2020年湖南省湘潭市中考数学试卷(含详细解析)
2020年湘潭市中考数学试题、试卷(解析版)

2020年湘潭市中考数学试题、试卷(解析版)一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(2020•湘潭)﹣6的绝对值是( )A .﹣6B .6C .−16D .16 2.(3分)(2020•湘潭)地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为( )A .0.6×108B .6×107C .6×108D .6×109 3.(3分)(2020•湘潭)已知2x n +1y 3与13x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .54.(3分)(2020•湘潭)下列图形中,不是中心对称图形的是( )A .B .C .D .5.(3分)(2020•湘潭)下列运算中正确的是( )A .(a 2)3=a 5B .(12)﹣1=﹣2C .(2−√5)0=1D .a 3•a 3=2a 66.(3分)(2020•湘潭)如图,∠ACD 是△ABC 的外角,若∠ACD =110°,∠B =50°,则∠A =( )A .40°B .50°C .55°D .60°7.(3分)(2020•湘潭)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A 、“北斗卫星”:B 、“5G 时代”;C 、“智轨快运系统”;D 、“东风快递”;E 、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G 时代”的频率是( )A.0.25B.0.3C.25D.308.(3分)(2020•湘潭)如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)(2020•湘潭)计算:sin45°=.10.(3分)(2020•湘潭)在数轴上到原点的距离小于4的整数可以为.(任意写出一个即可)11.(3分)(2020•湘潭)计算:√8−√2=.12.(3分)(2020•湘潭)走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是步.13.(3分)(2020•湘潭)若yx=37,则x−yx=.14.(3分)(2020•湘潭)如图,在半径为6的⊙O中,圆心角∠AOB=60°,则阴影部分面积为.15.(3分)(2020•湘潭)如图,点P 是∠AOC 的角平分线上一点,PD ⊥OA ,垂足为点D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为 .16.(3分)(2020•湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式1 2 3 4 5 6 7 8 9 纵式| || ||| |||| ||||| 横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是 .三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)(2020•湘潭)解分式方程:3x−1+2=x x−1. 18.(6分)(2020•湘潭)化简求值:(1−2a−1)÷a−3a 2−2a+1,其中a =﹣2. 19.(6分)(2020•湘潭)生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男1、女1;男2、女2分别表示甲、乙两班4个学生)(1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.20.(6分)(2020•湘潭)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE=10 m,其坡度为i1=1:√3,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度.(结果精确到0.01 m,参考数据:√3≈1.732,√17≈4.122)21.(6分)(2020•湘潭)“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5整理数据:时长x(小时)4<x≤55<x≤66<x≤77<x≤8人数2a84分析数据:项目平均数中位数众数数据 6.4 6.5b 应用数据:(1)填空:a=,b=;(2)补全频数直方图;(3)若九年级共有1000人参与了网络学习,请估计学习时长在5<x≤7小时的人数.22.(6分)(2020•湘潭)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.23.(8分)(2020•湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A的坐标为(3,4).(1)求过点B的反比例函数y=kx的解析式;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的解析式.24.(8分)(2020•湘潭)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?25.(10分)(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积.(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA 、S △OBC S △ABC 是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度;②若S △CME =1,求正方形ABCD 的面积.26.(10分)(2020•湘潭)如图,抛物线y =﹣x 2+bx +5与x 轴交于A ,B 两点.(1)若过点C 的直线x =2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P ,使点B 关于直线OP 的对称点B '恰好落在对称轴上.若存在,请求出点P 的坐标;若不存在,请说明理由.(2)当b≥4,0≤x≤2时,函数值y的最大值满足3≤y≤15,求b的取值范围.2020年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(2020•湘潭)﹣6的绝对值是( )A .﹣6B .6C .−16D .16 【解答】解:负数的绝对值等于它的相反数,所以﹣6的绝对值是6.故选:B .2.(3分)(2020•湘潭)地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为( )A .0.6×108B .6×107C .6×108D .6×109【解答】解:600000000=6×108,故选:C .3.(3分)(2020•湘潭)已知2x n +1y 3与13x 4y 3是同类项,则n 的值是( ) A .2 B .3C .4D .5 【解答】解:∵2x n +1y 3与13x 4y 3是同类项,∴n +1=4,解得,n =3,故选:B .4.(3分)(2020•湘潭)下列图形中,不是中心对称图形的是( )A .B .C .D .【解答】解:A 、是中心对称图形,故此选项不符合题意;B 、是中心对称图形,故此选项不符合题意;C 、是中心对称图形,故此选项不符合题意;D 、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D .5.(3分)(2020•湘潭)下列运算中正确的是( )A .(a 2)3=a 5B .(12)﹣1=﹣2C .(2−√5)0=1D .a 3•a 3=2a 6【解答】解:A 、(a 2)3=a 6,故A 错误;B 、(12)−1=2,故B 错误;C 、(2−√5)0=1,正确;D 、a 3•a 3=a 6,故D 错误;故选:C .6.(3分)(2020•湘潭)如图,∠ACD 是△ABC 的外角,若∠ACD =110°,∠B =50°,则∠A =( )A .40°B .50°C .55°D .60°【解答】解:∵∠ACD 是△ABC 的外角,∴∠ACD =∠B +∠A ,∴∠A =∠ACD ﹣∠B ,∵∠ACD =110°,∠B =50°,∴∠A =60°,故选:D .7.(3分)(2020•湘潭)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A 、“北斗卫星”:B 、“5G 时代”;C 、“智轨快运系统”;D 、“东风快递”;E 、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G 时代”的频率是( )A.0.25B.0.3C.25D.30【解答】解:由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:30100=0.3;故选:B.8.(3分)(2020•湘潭)如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A.x≤1B.x≥1C.x<1D.x>1【解答】解:由题意,将P(1,1)代入y=kx+b(k<0),可得k+b=1,即k﹣1=﹣b,整理kx+b≥x得,(k﹣1)x+b≥0,∴﹣bx+b≥0,由图象可知b>0,∴x﹣1≤0,∴x≤1,故选:A.二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)(2020•湘潭)计算:sin45°=√22. 【解答】解:根据特殊角的三角函数值得:sin45°=√22.10.(3分)(2020•湘潭)在数轴上到原点的距离小于4的整数可以为 3 .(任意写出一个即可)【解答】解:在数轴上到原点的距离小于4的整数有:﹣3,3,﹣2,2,﹣1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,﹣1,﹣2,﹣3任意一个均可) 11.(3分)(2020•湘潭)计算:√8−√2= √2 . 【解答】解:√8−√2=2√2−√2=√2. 故答案为√2.12.(3分)(2020•湘潭)走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是 6400 步. 【解答】解:这3天步数的平均数是:6200+5800+72003=6400(步),故答案为:6400.13.(3分)(2020•湘潭)若yx=37,则x−y x=47.【解答】解:由y x=37可设y =3k ,x =7k ,k 是非零整数, 则x−y x=7k−3k 7k =4k 7k=47.故答案为:47.14.(3分)(2020•湘潭)如图,在半径为6的⊙O 中,圆心角∠AOB =60°,则阴影部分面积为 6π .【解答】解:阴影部分面积为60π×62360=6π,故答案为:6π.15.(3分)(2020•湘潭)如图,点P 是∠AOC 的角平分线上一点,PD ⊥OA ,垂足为点D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为 3 .【解答】解:根据垂线段最短可知:当PM ⊥OC 时,PM 最小, 当PM ⊥OC 时,又∵OP 平分∠AOC ,PD ⊥OA ,PD =3, ∴PM =PD =3, 故答案为:3.16.(3分)(2020•湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图: 数字 形式 123456789纵式 | || ||| |||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是 9167 .【解答】解:根据算筹计数法,表示的数是:9167故答案为:9167.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)(2020•湘潭)解分式方程:3x−1+2=x x−1.【解答】解:3x−1+2=xx−1去分母得,3+2(x﹣1)=x,解得,x=﹣1,经检验,x=﹣1是原方程的解.所以,原方程的解为:x=﹣1.18.(6分)(2020•湘潭)化简求值:(1−2a−1)÷a−3a2−2a+1,其中a=﹣2.【解答】解:(1−2a−1)÷a−3a2−2a+1=a−1−2a−1⋅(a−1)2a−3=a﹣1,将a=﹣2代入得:原式=﹣2﹣1=﹣3.19.(6分)(2020•湘潭)生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男1、女1;男2、女2分别表示甲、乙两班4个学生)(1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.【解答】解:(1)可能出现的结果有:男1女1、男1男2、男1女2、男2女1、男2女2、女1女2;(2)列表法表示所有可能出现的结果如下:共有4种情况,其中恰好选中一男一女有2种情况,所以恰好选中一男一女的概率为24=12.20.(6分)(2020•湘潭)为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD 为矩形,DE =10 m ,其坡度为i 1=1:√3,将步梯DE 改造为斜坡AF ,其坡度为i 2=1:4,求斜坡AF 的长度.(结果精确到0.01 m ,参考数据:√3≈1.732,√17≈4.122)【解答】解:∵DE =10 m ,其坡度为i 1=1:√3, ∴在Rt △DCE 中,DE =√DC 2+CE 2=2DC =10, ∴解得DC =5. ∵四边形ABCD 为矩形, ∴AB =CD =5.∵斜坡AF 的坡度为i 2=1:4, ∴AB BF=14,∴BF =4AB =20,∴在Rt △ABF 中,AF =√AB 2+BF 2=5√17≈20.61(m ). 故斜坡AF 的长度约为20.61米.21.(6分)(2020•湘潭)“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5 整理数据: 时长x (小时)4<x ≤55<x ≤66<x ≤7 7<x ≤8人数2a84分析数据:项目平均数中位数众数数据 6.4 6.5b应用数据:(1)填空:a=6,b= 6.5;(2)补全频数直方图;(3)若九年级共有1000人参与了网络学习,请估计学习时长在5<x≤7小时的人数.【解答】解:(1)由总人数是20人可得在5<x≤6的人数是20﹣2﹣8﹣4=6(人),所以a=6,根据数据显示,6.5出现的次数最多,所以这组数据的众数b=6.5;故答案为:6,6.5;(2)由(1)得a=6.频数分布直方图补充如下:(3)由图可知,学习时长在5<x≤7小时的人数所占的百分比=6+820×100%=70%,∴1000×70%=700(人).∴学习时长在5<x≤7小时的人数是700人.22.(6分)(2020•湘潭)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC ,垂足为点E . (1)求证:△ABD ≌△ACD ;(2)判断直线DE 与⊙O 的位置关系,并说明理由.【解答】(1)证明:∵AB 为⊙O 的直径, ∴AD ⊥BC ,在Rt △ADB 和Rt △ADC 中{AD =AD AB =AC ,∴Rt △ABD ≌Rt △ACD (HL ); (2)直线DE 与⊙O 相切,理由如下: 连接OD ,如图所示:由△ABD ≌△ACD 知:BD =DC , 又∵OA =OB ,∴OD 为△ABC 的中位线, ∴OD ∥AC , ∵DE ⊥AC , ∴OD ⊥DE , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.23.(8分)(2020•湘潭)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 的坐标为(3,4).(1)求过点B 的反比例函数y =kx 的解析式;(2)连接OB ,过点B 作BD ⊥OB 交x 轴于点D ,求直线BD 的解析式.【解答】解:(1)过点A 作AE ⊥x 轴,过B 作BF ⊥x 轴,垂足分别为E ,F ,如图, ∵A (3,4), ∴OE =3,AE =4, ∴AO =√OE 2+AE 2=5, ∵四边形OABC 是菱形, ∴AO =AB =OC =5,AB ∥x 轴, ∴EF =AB =5,∴OF =OE +EF =3+5=8, ∴B (8,4).设过B 点的反比例函数解析式为y =kx, 把B 点坐标代入得,k =32, ∴反比例函数解析式为y =32x ;(2)∵OB ⊥BD , ∴∠OBD =90°, ∴∠OBF +∠DBF =90°, ∵∠DBF +∠BDF =90°, ∴∠OBF =∠BDF , 又∠OFB =∠BFD =90°, ∴△OBF ~△BDF , ∴OF BF =BF DF ,∴84=4DF,解得,DF =2,∴OD =OF +DF =8+2=10, ∴D (10,0).设BD 所在直线解析式为y =kx +b , 把B (8,4),D (10,0)分别代入, 得:{8k +b =410k +b =0,解得,{k =−2b =20,∴直线BD 的解析式为y =﹣2x +20.24.(8分)(2020•湘潭)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同. (1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?【解答】解:(1)设购买《北上》的单价为x 元,《牵风记》的单价为y 元, 由题意得:{2x +y =1006x =7y ,解得{x =35y =30.答:购买《北上》的单价为35元,《牵风记》的单价为30元;(2)设购买《北上》的数量n 本,则购买《牵风记》的数量为(50﹣n )本, 根据题意得{n ≥12(50−n)35n +30(50−n)≤1600,解得:1623≤n ≤20, 则n 可以取17、18、19、20,当n =17时,50﹣n =33,共花费17×35+33×30=1585元; 当n =18时,50﹣n =32,共花费18×35+32×30=1590元; 当n =19时,50﹣n =31,共花费19×35+31×30=1595元; 当n =20时,50﹣n =30,共花费20×35+30×30=1600元;所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.25.(10分)(2020•湘潭)阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC 的重心为点O ,求△OBC 与△ABC 的面积.(2)性质探究:如图(二),已知△ABC 的重心为点O ,请判断OD OA、S △OBC S △ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD 中,点E 是CD 的中点,连接BE 交对角线AC 于点M .①若正方形ABCD 的边长为4,求EM 的长度; ②若S △CME =1,求正方形ABCD 的面积. 【解答】解:(1)连接DE ,如图, ∵点O 是△ABC 的重心,∴AD ,BE 是BC ,AC 边上的中线, ∴D ,E 为BC ,AC 边上的中点, ∴DE 为△ABC 的中位线,∴DE ∥AB ,DE =12AB , ∴△ODE ∽△OAB , ∴OD OA=DE AB=12,∵AB =2,BD =1,∠ADB =90°, ∴AD =√3,OD =√33, ∴S △OBC=BC⋅OD 2=2×√332=√33,S △ABC =BC⋅AD 2=2×√32=√3;(2)由(1)可知,OD OA=12,是定值;点O 到BC 的距离和点A 到BC 的距离之比为1:3,则△OBC 和△ABC 的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故S △OBC S △ABC=13,是定值;(3)①∵四边形ABCD 是正方形, ∴CD ∥AB ,AB =BC =CD =4, ∴△CME ~△AMB , ∴EM BM=CE AB,∵E 为CD 的中点, ∴CE =12CD =2,∴BE =√BC 2+CE 2=2√5, ∴EM BM =12,∴EM BE=13,即EM =23√5; ②∴S △CME =1,且ME BM=12,∴S △BMC =2, ∵ME BM =12, ∴S △CME S △AMB=(ME BM)2=14,∴S △AMB =4,∴S △ABC =S △BMC +S △ABM =2+4=6,又S △ADC =S △ABC ,∴S △ADC =6,∴正方形ABCD 的面积为:6+6=12.26.(10分)(2020•湘潭)如图,抛物线y =﹣x 2+bx +5与x 轴交于A ,B 两点.(1)若过点C 的直线x =2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P ,使点B 关于直线OP 的对称点B '恰好落在对称轴上.若存在,请求出点P 的坐标;若不存在,请说明理由.(2)当b ≥4,0≤x ≤2时,函数值y 的最大值满足3≤y ≤15,求b 的取值范围.【解答】解:(1)①抛物线y =﹣x 2+bx +5的对称轴为直线x =−b 2×(−1)=b 2, ∴若过点C 的直线x =2是抛物线的对称轴,则b 2=2,解得:b =4, ∴抛物线的解析式为y =﹣x 2+4x +5;②存在,如图,若点P 在x 轴上方,点B 关于OP 对称的点B '在对称轴上,连接OB ′、PB , 则OB '=OB ,PB '=PB ,对于y =﹣x 2+4x +5,令y =0,则﹣x 2+4x +5=0,解得:x 1=﹣1,x 2=5,∴A (﹣1,0),B (5,0),∴OB '=OB =5,∴CB ′=√OB′2−OC 2=√25−4=√21,∴B ′(2,√21),设点P (2,m ),由PB '=PB 可得:√21−m =√m 2+(5−2)2,解得:m =2√217, ∴P (2,2√217);同理,当点P 在x 轴下方时,P (2,−2√217).综上所述,点P (2,2√217)或P (2,−2√217);(2)∵抛物线y =﹣x 2+bx +5的对称轴为直线x =−b 2×(−1)=b 2, ∴当b ≥4时,x =b 2≥2, ∵抛物线开口向下,在对称轴左边,y 随x 的增大而增大, ∴当0≤x ≤2时,取x =2,y 有最大值,即y =﹣4+2b +5=2b +1,∴3≤2b +1≤15,解得:1≤b ≤7,又∵b ≥4,∴4≤b ≤7.。
湖南省湘潭市2020年中考数学试卷(II)卷

湖南省湘潭市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 2017的相反数是()A .B . -2017C . -D . 20172. (2分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间平均距离,即1.4960亿千米,用科学记数法表示1个天文单位应是()A . 1.4960×107千米B . 14.960×107千米C . 1.4960×108千米D . 0.14960×109千米3. (2分)如图,有一个正方体纸巾盒,它的平面展开图是()A .B .C .D .4. (2分)下列运算正确的是()A . 3a﹣2a=1B . a2•a3=a6C . (a﹣b)2=a2﹣2ab+b2D . (a+b)2=a2+b25. (2分) (2017八下·蒙阴期末) 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A . 队员1B . 队员2C . 队员3D . 队员46. (2分) (2016八上·东莞开学考) 根据以下对话,可以求得小红所买的笔和笔记本的价格分别是()A . 0.8元/支,2.6元/本B . 0.8元/支,3.6元/本C . 1.2元/支,2.6元/本D . 1.2元/支,3.6元/本7. (2分)(2018·安阳模拟) 若关于x的一元二次方程mx2﹣x= 有实数根,则实数m的取值范围是()A . m≥﹣1B . m≥﹣1且m≠0C . m>﹣1且m≠0D . m≠08. (2分)有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是()A .B .C .D .9. (2分) (2016九上·怀柔期末) 如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A . 4 米B . 6 米C . 12 米D . 24米10. (2分)(2017·平谷模拟) 把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A . 1B .C .D . 2二、填空题 (共5题;共5分)11. (1分) (2019九下·郑州月考) 计算: ________.12. (1分)已知α=80°,β的两边与α的两边分别垂直,则β等于________ .13. (1分)(2018·龙东模拟) 若关于x的一元一次不等式组无解,则m的取值范围为________.14. (1分)圆心角是60°且半径为2的扇形面积为________ (结果保留π).15. (1分)如图,D为等边△ABC边AC的中点,E是BC延长线上一点,且CE= BC,则△DBE是一个________三角形.(只填出一个你认为正确的结论.)三、解答题 (共8题;共97分)16. (10分) (2018八上·番禺期末) 解答题(a+b)²=a²+2ab+b²(1)先化简,再求值:,其中,;(2)计算:.17. (15分) (2020八上·牡丹期末) 某校300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵:C:6棵:D:7棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2)回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数中位数(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?18. (15分)(2018·安徽模拟) 如图,一次函数与反比例函数的图象交于A(2,3),B (-3,n)两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式 < 的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.19. (15分) (2017九上·江都期末) 如图,⊙ 的圆心在反比例函数的图像上,且与轴、轴相切于点、,一次函数的图像经过点,且与轴交于点,与⊙ 的另一个交点为点 .(1)求的值及点的坐标;(2)求长及的大小;(3)若将⊙ 沿轴上下平移,使其与轴及直线均相切,求平移的方向及平移的距离.20. (5分)如图,某中心广场灯柱AB被钢缆CD固定,已知CB=5米,且.(1)求钢缆CD的长度;(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?21. (12分)(2017·景德镇模拟) 如图,已知一次函数y=﹣2x+b的图象与x轴、y轴分别交于B,A两点,与反比例函数y= (x>0)交于C,D两点.(1)若点D的坐标为(2,m),则m=________,b=________;(2)在(1)的条件下,通过计算判断AC与BD的数量关系;(3)若在一次函数y=﹣2x+b与反比例函数y= (x>0)的图象第一象限始终有两个交点的前提下,不论b为何值,(2)中AC与BD的数量关系是否恒成立?试说明理由.22. (10分)如图,点A、B、C在圆O上,AB为直径,且AB=4,AC=2.(1)求∠ABC的度数;(2)求弧AC的长度.23. (15分)(2017·江都模拟) 如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y 轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E 恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共97分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、18-3、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、。
湖南省湘潭市2020年(春秋版)中考数学试卷(II)卷(新版)

湖南省湘潭市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共10题;共20分)1. (2分)下列各式运算结果为正数的是()A . -24×5B . (1-4)4×5C . (1-24)×5D . 1-(3×5)62. (2分)四个实数﹣2,0,,1中最大的实数是()A . ﹣2B . 0C .D . 13. (2分) (2019八下·宁明期中) 下列二次根式能与合并的是()A .B .C .D .4. (2分)要说明“若两个单项式的次数相同,则它们是同类项”是假命题,可以举的反例是()A . 2ab和3abB . 2a2b和3ab2C . 2ab和2a2b2D . 2a3和﹣2a35. (2分)(2017·马龙模拟) 如图摆放的正六棱柱的俯视图是()A .B .C .D .6. (2分)已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数组x1+1、x2+2、x3+3、x4+4、x5+5的平均数是()A . 6B . 8C . 10D . 无法计算7. (2分)(2018·盘锦) 如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,顶点A,C 分别在x轴、y轴上,反比例函数y= (k≠0,x>0)的图象与正方形OABC的两边AB,BC分别交于点M、N,ND⊥x 轴,垂足为D,连接OM、ON、MN,则下列选项中的结论错误的是()A . △ONC≌△OAMB . 四边形DAMN与△OMN面积相等C . ON=MND . 若∠MON=45°,MN=2,则点C的坐标为(0, +1)8. (2分)如图所示,在菱形ABCD中,点E,F分别是AB,AC的中点,如果菱形的周长为16,那么EF等于()A . 4B . 8C . 12D . 29. (2分)为了了解某中学(共有3个年级,每年级6个班)学生完成作业情况,可采用下列方式进行调查:①向3个年级每个班级的班长做调查;②向3个年级每个班的学习委员做调查;③向各班级每班前10名学生做调查;④将18个班级编号,从中任意抽取3个班级,向这3个班级的所有学生做调查.你认为调查具有随机性的是()A . ①B . ②C . ③D . ④10. (2分) (2015九上·宜昌期中) 二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .二、填空题: (共6题;共8分)11. (1分) (2020九下·龙岗月考) 因式分解: ________.12. (1分)9460000用科学记数法表示为________.13. (1分)(2017·泾川模拟) 如图,如图,点A(3,m)在第一象限,OA与x轴所夹的锐角为∠1,tan∠1=,则m的值是________.14. (1分) (2018九上·浦东期中) 如图,L1∥L2∥L3,AB=4,DF=8,BC=6,则DE=________.15. (3分)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE________DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE________ DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,CD=________ (请你直接写出结果).16. (1分)(2018·玉林) 如图,正六边形ABCDEF的边长是6+4 ,点O1 , O2分别是△ABF,△CDE的内心,则O1O2=________.三、解答题 (共9题;共85分)17. (5分)(2017·长宁模拟) 计算:sin30°•tan30°﹣cos60°•cot30°+ .18. (5分) (2020七下·慈溪期末) 先化简,再求值:,其中a=- 。
2020年湖南省湘潭市中考数学试卷-含详细解析

2020年湖南省湘潭市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.−6的绝对值是()A. −6B. 6C. −16D. 162.地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为()A. 0.6×108B. 6×107C. 6×108D. 6×1093.已知2x n+1y3与13x4y3是同类项,则n的值是()A. 2B. 3C. 4D. 54.下列图形中,不是中心对称图形的是()A. B. C. D.5.下列运算中正确的是()A. (a2)3=a5B. (12)−1=−2 C. (2−√5)0=1 D. a3⋅a3=2a6 6.如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=()A. 40°B. 50°C. 55°D. 60°7.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A. 0.25B. 0.3C. 25D. 308.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A. x≤1B. x≥1C. x<1D. x>1二、填空题(本大题共8小题,共24.0分)9.计算:sin45°=______.10.在数轴上到原点的距离小于4的整数可以为______.(任意写出一个即可)11.计算:√8−√2=______.12.走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是______步.13.若yx =37,则x−yx=______.14.如图,在半径为6的⊙O中,圆心角∠AOB=60°,则阴影部分面积为______.15.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为______.16.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是______.三、解答题(本大题共10小题,共72.0分)17. 解分式方程:3x−1+2=xx−1.18. 化简求值:(1−2a−1)÷a−3a 2−2a+1,其中a =−2.19. 生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男 1、女 1;男 2、女 2分别表示甲、乙两班4个学生) (1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.20. 为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD 为矩形,DE =10m ,其坡度为i 1=1:√3,将步梯DE 改造为斜坡AF ,其坡度为i 2=1:4,求斜坡AF 的长度.(结果精确到0.01m ,参考数据:√3≈1.732,√17≈4.122)21.“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5时长x(小时)4<x≤55<x≤66<x≤77<x≤8人数2a84分析数据:项目平均数中位数众数数据 6.4 6.5b应用数据:(1)填空:a=______,b=______;(2)补全频数直方图;(3)若九年级共有1000人参与了网络学习,请估计学习时长在5<x≤7小时的人数.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.23.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A的坐标为(3,4).(1)求过点B的反比例函数y=k的解析式;x(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的解析式.24.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?25.阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断ODOA 、S△OBCS△ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME=1,求正方形ABCD的面积.26.如图,抛物线y=−x2+bx+5与x轴交于A,B两点.(1)若过点C的直线x=2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点B关于直线OP的对称点B′恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.(2)当b≥4,0≤x≤2时,函数值y的最大值满足3≤y≤15,求b的取值范围.答案和解析1.【答案】B【解析】解:负数的绝对值等于它的相反数,所以−6的绝对值是6.故选:B.在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:600000000=6×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】Bx4y3是同类项,【解析】解:∵2x n+1y3与13∴n+1=4,解得,n=3,故选:B.根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.【答案】D【解析】解:A、是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,解题的关键是要寻找对称中心,旋转180度后两部分重合.5.【答案】C【解析】解:A、(a2)3=a6,故A错误;)−1=2,故B错误;B、(12C、(2−√5)0=1,正确;D、a3⋅a3=a6,故D错误;故选:C.根据幂的乘方、负整数指数幂、零指数幂以及同底数幂的乘法法则即可逐一判断.本题考查了幂的乘方、负整数指数幂、零指数幂以及同底数幂的乘法,解题的关键是掌握基本的运算法则及公式. 6.【答案】D【解析】解:∵∠ACD 是△ABC 的外角, ∴∠ACD =∠B +∠A ,∴∠A =∠ACD −∠B ,∠B =50°, ∴∠A =60°, 故选:D .根据三角形的外角的性质进行计算即可.本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键 7.【答案】B【解析】解:由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人), 选择“5G 时代”的人数为:30人, ∴选择“5G 时代”的频率是:30100=0.3;故选:B .先计算出八年级(3)班的全体人数,然后用选择“5G 时代”的人数除以八年级(3)班的全体人数即可.本题考查了频数分布直方图的读取,及相应频率的计算,熟知以上知识是解题的关键. 8.【答案】A【解析】解:由题意,将P(1,1)代入y =kx +b(k <0), 可得k +b =1,即k −1=−b ,整理kx +b ≥x 得,(k −1)x +b ≥0, ∴−bx +b ≥0, 由图象可知b >0, ∴x −1≤0, ∴x ≤1, 故选:A .将P(1,1)代入y =kx +b(k <0),可得k −1=−b ,再将kx +b ≥x 变形整理,得−bx +b ≥0,求解即可.本题考查了一次函数的图象和性质,解题关键在于灵活应用待定系数法和不等式的性质.9.【答案】√22【解析】解:根据特殊角的三角函数值得:sin45°=√22.根据特殊角的三角函数值解答.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=12,cos30°=√32,tan30°=√33,cot30°=√3;sin45°=√22,cos45°=√22,tan45°=1,cot45°=1;sin60°=√32,cos60°=12,tan60°=√3,cot60°=√33.10.【答案】3【解析】解:在数轴上到原点的距离小于4的整数有:−3,3,−2,2,−1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,−1,−2,−3任意一个均可)根据数轴表示数的意义,可得出答案为±3,±2,±1,0中任意写出一个即可. 本题考查了数轴、数轴特点、绝对值等知识,熟练掌握这些知识是解题的关键. 11.【答案】√2【解析】解:√8−√2=2√2−√2=√2. 故答案为√2.先把√8化简为2√2,再合并同类二次根式即可得解.本题考查了二次根式的运算,正确对二次根式进行化简是关键. 12.【答案】6400【解析】解:这3天步数的平均数是:6200+5800+72003=6400(步),故答案为:6400.根据算术平均数的计算公式即可解答.本题考查了平均数的计算,解题的关键是掌握平均数的计算公式.13.【答案】47【解析】解:由yx =37可设y =3k ,x =7k ,k 是非零整数, 则x−y x=7k−3k 7k =4k 7k =47.故答案为:47.根据比例的基本性质变形,代入求值即可.本题主要考查了比的基本性质,准确利用性质变形是解题的关键. 14.【答案】6π【解析】解:阴影部分面积为60π×62360=6π,故答案为:6π.直接根据扇形的面积计算公式计算即可.本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式. 15.【答案】3【解析】解:根据垂线段最短可知:当PM ⊥OC 时,PM 最小, 当PM ⊥OC 时,又∵OP 平分∠AOC ,PD ⊥OA ,PD =3, ∴PM =PD =3, 故答案为:3.根据垂线段最短可知当PM ⊥OC 时,PM 最小,再根据角的平分线的性质,即可得出答案.本题考查了垂线段最短、角平分线的性质,熟练掌握这些知识是解题的关键. 16.【答案】8167【解析】解:根据算筹计数法,表示的数是:8167故答案为:8167.根据算筹计数法来计数即可.本题考查了算筹计数法,理解题意是解题的关键.17.【答案】解:3x−1+2=xx−1去分母得,3+2(x −1)=x , 解得,x =−1,经检验,x =−1是原方程的解. 所以,原方程的解为:x =−1.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:(1−2a−1)÷a−3a 2−2a+1=a −1−2a −1⋅(a −1)2a −3=a −1,将a =−2代入得:原式=−2−1=−3.【解析】根据分式的混合运算法则,先化简,再将a =−2代入计算即可. 本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 19.【答案】解:(1)可能出现的结果有:男 1女 1、男 1男 2、男 1女 2、男 2女 1、男 2女 2、女 1女 2;(2)列表法表示所有可能出现的结果如下:共有4种情况,其中恰好选中一男一女有2种情况, 所以恰好选中一男一女的概率为24=12.【解析】(1)直接列举出所有可能出现的结果即可;(2)画出树状图,找出符合题意的可能结果,再利用概率公式求出概率即可.本题考查列举法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.20.【答案】解:∵DE =10m ,其坡度为i 1=1:√3, ∴在Rt △DCE 中,DE =√DC 2+CE 2=2DC =10, ∴解得DC =5.∵四边形ABCD 为矩形,∴AB =CD =5.∵斜坡AF 的坡度为i 2=1:4, ∴AB BF =14,∴BF =4AB =20, ∴在Rt △ABF 中,AF =√AB 2+BF 2=5√17≈20.61(m).故斜坡AF 的长度约为20.61米.【解析】先由DE 的坡度计算DC 的长度,根据矩形性质得AB 长度,再由AF 的坡度得出BF 的长度,根据勾股定理计算出AF 的长度.本题考查了解直角三角形的应用−坡度坡角问题,矩形的性质,以及用勾股定理解直角三角形的用法,熟知以上知识点是解题的关键.21.【答案】6 6.5【解析】解:(1)由总人数是20人可得在5<x ≤6的人数是20−2−8−4=6(人),所以a =6,根据数据显示,6.5出现的次数最多,所以这组数据的众数b =6.5;故答案为:6,6.5;(2)由(1)得a =6.频数分布直方图补充如下:(3)由图可知,学习时长在5<x ≤7小时的人数所占的百分比=6+820×100%=70%,∴1000×70%=700(人).∴学习时长在5<x ≤7小时的人数是700人.(1)根据各组频数之和等于数据总数,可得5<x ≤6范围内的数据;找出数据中次数最多的数据即为所求;(2)根据(1)中的数据画图即可;(3)先算出样本中学习时长在5<x ≤7小时的人数所占的百分比,再用总数乘以这个百分比即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数,利用样本估计总体.22.【答案】(1)证明:∵AB 为⊙O 的直径,∴AD ⊥BC ,在Rt △ADB 和Rt △ADC 中{AD =AD AB =AC, ∴Rt △ABD≌Rt △ACD(HL);(2)直线DE 与⊙O 相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD//AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.【解析】(1)AB为⊙O的直径得AD⊥BC,结合AB=AC,用HL证明全等三角形;(2)由△ABD≌△ACD得BD=BC,结合AO=BO得OD为△ABC的中位线,由DE⊥AC得OD⊥DE,可得直线DE为⊙O切线.本题考查了直线与圆的位置关系,全等三角形判定和性质,切线的判定,平行线的判定和性质,熟知以上知识的应用是解题的关键.23.【答案】解:(1)过点A作AE⊥x轴,过B作BF⊥x轴,垂足分别为E,F,如图,∵A(3,4),∴OE=3,AE=4,∴AO=√OE2+AE2=5∵四边形OABC是菱形,∴AO=AB=OC=5,AB//x轴,∴EF=AB=5,∴OF=OE+EF=3+5=8,∴B(8,4).设过B点的反比例函数解析式为y=kx,把B点坐标代入得,k=32,所以,反比例函数解析式为y=32x;(2)∵OB⊥BD,∴∠OBD=90°,∴∠OBF+∠DBF=90°,∵∠DBF+∠BDF=90°,∴∠OBF=∠BDF,又∠OFB=∠BFD=90°,∴△OBF~△BDF,∴OFBF =BFDF,∴84=4DF,解得,DF=2,∴OD =OF +DF =8+2=10,∴D(10,0).设BD 所在直线解析式为y =kx +b ,把B(8,4),D(10,0)分别代入,得:{8k +b =410k +b =0,解得,{k =−2b =20, ∴直线BD 的解析式为y =−2x +20.【解析】(1)由A 的坐标求出菱形的边长,利用菱形的性质确定出B 的坐标,利用待定系数法求出反比例函数解析式即可;(2)证明△OBF ~△BDF ,利用相似三角形的性质得出点D 的坐标,利用待定系数法求出直线BD 解析式即可.此题考查了待定系数法求反比例函数解析式与一次函数解析式,菱形的性质,相似三角形的判定与性质,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.24.【答案】解:(1)设购买《北上》的单价为x 元,《牵风记》的单价为y 元,由题意得:{2x +y =1006x =7y, 解得{x =35y =30. 答:购买《北上》的单价为35元,《牵风记》的单价为30元;(2)设购买《北上》的数量n 本,则购买《牵风记》的数量为(50−n)本,根据题意得{n ≥12(50−n)35n +30(50−n)≤1600, 解得:1623≤n ≤20,则n 可以取17、18、19、20,当n =17时,50−n =33,共花费17×35+33×30=1585元;当n =18时,50−n =32,共花费17×35+33×30=1590元;当n =19时,50−n =31,共花费17×35+33×30=1595元;当n =20时,50−n =30,共花费17×35+33×30=1600元;.所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】(1)设购买《北上》的单价为x 元,《牵风记》的单价为y 元,根据“购买2本《北上》和1本《牵风记》需100元”和“购买6本《北上》与购买7本《牵风记》的价格相同”建立方程组求解即可;(2)设购买《北上》的数量n 本,则购买《牵风记》的数量为(50−n)本,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.25.【答案】解:(1)连接DE ,如图,∵点O 是△ABC 的重心,∴AD ,BE 是BC ,AC 边上的中线,∴D ,E 为BC ,AC 边上的中点,∴DE 为△ABC 的中位线,∴DE//AB ,DE =12AB ,∴△ODE∽△OAB ,∴OD OA =DE AB =12, ∵AB =2,BD =1,∠ADB =90°,∴AD =√3,OD =√33, ∴S △OBC =BC⋅OD 2=2×√332=√33,S △ABC =BC⋅AD 2=2×√32=√3; (2)由(1)可知,OD OA =12,是定值;点O 到BC 的距离和点A 到BC 的距离之比为1:3,则△OBC 和△ABC 的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故S △OBCS △ABC =13,是定值; (3)①∵四边形ABCD 是正方形,∴CD//AB ,AB =BC =CD =4,∴△CME ~△AMB ,∴EM BM =CE AB ,∵E 为CD 的中点,∴CE =12CD =2, ∴BE =√BC 2+CE 2=2√5,∴EM BM =12, ∴EM BE =13, 即EM =23√5;②∴S △CME =1,且ME BM =12,∴S △BMC =2,∵ME BM =12, ∴S △CME S △AMB =(ME BM )2=14,∴S △AMB =4,∴S △ABC =S △BMC +S △ABM =2+4=6,又S △ADC =S △ABC ,∴S △ADC =6,∴正方形ABCD 的面积为:6+6=12.【解析】(1)连接DE,利用相似三角形证明ODAO =12,运用勾股定理求出AD的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得EMBM =12,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.【答案】解:(1)①抛物线y=−x2+bx+5的对称轴为直线x=−b2×(−1)=b2,∴若过点C的直线x=2是抛物线的对称轴,则b2=2,解得:b=4,∴抛物线的解析式为y=−x2+4x+5;②存在,如图,若点P在x轴上方,点B关于OP对称的点B′在对称轴上,连接OB′、PB,则OB′=OB,PB′=PB,对于y=−x2+4x+5,令y=0,则−x2+4x+5=0,解得:x1=−1,x2=5,∴A(−1,0),B(5,0),∴OB′=OB=5,∴CB′=√OB′2−OC2=√25−4=√21,∴B′(2,√21),设点P(2,m),由PB′=PB可得:√21−m=√m2+(5−2)2,解得:m=2√217,∴P(2,2√217);同理,当点P在x轴下方时,P(2,−2√217).综上所述,点P(2,2√217)或P(2,−2√217);(2)∵抛物线y=−x2+bx+5的对称轴为直线x=−b2×(−1)=b2,∴当b≥4时,x=b2≥2,∵抛物线开口向下,在对称轴左边,y随x的增大而增大,∴当0≤x≤2时,取x=2,y有最大值,即y=−4+2b+5=2b+1,∴3≤2b+1≤15,解得:1≤b≤7,又∵b≥4,∴4≤b≤7.【解析】(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B′在对称轴上,连接OB′、PB,根据轴对称的性质得到OB′=OB,PB′=PB,求出点B的坐标,利用勾股定理得到B′(2,√21),再根据PB′=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再列出不等式解答即可.本题考查了二次函数的综合应用,涉及了二次函数的图象与性质,以及勾股定理的应用,其中第(1)②问要先画出图形再理解,第(2)问运用到了二次函数的增减性,难度适中,解题的关键是熟记二次函数的图象与性质.。
湖南省湘潭市中考数学试卷及答案(Word解析版)

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(•湘潭)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)(•湘潭)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)(•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.析:解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)(•湘潭)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)(•湘潭)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)(•湘潭)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)(•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)(•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(•湘潭)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)(•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)(•湘潭)到底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.考点:科学记数法—表示较大的数分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,析:要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)(•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)(•湘潭)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专计算题.题:分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)(•湘潭)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)(•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(•湘潭)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)(•湘潭)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)(•湘潭)4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)(•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)(•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)(•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)(•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)(•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D 点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考相似形综合题点:分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y 轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.点评:本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力.26.(10分)(•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.。
2020年湘潭市数学中考试题及答案

2020年湘潭市数学中考试题及答案一、选择题1.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--2.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <03.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .44.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++= 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣16.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分7.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .255C .52D .239.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=10.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .811.下面的几何体中,主视图为圆的是( )A.B.C.D.12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.14.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .15.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.16.82=_______________.17.当m=____________时,解分式方程533x mx x-=--会出现增根.18.正六边形的边长为8cm,则它的面积为____cm2.19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.若式子3x +在实数范围内有意义,则x 的取值范围是_____. 三、解答题 21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=+(),善于思考的小明进行了以下探索: 设()2a b 2m n 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2mn 2+=++.∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若()2a b 3m n 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若()2433a m n +=+,且a b m n 、、、均为正整数,求a 的值. 24.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F .(1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.25.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有 人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 2.D解析:D【解析】【分析】【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12b x a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D. 考点:二次函数的图象及性质.3.C解析:C【解析】【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题;③折线统计图反映一组数据的变化趋势,正确,是真命题;④水中捞月是随机事件,故错误,是假命题,真命题有3个,故选C .【点睛】本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.4.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 5.B解析:B【解析】【分析】由题意可知A=111)11x x ++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8,故选B.【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法.7.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.8.A解析:A【解析】【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B .【详解】在直角△ABC 中,根据勾股定理可得:AB ===3. ∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B 3AC AB ==. 故选A .【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.9.A解析:A【解析】【分析】共有x 个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x 个队参赛,根据题意,可列方程为:12x (x ﹣1)=36, 故选:A .【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.10.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键11.C解析:C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.12.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题13.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA解析:【解析】试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D (8,4),反比例函数的图象经过点D,∴k=32,C点的纵坐标是2×4=8,∴,把y=8代入得:x=4,∴n=4﹣2=2,∴向左平移2个单位长度,反比例函数能过C点,故答案为2.14.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110°解析:110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°15.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.16.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.17.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围.【详解】.3x 在实数范围内有意义,则x+3≥0,解得:x≥﹣3,则x的取值范围是:x≥﹣3.故答案为:x≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;令y 甲=y 乙,即15x+7=16x+3,解得:x=4;令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 22.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x ,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束, 依题意得:4000x ×1.5=45005x -, 解得x =20.经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵2(a m +=+,∴2232a m n +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 24.(1)见解析;(2)243.【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-=∴菱形BFDE的面积=12×EF•BD=12×12×43=243.【点评】此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.25.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可.(2)结合总体个数,计算剩少数的个数,补全条形图,即可.(3)计算一餐浪费食物的比例,乘以总体个数,即可.【详解】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点睛】考查统计知识,考查扇形图的理解,难度较容易.。
2020年湖南省湘潭市中考数学试卷-解析版

2020年湖南省湘潭市中考数学试卷一、选择题(本大题共8小题,共24.0分)1.−6的绝对值是()A. −6B. 6C. −16D. 162.地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为()A. 0.6×108B. 6×107C. 6×108D. 6×1093.已知2x n+1y3与13x4y3是同类项,则n的值是()A. 2B. 3C. 4D. 54.下列图形中,不是中心对称图形的是()A. B. C. D.5.下列运算中正确的是()A. (a2)3=a5B. (12)−1=−2 C. (2−√5)0=1 D. a3⋅a3=2a6 6.如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=()A. 40°B. 50°C. 55°D. 60°7.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A. 0.25B. 0.3C. 25D. 308.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为()A. x≤1B. x≥1C. x<1D. x>1二、填空题(本大题共8小题,共24.0分) 9. 计算:sin45°=______.10. 在数轴上到原点的距离小于4的整数可以为______.(任意写出一个即可) 11. 计算:√8−√2=______.12. 走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是______步. 13. 若yx =37,则x−y x=______.14. 如图,在半径为6的⊙O 中,圆心角∠AOB =60°,则阴影部分面积为______.15. 如图,点P 是∠AOC 的角平分线上一点,PD ⊥OA ,垂足为点D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为______.16. 算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字 形式 1 2 3 4 5 6789纵式 |||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是______.三、解答题(本大题共10小题,共72.0分) 17. 解分式方程:3x−1+2=xx−1.18. 化简求值:(1−2a−1)÷a−3a 2−2a+1,其中a =−2.19. 生死守护,致敬英雄.湘潭28名医护人员所在的湖南对口支援湖北黄冈医疗队红安分队,精心救治每一位患者,出色地完成了医疗救治任务.为致敬英雄,某校音乐兴趣小组根据网络盛传的“红旗小姐姐”跳的儋州调声组建了舞蹈队.现需要选取两名学生作为舞蹈队的领舞,甲、乙两班各推荐了一男生和一女生.(温馨提示:用男 1、女 1;男 2、女 2分别表示甲、乙两班4个学生)(1)请用列举的方法写出所有可能出现的结果;(2)若选取的两人来自不同的班级,且按甲、乙两班先后顺序选取.请用列表或画树状图的方法求出恰好选中一男一女的概率.20.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE=10m,其坡度为i1=1:√3,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度.(结果精确到0.01m,参考数据:√3≈1.732,√17≈4.122)21.“停课不停学”.突如其来的新冠肺炎疫情让网络学习成为了今年春天一道别样的风景.隔离的是身体,温暖的是人心.“幸得有你,山河无恙”.在钟南山、白衣天使等人众志成城下,战胜了疫情.在春暖花开,万物复苏之际,某校为了解九年级学生居家网络学习情况,以便进行有针对性的教学安排,特对他们的网络学习时长(单位:小时)进行统计.现随机抽取20名学生的数据进行分析:收集数据:4.5,6,5.5,6.5,6.5,5.5,7,6,7.5,8,6.5,8,7.5,5.5,6.5,7,6.5,6,6.5,5整理数据:时长x(小时)4<x≤55<x≤66<x≤77<x≤8人数2a84分析数据:项目平均数中位数众数数据 6.4 6.5b应用数据:(1)填空:a=______,b=______;(2)补全频数直方图;(3)若九年级共有1000人参与了网络学习,请估计学习时长在5<x≤7小时的人数.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.23.如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A的坐标为(3,4).(1)求过点B的反比例函数y=k的解析式;x(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的解析式.24.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届茅盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?25.阅读材料:三角形的三条中线必交于一点,这个交点称为三角形的重心.(1)特例感知:如图(一),已知边长为2的等边△ABC的重心为点O,求△OBC与△ABC的面积.(2)性质探究:如图(二),已知△ABC的重心为点O,请判断ODOA 、S△OBCS△ABC是否都为定值?如果是,分别求出这两个定值;如果不是,请说明理由.(3)性质应用:如图(三),在正方形ABCD中,点E是CD的中点,连接BE交对角线AC于点M.①若正方形ABCD的边长为4,求EM的长度;②若S△CME=1,求正方形ABCD的面积.26.如图,抛物线y=−x2+bx+5与x轴交于A,B两点.(1)若过点C的直线x=2是抛物线的对称轴.①求抛物线的解析式;②对称轴上是否存在一点P,使点B关于直线OP的对称点B′恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.(2)当b≥4,0≤x≤2时,函数值y的最大值满足3≤y≤15,求b的取值范围.答案和解析1.【答案】B【解析】解:负数的绝对值等于它的相反数,所以−6的绝对值是6.故选:B.在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】C【解析】解:600000000=6×108,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】Bx4y3是同类项,【解析】解:∵2x n+1y3与13∴n+1=4,解得,n=3,故选:B.根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.4.【答案】D【解析】解:A、是中心对称图形,故此选项不符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,解题的关键是要寻找对称中心,旋转180度后两部分重合.5.【答案】C【解析】解:A、(a2)3=a6,故A错误;)−1=2,故B错误;B、(12C、(2−√5)0=1,正确;D、a3⋅a3=a6,故D错误;故选:C.根据幂的乘方、负整数指数幂、零指数幂以及同底数幂的乘法法则即可逐一判断.本题考查了幂的乘方、负整数指数幂、零指数幂以及同底数幂的乘法,解题的关键是掌握基本的运算法则及公式.6.【答案】D【解析】解:∵∠ACD 是△ABC 的外角, ∴∠ACD =∠B +∠A ,∴∠A =∠ACD −∠B ,∠B =50°, ∴∠A =60°, 故选:D .根据三角形的外角的性质进行计算即可.本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键7.【答案】B【解析】解:由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人), 选择“5G 时代”的人数为:30人, ∴选择“5G 时代”的频率是:30100=0.3;故选:B .先计算出八年级(3)班的全体人数,然后用选择“5G 时代”的人数除以八年级(3)班的全体人数即可.本题考查了频数分布直方图的读取,及相应频率的计算,熟知以上知识是解题的关键.8.【答案】A【解析】解:由题意,将P(1,1)代入y =kx +b(k <0), 可得k +b =1,即k −1=−b ,整理kx +b ≥x 得,(k −1)x +b ≥0, ∴−bx +b ≥0, 由图象可知b >0, ∴x −1≤0, ∴x ≤1, 故选:A .将P(1,1)代入y =kx +b(k <0),可得k −1=−b ,再将kx +b ≥x 变形整理,得−bx +b ≥0,求解即可.本题考查了一次函数的图象和性质,解题关键在于灵活应用待定系数法和不等式的性质.9.【答案】√22【解析】解:根据特殊角的三角函数值得:sin45°=√22.根据特殊角的三角函数值解答.本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=12,cos30°=√32,tan30°=√33,cot30°=√3;sin45°=√22,cos45°=√22,tan45°=1,cot45°=1;sin60°=√32,cos60°=12,tan60°=√3,cot60°=√33.10.【答案】3【解析】解:在数轴上到原点的距离小于4的整数有:−3,3,−2,2,−1,1,0从中任选一个即可故答案为:3(答案不唯一,3,2,1,0,−1,−2,−3任意一个均可)根据数轴表示数的意义,可得出答案为±3,±2,±1,0中任意写出一个即可. 本题考查了数轴、数轴特点、绝对值等知识,熟练掌握这些知识是解题的关键.11.【答案】√2【解析】解:√8−√2=2√2−√2=√2. 故答案为√2.先把√8化简为2√2,再合并同类二次根式即可得解.本题考查了二次根式的运算,正确对二次根式进行化简是关键.12.【答案】6400【解析】解:这3天步数的平均数是:6200+5800+72003=6400(步),故答案为:6400.根据算术平均数的计算公式即可解答.本题考查了平均数的计算,解题的关键是掌握平均数的计算公式.13.【答案】47【解析】解:由yx =37可设y =3k ,x =7k ,k 是非零整数, 则x−y x=7k−3k 7k =4k 7k =47.故答案为:47.根据比例的基本性质变形,代入求值即可.本题主要考查了比的基本性质,准确利用性质变形是解题的关键.14.【答案】6π【解析】解:阴影部分面积为60π×62360=6π,故答案为:6π.直接根据扇形的面积计算公式计算即可.本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.15.【答案】3【解析】解:根据垂线段最短可知:当PM ⊥OC 时,PM 最小, 当PM ⊥OC 时,又∵OP 平分∠AOC ,PD ⊥OA ,PD =3, ∴PM =PD =3, 故答案为:3.根据垂线段最短可知当PM ⊥OC 时,PM 最小,再根据角的平分线的性质,即可得出答案.本题考查了垂线段最短、角平分线的性质,熟练掌握这些知识是解题的关键.16.【答案】8167【解析】解:根据算筹计数法,表示的数是:8167故答案为:8167.根据算筹计数法来计数即可.本题考查了算筹计数法,理解题意是解题的关键.17.【答案】解:3x−1+2=xx−1去分母得,3+2(x −1)=x , 解得,x =−1,经检验,x =−1是原方程的解. 所以,原方程的解为:x =−1.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:(1−2a−1)÷a−3a 2−2a+1=a −1−2a −1⋅(a −1)2a −3=a −1,将a =−2代入得:原式=−2−1=−3.【解析】根据分式的混合运算法则,先化简,再将a =−2代入计算即可. 本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.19.【答案】解:(1)可能出现的结果有:男 1女 1、男 1男 2、男 1女 2、男 2女 1、男 2女 2、女 1女 2;(2)列表法表示所有可能出现的结果如下:共有4种情况,其中恰好选中一男一女有2种情况, 所以恰好选中一男一女的概率为24=12.【解析】(1)直接列举出所有可能出现的结果即可;(2)画出树状图,找出符合题意的可能结果,再利用概率公式求出概率即可.本题考查列举法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.20.【答案】解:∵DE =10m ,其坡度为i 1=1:√3, ∴在Rt △DCE 中,DE =√DC 2+CE 2=2DC =10,∴解得DC =5.∵四边形ABCD 为矩形, ∴AB =CD =5.∵斜坡AF 的坡度为i 2=1:4, ∴ABBF =14,∴BF =4AB =20,∴在Rt △ABF 中,AF =√AB 2+BF 2=5√17≈20.61(m). 故斜坡AF 的长度约为20.61米.【解析】先由DE 的坡度计算DC 的长度,根据矩形性质得AB 长度,再由AF 的坡度得出BF 的长度,根据勾股定理计算出AF 的长度.本题考查了解直角三角形的应用−坡度坡角问题,矩形的性质,以及用勾股定理解直角三角形的用法,熟知以上知识点是解题的关键.21.【答案】6 6.5【解析】解:(1)由总人数是20人可得在5<x ≤6的人数是20−2−8−4=6(人),所以a =6,根据数据显示,6.5出现的次数最多,所以这组数据的众数b =6.5; 故答案为:6,6.5;(2)由(1)得a =6.频数分布直方图补充如下:(3)由图可知,学习时长在5<x ≤7小时的人数所占的百分比=6+820×100%=70%,∴1000×70%=700(人).∴学习时长在5<x ≤7小时的人数是700人.(1)根据各组频数之和等于数据总数,可得5<x ≤6范围内的数据;找出数据中次数最多的数据即为所求;(2)根据(1)中的数据画图即可;(3)先算出样本中学习时长在5<x ≤7小时的人数所占的百分比,再用总数乘以这个百分比即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数,利用样本估计总体.22.【答案】(1)证明:∵AB 为⊙O 的直径, ∴AD ⊥BC ,在Rt △ADB 和Rt △ADC 中{AD =ADAB =AC ,∴Rt △ABD≌Rt △ACD(HL);(2)直线DE与⊙O相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD//AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.【解析】(1)AB为⊙O的直径得AD⊥BC,结合AB=AC,用HL证明全等三角形;(2)由△ABD≌△ACD得BD=BC,结合AO=BO得OD为△ABC的中位线,由DE⊥AC得OD⊥DE,可得直线DE为⊙O切线.本题考查了直线与圆的位置关系,全等三角形判定和性质,切线的判定,平行线的判定和性质,熟知以上知识的应用是解题的关键.23.【答案】解:(1)过点A作AE⊥x轴,过B作BF⊥x轴,垂足分别为E,F,如图,∵A(3,4),∴OE=3,AE=4,∴AO=√OE2+AE2=5∵四边形OABC是菱形,∴AO=AB=OC=5,AB//x轴,∴EF=AB=5,∴OF=OE+EF=3+5=8,∴B(8,4).设过B点的反比例函数解析式为y=kx,把B点坐标代入得,k=32,所以,反比例函数解析式为y=32x;(2)∵OB⊥BD,∴∠OBD=90°,∴∠OBF+∠DBF=90°,∵∠DBF+∠BDF=90°,∴∠OBF=∠BDF,又∠OFB=∠BFD=90°,∴△OBF~△BDF,∴OFBF =BFDF,∴84=4DF,解得,DF =2,∴OD =OF +DF =8+2=10,∴D(10,0).设BD 所在直线解析式为y =kx +b ,把B(8,4),D(10,0)分别代入,得:{8k +b =410k +b =0,解得,{k =−2b =20, ∴直线BD 的解析式为y =−2x +20.【解析】(1)由A 的坐标求出菱形的边长,利用菱形的性质确定出B 的坐标,利用待定系数法求出反比例函数解析式即可;(2)证明△OBF ~△BDF ,利用相似三角形的性质得出点D 的坐标,利用待定系数法求出直线BD 解析式即可.此题考查了待定系数法求反比例函数解析式与一次函数解析式,菱形的性质,相似三角形的判定与性质,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.24.【答案】解:(1)设购买《北上》的单价为x 元,《牵风记》的单价为y 元,由题意得:{2x +y =1006x =7y, 解得{x =35y =30. 答:购买《北上》的单价为35元,《牵风记》的单价为30元;(2)设购买《北上》的数量n 本,则购买《牵风记》的数量为(50−n)本,根据题意得{n ≥12(50−n)35n +30(50−n)≤1600, 解得:1623≤n ≤20,则n 可以取17、18、19、20,当n =17时,50−n =33,共花费17×35+33×30=1585元;当n =18时,50−n =32,共花费17×35+33×30=1590元;当n =19时,50−n =31,共花费17×35+33×30=1595元;当n =20时,50−n =30,共花费17×35+33×30=1600元;.所以,共有4种购买方案分别为:购买《北上》和《牵风记》的数量分别为17本和33本,购买《北上》和《牵风记》的数量分别为18本和32本,购买《北上》和《牵风记》的数量分别为19本和31本,购买《北上》和《牵风记》的数量分别为20本和30本;其中购买《北上》和《牵风记》的数量分别为17本和33本费用最低,最低费用为1585元.【解析】(1)设购买《北上》的单价为x 元,《牵风记》的单价为y 元,根据“购买2本《北上》和1本《牵风记》需100元”和“购买6本《北上》与购买7本《牵风记》的价格相同”建立方程组求解即可;(2)设购买《北上》的数量n 本,则购买《牵风记》的数量为(50−n)本,根据“购买《北上》的数量不少于所购买《牵风记》数量的一半”和“购买两种书的总价不超过1600元”两个不等关系列不等式组解答并确定整数解即可.本题考查了二元一次方程组和不等式组的应用,弄清题意、确定等量关系和不等关系是解答本题的关键.25.【答案】解:(1)连接DE ,如图,∵点O 是△ABC 的重心,∴AD ,BE 是BC ,AC 边上的中线,∴D ,E 为BC ,AC 边上的中点,∴DE 为△ABC 的中位线,∴DE//AB ,DE =12AB ,∴△ODE∽△OAB ,∴OD OA =DE AB =12, ∵AB =2,BD =1,∠ADB =90°,∴AD =√3,OD =√33, ∴S △OBC =BC⋅OD 2=2×√332=√33,S △ABC =BC⋅AD 2=2×√32=√3; (2)由(1)可知,OD OA =12,是定值;点O 到BC 的距离和点A 到BC 的距离之比为1:3,则△OBC 和△ABC 的面积之比等于点O 到BC 的距离和点A 到BC 的距离之比, 故S △OBCS △ABC =13,是定值; (3)①∵四边形ABCD 是正方形,∴CD//AB ,AB =BC =CD =4,∴△CME ~△AMB ,∴EM BM =CE AB ,∵E 为CD 的中点,∴CE =12CD =2, ∴BE =√BC 2+CE 2=2√5,∴EM BM =12,∴EM BE =13, 即EM =23√5;②∴S △CME =1,且ME BM =12,∴S △BMC =2,∵ME BM =12,∴S △CME S △AMB =(ME BM )2=14, ∴S △AMB =4,∴S △ABC =S △BMC +S △ABM =2+4=6,又S △ADC =S △ABC ,∴S △ADC =6,∴正方形ABCD 的面积为:6+6=12.【解析】(1)连接DE,利用相似三角形证明ODAO =12,运用勾股定理求出AD的长,运用三角形面积公式求解即可;(2)根据(1)的证明可求解;(3)①证明△CME∽△ABM,得EMBM =12,再运用勾股定理求出BE的长即可解决问题;②分别求出S△BMC和S△ABM即可求得正方形ABCD的面积.本题是一道相似形综合题目,主要考查的是三角形重心的性质、全等三角形的判定与性质、勾股定理及相似三角形的判定与性质,解答此题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.【答案】解:(1)①抛物线y=−x2+bx+5的对称轴为直线x=−b2×(−1)=b2,∴若过点C的直线x=2是抛物线的对称轴,则b2=2,解得:b=4,∴抛物线的解析式为y=−x2+4x+5;②存在,如图,若点P在x轴上方,点B关于OP对称的点B′在对称轴上,连接OB′、PB,则OB′=OB,PB′=PB,对于y=−x2+4x+5,令y=0,则−x2+4x+5=0,解得:x1=−1,x2=5,∴A(−1,0),B(5,0),∴OB′=OB=5,∴CB′=√OB′2−OC2=√25−4=√21,∴B′(2,√21),设点P(2,m),由PB′=PB可得:√21−m=√m2+(5−2)2,解得:m=2√217,∴P(2,2√217);同理,当点P在x轴下方时,P(2,−2√217).综上所述,点P(2,2√217)或P(2,−2√217);(2)∵抛物线y=−x2+bx+5的对称轴为直线x=−b2×(−1)=b2,∴当b≥4时,x=b2≥2,∵抛物线开口向下,在对称轴左边,y随x的增大而增大,∴当0≤x≤2时,取x=2,y有最大值,即y=−4+2b+5=2b+1,∴3≤2b+1≤15,解得:1≤b≤7,又∵b≥4,∴4≤b≤7.【解析】(1)①根据抛物线的对称轴公式即可求出解析式;②如图,若点P在x轴上方,点B关于OP对称的点B′在对称轴上,连接OB′、PB,根据轴对称的性质得到OB′=OB,PB′=PB,求出点B的坐标,利用勾股定理得到B′(2,√21),再根据PB′=PB,列出方程解答,同理得到点P在x轴下方时的坐标即可;(2)当b≥4时,确定对称轴的位置,再结合开口方向,确定当0≤x≤2时,函数的增减性,从而得到当x=2时,函数取最大值,再列出不等式解答即可.本题考查了二次函数的综合应用,涉及了二次函数的图象与性质,以及勾股定理的应用,其中第(1)②问要先画出图形再理解,第(2)问运用到了二次函数的增减性,难度适中,解题的关键是熟记二次函数的图象与性质.。
湖南省湘潭市2020年(春秋版)中考数学试卷(II)卷

湖南省湘潭市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在,﹣2,π,这四个数中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019六下·广饶期中) 下列算式中,结果等于a6的是()A . a2•a2•a2B . a4+a2C . a2+a2+a2D . a2•a33. (2分)(2017·龙华模拟) 一个几何体由若干大小相同的小立方块搭成,图分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要()A . 5 块B . 6 块C . 7 块D . 8 块4. (2分)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A . 随机抽取该校一个班级的学生B . 随机抽取该校一个年级的学生C . 随机抽取该校一部分男生D . 分别从该校初一、初二、初三年级中各随机抽取10%的学生5. (2分)(2016·荆门) 要使式子有意义,则x的取值范围是()A . x>1B . x>﹣1C . x≥1D . x≥﹣16. (2分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A .B .C .D . 17. (2分)下列性质正方形具有而矩形不具有的是()A . 对角线互相平分B . 对角线相等C . 四个角都是直角D . 对角线平分对角8. (2分)如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a≠0)经过△ABC 区域(包括边界),则a的取值范围是()A . a≤-1或a≥2B . ≤a≤2C . -1≤a<0或1<a≤D . -1≤a<0或0<a≤2二、填空题 (共9题;共23分)9. (1分)若﹣a的相反数是3,那么的倒数是________.10. (15分)(2012·资阳) 已知a、b是正实数,那么,是恒成立的.(1)由恒成立,说明恒成立;(2)已知a、b、c是正实数,由恒成立,猜测:也恒成立;(3)如图,已知AB是直径,点P是弧上异于点A和点B的一点,PC⊥AB,垂足为C,AC=a,BC=b,由此图说明恒成立.11. (1分)(2018·德阳) 如图,点为的AB边上的中点,点E为AD的中点,为正三角形,给出下列结论,① ,② ,③ ,④若,点是上一动点,点到、边的距离分别为,,则的最小值是 3.其中正确的结论是________(填写正确结论的番号)12. (1分) (2016九上·玄武期末) 一元二次方程x2﹣4x+1=0的两根是x1 , x2 ,则x1•x2的值是________.13. (1分)(2017·兰州模拟) 如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是________(结果保留π和根号)14. (1分)若干名同学制作迎奥运卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________ .15. (1分)(2019·道外模拟) 如图,两个圆都以为圆心,大圆的弦与小圆相切于点,若,则圆环的面积为________.16. (1分)(2017·徐州模拟) 如图所示,已知点N(1,0),直线y=﹣x+2与两坐标轴分别交于A,B两点,M,P分别是线段OB,AB上的动点,则PM+MN的最小值是________.17. (1分)一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,可列方程________.三、解答题 (共11题;共90分)18. (5分)(2017·松北模拟) 先化简,再求值:,其中x=6tan30°﹣2.19. (5分)(2017·大冶模拟) 解不等式组:.20. (15分)交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)21. (5分)为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.22. (5分) (2019八上·双台子期末) 如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BE交AD于点F,交AC于点E,若BE平分∠ABC,试判断△AEF的形状,并说明理由.23. (5分)已知:如图,点P为等腰梯形ABCD上底AD上一动点,连接PB,PC,点E、F、G分别为PB、PC、BC的中点.当点P运动到什么位置时,四边形PEGF为菱形?24. (15分)(2018·遵义模拟) “六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种电动玩具x套,购进B种电动玩具y套,三种电动玩具的进价和售价如下表:电动玩具型号A B C进价(单位:元/套)405550销售价(单位:元/套)508065(1)用含x、y的代数式表示购进C种电动玩具的套数;(2)求出y与x之间的函数关系式;(3)假设所购进的电动玩具全部售出,且在购销这批玩具过程中需要另外支出各种费用共200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时购进三种电动玩具各多少套?25. (10分)如图,已知正五边形AB CDE,AF∥CD交DB的延长线于点F,交DE的延长线于点G.(1)写出图中所有的等腰三角形;(2)求证:∠G=2∠F.26. (5分)某种商品A的零售价为每件900元,为了适应市场竞争,商店按零售价的九折优惠后,再让利40元销售,仍可获利10%,①这种商品A的进价为多少元?27. (10分)(2019·金昌模拟) 如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC =∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB.28. (10分) (2019九上·兴化月考) 如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA 的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共23分)9-1、10-1、10-2、10-3、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共90分) 18-1、19-1、20-1、20-2、20-3、21-1、22-1、23-1、24-1、24-2、24-3、25-1、25-2、26-1、27-1、27-2、28-1、28-2、。