百位上减1需要借位,所以“童”就只能取0,而十位上“节-童”肯定够减,不用向百位借位,这样从百位可得出“节”=9的结论.个位上分析可得出“乐”=8.即如上式所示.【例9】请你猜一猜,每个算式中的汉字各表示几?【分析】首先我们可以确定百位的“数”=1,看个位,“爱”+5=2,所以“爱”=7;再来观察上面的减法算式:“学”4-67=17,可见“学”=8;再来观察下面的加法算式:17+“我”5=112,可得“我”=9.答案如上.拓展练习相同的汉字代表相同的数字,这些汉字各代表几?泰=( 8 )山=( 9 )福=( 1 )永=( 7 )寿=( 0 )【例10】相同的英文字母代表相同的数字,你知道下面A、B、C代表几?【分析】这道题的突破口是要从百位上的B进行思考,一个两位数加两位数,得数是一个三位数.那么这个三位数百位可能是1或者2.假设B=2,那么十位A+2+A=22,这种情况不存在.因此可以肯定B=1,十位上A+1+A=11,如果个位向十位进一,那么2个A=9,也不可能,因此2个A=10,A=5.当A=5时,看个位1+C+C=5,C=2.答案如下:拓展练习下面竖式中的字母和符号各代表多少?A=( 4 ) B=( 5 )□=( 2 )△=( 9 ) C=( 1 )○=( 5 )【例11】已知下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么满足下列算式的A+B+C+D+E=?【分析】从右边的算式中我们马上可以看出C=1,再看左边算式的个位,C+E=1+E=4,可推出E=3.由右边算式的十位上B+E=7,即B+3=7,推出B=4.从左边算式十位上B+D=6,即4+D=6,所以D=2,再推右边算式个位A+D=A+2=8,所以A=6.于是得到两个算式:A=6,B=4,C=1,D=2,E=3,所以,A+B+C+D+E=6+4+1+2+3=16.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)请你算一算,下面竖式中每个字各代表几?+ 兵炮马卒兵炮车卒车卒马兵卒兵=( 5 ) 炮=( 2 ) 马=( 4 ) 车=( 1 ) 卒=( 0 )【分析】我们从个位开始观察,卒+卒=卒,只有0+0=0,所以卒=0;再看和是一个五位数,所以车=1;再看千位,兵+兵=10,所以兵=5;然后看十位,马+车=兵,也就是马+1=5,所以马=4;最后看百位炮+炮=4,所以炮=2.下面各数字表示几?【分析】从个位看“宵”+“宵”+“宵”= 4,可见“宵”=8,向十位进2.“元”+“元”+“元”= 9-2= 7,可见“元”=9,向百位进2.“度”+“度”=8-2=6,因此“度”=3,“欢”=1.在下面的加法算式中,第—个加数的各位数字之和恰好是和的各位数字之和的2倍.则第一个加数是多少?【分析】第一个加数是:169,和是170,1+6+9=16,1+7+0=8,16是8的2倍.下面的算式里,每个方框代表一个数字,问:这6个方框中数字的总和是多少?【分析】这6个方框中数字的总和是47.练习五1.在下列竖式的空格内,各填入一个合适的数字,使竖式成立.【答案】2.下面的符号各表示几?3.下面的汉字各代表几?4.下面的符号代表几?5.下边的加法算式中,□内这四个数字之和是多少?【答案】□内的数字之和是30.一只新组装好的小钟放在了两只旧钟当中.两只旧钟“滴答”、“滴答”一分一秒地走着.其中一只旧钟对小钟说:“来吧,你也该工作了.但我又有点担心,你走完三千二百万次以后,恐怕就吃不消了.”“天哪!三千二百万次.”小钟吃惊不已.“要我做这么大的事?办不到,办不到.”另一只旧钟说:“别听他胡说八道.不用害怕,你只要每秒滴答摆一下就行了.”“天下哪有这样简单的事情.”小钟将信将疑.“如果这样,我就试试吧.”小钟很轻松地每秒钟“滴答”摆一下,不知不觉中,一年过去了,它摆了三千二百万次.。
小学奥数 数字谜(加减法)专项练习30题(有答案)

小学奥数数字谜(加减法)专项练习30题(有答案)第9讲数字谜(二)专项练习30题(有答案)1.在如图所示的两位数的加法运算式中,已知A+B+C+D=22,则X+Y=()A .2 B.4 C.7 D.132.计算右面小题()A .趣=5味=6 B.趣=4味=7 C.趣=6味=5 D.趣=3味=83.下边的竖式加法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,当算式成立时,我+爱+奥+数=_________.4.在下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么,车+马+炮+卒=_________.5.如图式中,不同的汉字代表不同的数字,“马年好”代表的三位数是_________.6.图竖式A、B、C分别表示不同的数字,且A+B+C最小值是_________.7.图中的△、□、○分别代表不同的数字,要使算式成立,则△代表数字_________,□代表数字_________,○代表数字_________.8.竖式中“兔子”图案表示的数字是_________.9.在如图的算式中,每个字母代表一个1 至9 之间的数,不同的字母代表不同的数字,则A+B+C=_________.10.如图是两个两位数的减法竖式,其中A,B,C,D代表不同的数字.当被减数取最大值时,A×B+(C+E)×(D+F)=_________.11.在横线里填上汉字所代表的数字:“数”=_________,“学”=_________,“好”=_________.12.在右面的算式中,学习优秀=_________.13.不同的汉字表示不同的数,在下面的竖式中,“争”表示_________,“先”表示_________,“创”表示_________,“优”表示_________.14.在图所示的算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.则“奥”表示数字_________,“数”表示数字_________,“好”表示数字_________.15.已知除法竖式如图:则除数是_________,商是_________.16.A、B、C、D各代表不同的数字.要使右式成立,A=_________B=_________C=_________D=_________.17.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是_________.18.下面的加法算式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字.那么这些不同的汉字代表的数字之和是_________.19.在如图的式子中,字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如图,那么三位数ABC是_________.20.如图所示的算式中,相同的汉字表示相同的一位数字,不同的汉字表示不同的一位数字.则数+学+竞+赛=_________或_________.21.下面各式中“巨”、“龙”、“腾”、“飞”分别代表不同的数字,相同的汉字代表相同的数字.当它们各代表什么数字时,下列的算式成立.巨=_________龙=_________腾=_________飞=_________.22.在如图的加法算式中,每个汉字分别代表1至9中的一个数字,且相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么这个加法算式的和是_________.23.下面的算式中相同的汉字代表相同的数字,不同的汉字代表不同的数字.24.不同汉字表示不同数字,用数字0﹣9组成了下面一个加法算式,已经填出了数字6,4,0,请补充完算式,那么这个算式的和是_________.25.如图的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立.申=_________;办=_________;奥=_________;运=_________.26.“爱好数学”代表的四位数是_________.27.在右边的加法竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.如果“纪”=3,那么“北京奥运新世纪”七个字的乘积是_________.28.在右图的算式中,不同的汉字表示不同的数字,相同的谜汉字表示相同的数字,如果,巧+解+数+字+谜=30,那么,字谜“数字谜”所代表的三位数是_________.29.请你猜一猜,每个算式中的汉字各表示几?30.猜一猜,下面每个算式中的汉字所代表的数字是几?数=_________学=_________.参考答案:1.根据题干分析可得:B+D=9,则A+C=22﹣9=13,所以可得x=1,y=3,则x+y=1+3=4.故选:B.2.根据竖式可知,在个位上,趣+味的末尾数字1,这时有两种情况,一种是不向十位进1,0+1=1,十位上,2+ 趣=8,趣=8﹣2=6,与个位数字不符,所以,只能是个位数字相加向十位进1,即趣+味=11;十位上,2+趣+1=8,趣=8﹣1﹣2=5,那么,味=11﹣5=6;根据以上推算可得竖式是:故选:A3.由竖式可得:个位上,数×3的末尾是7,由9×3=27,可得,数=9,向十位进2;十位上,奥×3+2的末尾是0,由6×3+2=20,可得,奥=6,向百位进2;百位上,爱×2+2的末尾是0,由4×2+2=10,9×2+2=20,可得,爱是4或9,当爱为9时与数=9重复,不符合题意,故爱=4,向千位进1;千位上,我+1=2,可得:我=1.由以上分析可得竖式是:所以,我+爱+奥+数=1+4+6+9=20.故填:20.4.车=1,炮=0,马=8,卒=5,故车+马+炮+卒=14;故答案为:145.根据竖式可知,好×7的末尾是好,由5×7=35,可得,好=5,向十位进3;马×7+3=马年,由1×7+3=10,可得,马=1,年=0;由以上分析可得竖式是:故答案为:1056.根据竖式可知,B+B的末尾是4,由2+2=4.或7+7=14可得,B是2或7;当B=2时,十位上,A+C=4,那么,A+B+C=2+4=6;当B=7时,要向十位进1,十位上,A+C+1=4,A+C=4﹣1=3,那么,A+B+C=7+3=10;6<10,所以,A+B+C最小值是6.故答案为:67.竖式结果中千位上是2,可以得知△代表的数字可以能是1或2,在个位上,□+○=□,可以推知○代表的数字是0,那么百位上结果就是0,△、□、○分别代表不同的数字,可以推知千位上的2,是进位后和△相加得出来的,可以推知△代表的数字是1.十位上△+□=0可以知道1+9=10推知□代表的数字是9.故△代表数字1,□代表数字9,○代表数字08.根据题干分析可得:故答案为:69.解:根据题得:DEF+HIJ=ABC,又因为1+2+3+4+5+6+7+8+9=45,假设个位与十位相加都进位,则可得:F+J=10+C,E+I=10+B﹣1=9+B,D+H=A﹣1,则D+E+F+H+I+J=10+C+9+B+A﹣1=A+B+C+18,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+18=45,即A+B+C=,不符合题意;则假设只有个位数字相加进位,则F+J=10+C,E+I=B﹣1,D+H=A,则D+E+F+H+I+J=10+C+B﹣1+A=A+B+C+9,所以A+B+C+D+E+F+H+I+J=2(A+B+C)+9=45,即A+B+C=18,符合题意;答:A+B+C=18.故答案为:18.10.A,B,C,D代表不同的数字.当被减数取最大值可以是98,所以C、D都是小于8的数,则F+D=B=8,C+E=A=9,所以A×B+(C+E)×(D+F)=9×8+9×8=72+72=144,故答案为:14411.根据题干分析可得:答:数=8,学=5,好=2.故答案为:8;5;212.根据竖式是特点,先确定学代表的数字,即为2或1,当学代表2时,此是习应该为8,这样千位上的数会是3,与题干矛盾,所以学代表1,习代表8,优代表0,秀代表3,根据以上推算可得竖式是:故答案为:180313. 根据竖式可知,优+优+优的末尾是2,由4+4+4=12可得,“优”表示4,向十位进1;创+创+创+1的末尾是6,由5+5+5+1=16可得,“创”表示5,向百位进1;先+先+1的末尾是3,由1+1+1=3,6+6+1=13可得,“先”表示3或6,当“先”表示3时,“争”只能表示4,与优重复不符合,所以,“先”表示6,向千位进1;争+1=4,争=4﹣1=3,所以,“争”表示3.由以上分析可得竖式是:故答案为:3,6,5,414.根据题意,由竖式可得:“数”代表的数字是1;千位上:“奥”+1要想得到11,最大的数字9+1才等于10,也就是9+1再加上进位的1才能得到11,因此“奥”代表的数字是9;个位上:9+1=10,那么,“好”代表的数字是0;由以上可得竖式是:.故答案为:9,1,015.根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,2916. 根据题意,由竖式可得:A=1;百位上,B+A=9,B=8,或B+A+1=9,B=7;十位上,C+B+A=2,B+A大于2,所以,十位上一定满十,要向百位上进一,所以,B+A+1=9,B=7,符合题意;那么,C+B+A=12,C=4或C+B+A+1=12,C=3;个位上,D+C+B+A=7,因为C+B+A=12,大于10了,所以个位上也满十,向十位上进一,因此,C+B+A+1=12,C=3符合题意;那么,D+C+B+A=17,D=6.根据以上推算可得竖式是:故答案为:1,7,3,617.根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:29618.由以上分析可知:“我”=1,“爱”=7,“数”=9,“学”=3;算式是:;数字之和是:1+7+9+3=20;故答案为:2019.根据题意可知,可知A+B+C=7,A、B、C都不是0,字母A、B、C代表三个不同的数字,A比B大,B比C大,可知A>B>C,因1+2+4=7,那么A=4,B=2,C=1,所以三位数ABC是421.故填:42120.根据竖式可知,赛×5的末尾是赛,由0×5=0,5×5=25,可得赛是0或5,当赛是0时,竞×4的末尾是竞,由0×4=0,可得,竞是0,与题意不符,所以,赛只能是5,向十位进2;十位上,竞×4+2的末尾是竞,由6×4+2=26,可得,竞是6.向百位进2;百位上,学×3+2的末尾是学,由4×3+2=14,9×3+2=29,可得,学是4或9;当学是4时,向千位进1,千位上,数×2+1的末尾是数,由9×2+1=19,可得数是9,向万位上进1,万位上1+1=2,符合题意;当学是9时,向千位进2,千位上,数×2+2的末尾是数,由8×2+2=18,可得数是8,向万位上进1,万位上1+1=2,符合题意;由以上分析可得竖式是:或所以,数+学+竞+赛=9+4+6+5=24,或数+学+竞+赛=8+9+6+5=28;故答案为:24,2821.根据题意.由竖式可得:个位上:“飞”+“飞”+“飞”的末尾是1,由7+7+7=21,可得:“飞”=7,向十位进2;十位上:“腾”+“腾”+“腾”+2的末尾是0,由6+6+6+2=20,可得:“腾”=6,向百位进2;百位上:“龙”+“龙”+2的末尾是0,由4+4+2=10,可得:“龙”=4,向千位进1;千位上:“巨”+1=2,“巨”=1;所以,“巨”=1,“龙”=4,“腾”=6,“飞”=7;由以上可得竖式是:故答案为:1,4,6,222.根据竖式可知,在最高位上,我+8=赛,不能有进位,所以,我=1,赛=9,个位上,9+2=11,向十位进1;爱+6=竞,也不能有进位,所以,爱只能是2或3,由竞+3的末尾是爱,当爱=3时,9+3+1=13,竞=9,与题意不符,当爱=2时,8+3+1=12,可得,爱=2,竞=8,十位上,8+3+1=12,向百位进1;由学+5+1=希,希+4=学,可知学+5+1有进位,末尾是希,8与9数字已经使用,当学是5时,5+5+1=11,与我=1重复,不符合,当学是6时,6+5+1=11,末尾是2,与爱=1重复,不符合,那么学只能是7,7+5+1=13,希=3,向千位进1;剩下的数字有4、5、6,由杯+9的末尾是杯,9+4=13,9+5=14,9+6=15,可得,数+7+1有进位,末尾是望,4+7+1=12,重复,不符合,5+7+1=13,重复,不符合,6+7+1=14,可得,数=5,望=4,那么杯只能是5.竖式是:1 2 3 4 5 6 7 8 9+8 6 4 1 9 7 5 3 2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9 8 7 6 5 4 3 2 1所以,这个加法算式的和是987654321.故答案为:98765432123.根据题意,由竖式可知,4×习的末尾是0,可得习是0或5;当习=0时,4×学的末尾也是0,那么学是0或5,当学=0,不符合题意,故学是5,向百位进2,3×爱+2的末尾是0,由3×6+2=20,可知爱是6,向千位进2,我+们+2的末尾是0,只能是我+们+2=10,向万位进1,我+1=2,可得我是1,们=10﹣2﹣1=7,竖式是:5 06 5 01 6 5 0+1 7 6 5 0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5时,向十位进2,4×学+2的末尾是0,由4×2+2=10,4×7+2=30,可知,学是2或7;当学=2时,向百位进1,3×爱+1的末尾是0,由3×3+1=10,可知爱是3,向千位进1,我+们+1的末尾是0,只能是我+们+1=10,向万位进1,我+1=2,可得我是1,们=10﹣1﹣1=8,竖式是:2 53 2 51 32 5+1 8 3 2 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 0当习=5,学=7时,向百位进3,3×爱+3的末尾是0,由3×9+3=30,可知爱是9,向千位进3,我+们+1的末尾是0,只能是我+们+3=10,向万位进1,我+1=2,可得我是1,们=10﹣3﹣1=6,竖式是:7 59 7 51 9 7 5+1 6 9 7 5﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2 0 0 0 024.根据题意可得:欢一定是1.嘉一定不小于3,因为要进位,迎可以取值不大于5(因为嘉最大取9,6+9=15),然后再从0﹣5中扣掉不合适的0、1、4,只剩2 3 5;中=2,则,你=6,不成立;以此类推得出祥可能的值3(对应你=7),5(9),8(2),9(3);由于十位为0,则七+祥=10 或者要么个位进一即七+祥+1=10;由上得出嘉大于等于3,迎=2、3、5,中=3、5、8、9对应的你=7、9、2、3,七+祥=10或者七+祥+1=10.假设,七+祥+1=10即中+4>10,那么,中可取值8、9,你=2、3.设,中=8,你=2,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(迎=2)、6(重复)、7(迎=4)、8(与中重复)、9(迎=6)均不可取,所以中不能取8;设,中=9,你=3,6+嘉+1=欢迎,嘉取值:3、4、6、7、9不可,5、8可行;若嘉取5,剩余数值为7、8,即十位数7+8+1=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、7,十位数2+7+1=10,符合;所以,得出629+874=1503或者679+824=1503.再假设,七+祥=10即中+4<10,那么,中可取值3、5,你=7、9.设,中=3,你=7,6+嘉+1=欢迎,嘉取值:3(与中重复)、4(重复)、6(重复)、7(与你重复)、9(迎=6)不可,5、8可行;若嘉取5,剩余数值是8、9,即十位数8+9=10,不成立,所以嘉不能取5;嘉取8,剩余数值为2、9,十位数2+9=10,不成立,所以中不能取3;设,中=5,你=9,6+嘉+1=欢迎,嘉取值:3(迎=0)、4(重复)、5(与中重复)、6(重复)、7(迎=4)、8(迎=5)、9(与你重复)均不可取,所以中不能取5;所以,七+祥=10不成立.由以上分析可得竖式是:故答案为:150325.根据题干分析可得:所以申=1,办=6,奥=7,运=2.故答案为:1;6;7;2.26.根据题干分析可得:答:“爱好数学”代表的四位数是2156.故答案为:215627.根据以上分析知:北京奥运新世纪,这七个字可能是:(1)1,3,4,5,6,7,8,它们的乘积是20160;(2)0,3,4,5,6,7,9,它们的乘积是0.故答案为:20160或028.根据竖式可知:5×迷的末尾还是迷,因为5×5=25,所以迷为5,向十位进2;4×字+2的末尾是字,字只能是偶数,4×6+2=26,所以字为6,向百位进2;数×3+2的末尾是数,4×3+2=14,9×3+2=29,所以数为4或9,当数为4时,解×2+1的末尾为解,解只能为奇数,9×2+1=19,解为9;由巧+解+数+字+谜=30,可知,巧为6,与字为6重复,不符合题意,那么数只能是9,向千位进2;解×2+2的末尾为解,解只能为偶数,且不为4,6,8×2+2=18,解为8,向万位进1;由巧+解+数+字+谜=30,可知,巧为2,赛为1,符合题意.所以”数字谜”所代表的三位数是965.故填:96529.学=6﹣1=5,好=7﹣5=2,数=5+2+1=830.根据给出的竖式,得出学代表的字大于等于6,如果学等于6,则由个位学﹣数=3,得出数等于3,但这样就是636﹣63=573,得数的百位上不是6,与原题不一致,当学=7,这时数=4,此时为747﹣74=673,与题意相符;所以数=4,学=7,故答案为:4、7。
第六课二年级奥数数字迷练习题

A.2
B.3
C.4
D.5D
“7”和下面算式的结果相比,减少了几?(数字迷-叛徒定理)D
A.2
B.4
C.5
D.6
下面的加法竖式中,相同的图形代表相同的数字,不同的图形代表不同的数字.要使竖式成立,那么“☆”代表什么数字?(数字迷-图形竖式迷2)Bﻫ
A.3
B.4
C.6
D.7
下面的加法竖式中,相同的图形代表相同的数字,不同的图形代表不同的数字.要使竖式成立,那么“△”代表什么数字?(数字迷-图形竖式迷2)A
A.7
B.5
C.3
D.2
如下图所示,用0、1、2、3、4、5、6、7这8个数字各一次,组成一个正确的加法竖式.现已写出3个数字,请把竖式补充完整.“☆”代表的数字是几?(数字迷-指定数字的竖式谜)A
A.0
B.3
C.4
D.6
如下图所示,用1、4、5、9这4个数字各一次,组成一个正确的加法竖式.现已写出1个数字,请把竖式补充完整.“☆”代表的数字是几?(数字迷-指定数字的竖式谜)Aﻫ
D.6
在下面空格里填入适当的数字,使竖式成立.“☆”代表的数字是几?(数字迷-加法竖式迷)Bﻫ
A.3
B.4
C.5
D.6
在下面空格里填入适当的数字,使竖式成立.“☆”代表的数字是几?(数字迷-加法竖式迷)Aﻫ
A.9
B.8
C.7
D.6
在下面空格里填入适当的数字,使竖式成立.“☆”代表的数字是几?(数字迷-加法竖式迷)D
A.1
B.4
C.5
D.9
六、黄金三角
在下面空格里填入适当的数字,使竖式成立.“☆”代表的数字是几?(数字迷-黄金三角)A
二年级奥数数字谜之加减法练习

4、如何借助大熊座找到北极星?(P58)
2、你知道哪些昆虫?5、铁生锈变成了铁锈,这是一种化学变化。水分和氧气是使铁生锈的原因。
答:硫酸铜溶液的颜色逐渐变浅,取出铁钉后,发现浸入硫酸铜溶液中的那部分变红了。
21、人们发现银河系以外还有类似银河系一样庞大的恒星集团,如:仙女座星系、猎犬座星系,目前人类已发现了超过100亿个河外星系。9、在17世纪,人们发现把两个凸透镜组合起来明显提高了放大能力,这就是早期的显微镜。
第一单元微小世界
6、化学变化伴随的现象有改变颜色、发光发热、产生气体、产生沉淀物。
11、显微镜的发明,是人类认识世小的物体,人们又研制出了电子显微镜和扫描隧道显微镜。电子显微镜可把物体放大到200万倍。
12、太阳是太阳系里唯一发光的恒星,直径是1400000千米。
二年级奥数-署期-002数字谜(多位数加减)

二年级创新思维暑期班讲义:第二讲 竖式谜姓名_____________【 例1】下面加法算式中的每一个汉字代表一个数字,不同的汉字代表不同的数字。
当它们各代表什么数字时,算式成立?奥林匹克林匹克匹克克+2000 【 例2】在下面算式中的每个汉字代表一个数字,不同的汉字代表不同数字。
当它们各代表什么数字时算式成立?好学生学生好好学-【 例3】下面是一道有趣算式,每个相同的汉字代表一个相同的数,你知道这些汉字各代表什么数吗?巧啊巧真是巧真是巧啊+【 例4】努力要努力还要努力+1989【 例5】下面竖式中“车、马、炮”各代表0~9,这十个数字中的某一个,相同的汉字代表相同数字,请动脑筋,根据汉字式写出数字式来。
炮车车炮车马车马车马-综合练习(1)(2) (3)(4)式谜填式谜巧填式谜+1995亚运亚运会亚运会到+1990数学竞赛数学比赛比赛竞数赛+红花花红花好花好花好-【 例6】在下面算式中,每一个字母代表一个数字,其中相同的字母代表相同的数字,不同的字母代表的数字,当它们各代表什么数字时算式成立?F O R T YT E NT E N S I X T Y+【例7】下面各式中字母都代表一个数字,不同的字母代表不同的数字,当它们各代表什么数字时,算式成立?A B C D C B A B B B C B B +【例8】下面各字母都代表一个数字,不用的字母代表不同的数字,求它们各代表什么数字时,算式成立?A B C D - C D C A B C【例9】下面算式中的每个字母都代表一个数字,不同的字母代表不同的数字。
当它们各代表什么数时,算式成立?C D E B C A B C DA C A C-综合练习1.2. 3. 4.A B C D + A B C D x B C A DA B C D - D C B A 8 E F E A B C D - A B C D C D C A B A B - A C A B A A C5.6. 7. 8.A B C D + A B C D x B C A DA B C D - D C B A 8 E F E A B C D - A B C D C D CA B A B - A C A B A A C。
加减法的数字谜

(2)
+ 9
6
5
8
5
5
2
1
0
2
3
7
1.观察,已知数与未知数,分析哪些数有进位的情形. 2.找突破口,十位向百位进一,百位向千位进一,和为五位数,最高位肯定是1. 3.逐字填数.和的个位是7,所以第一个加数个位是5,和的十位是3,一个加 数的十位是8,所以另一个加数的十位是5,并且向百位进1,从而得到第一个 加数的百位是6,第二个加数有千位,所以这个数是9,和的千位加上进的1个 位为0,和的最高位为1.
2.加法的会填了,试一试减法的吧!
1.观察
1 -
0 9
4 7 7
2.找突破口.被减数的千位一定 为1,
0
9 9
3.逐个填数.被减数的个位向十 位借1,减数的个位一定为7,十位 上一定是18-9=9,,由于个位向十 位借了1,所以十位应为19,于是 被除数十位应为9,百位上应为99=0,十位上借了1,所以为10-9, 于是被除数百位应填0.
(1)
学习
学习 学习 爱 学习 注:首先想到 习为0或 5,再 试验哪一个 正确.
+
学代表( ),习代表(
),爱代表( )
(2) 数学好 +
突破口:“数”应为 1
好啊好
数学好啊
再看哪个数呢?
看与“数”有关的 数. ),好代表( ),啊代表( ),
数代表( ),学代表(
(3)
学 数学 爱 数 学 + 喜爱 数 学
4 9 9
小窍门:减法可以直 接计算,也可以转化为 加法来计算.
9
7
转化为加法
9
+
9
9 7
数字谜之加减法竖式

【例6】(★★★★)
下面两个算式中,相同的字母代表相同的数字,不同的字母代表 不同的数字,那么A+B+C+D+E+F+G=_____。
【拓展】下面算式中九个字母分别代表1~9九个数字,试找出字母M和H
分别所代表的数字。
2
【例1】(★ ★) 将1 9九个数字分别填入下面 个算式的九个□中 使得 个等式都 将1~9九个数字分别填入下面四个算式的九个□中,使得四个等式都 成立: □+□=6 □-□=6 □ □=6 □×□=8 □□÷□=8
数字谜之加减法竖式
【例2】(★ ★) 在下面算式的空格内,各填入一个合适的数字,使算式成立。
【例3】(★ ★ ★) 在下面算式的空格内,各填入一个合适的数字,使算式成立。
1 9 9
【例4】(★ ★ ★)
在下图中的竖式方框内填入4至9中的适当数字,使得第一个加数 的各位数字互不相同,并且组成它的四个数字与组成第二个加数 的四个数字相同,只是排列顺序不同。
4
1
【例5】(★ Leabharlann ★ ★)在下面的算式中,不同的字母代表不同的数字,相同的字母代表 相同的数字,当它们各代表什么数字时,算式成立?
数字推理加减乘除加减练习题

数字推理加减乘除加减练习题1. 根据题目给出的数字推理,解答下列练习题。
题目一:3 +4 = 117 + 2 = 636 + 5 = ?答案:6 + 5 = 30解析:根据题目中的数字推理,我们可以观察到,将第一个数乘以第二个数再加上第一个数得到的结果等于题目中的答案。
因此,6 + 5 = (6 × 5) + 6 = 30。
题目二:8 - 2 = 484 - 3 = 519 - 7 = ?答案:9 - 7 = 77第二个数再加上第二个数得到的结果等于题目中的答案。
因此,9 - 7 = (9 × 7) + 7 = 77。
题目三:5 ×6 = 667 × 9 = 1174 × 8 = ?答案:4 × 8 = 52解析:根据题目中的数字推理,我们可以观察到,将第一个数乘以第二个数再减去第一个数得到的结果等于题目中的答案。
因此,4 × 8 = (4 × 8) - 4 = 32 - 4 = 52。
题目四:36 ÷ 6 = 663 ÷ 9 = 745 ÷ 5 = ?答案:45 ÷ 5 = 13第二个数再加上第二个数得到的结果等于题目中的答案。
因此,45 ÷ 5 = (45 ÷ 5) + 5 = 9 + 5 = 14。
题目五:17 + 23 - 4 = ?答案:17 + 23 - 4 = 36解析:根据题目中的数字推理,我们可以观察到,题目中的式子是一个加减法的综合运算,直接计算得到的结果即为题目中的答案。
因此,17 + 23 - 4 = 36。
题目六:15 - 17 + 12 = ?答案:15 - 17 + 12 = 10解析:根据题目中的数字推理,我们可以观察到,题目中的式子是一个加减法的综合运算,直接计算得到的结果即为题目中的答案。
因此,15 - 17 + 12 = 10。