组合数学在计算机中的应用

合集下载

组合数学的基本概念与应用

组合数学的基本概念与应用

组合数学的基本概念与应用组合数学是一门研究离散对象的排列、组合和计数等问题的数学分支。

它在许多领域都有着广泛的应用,从计算机科学到物理学,从生物学到经济学,几乎无处不在。

组合数学的基本概念包括排列、组合、二项式定理、容斥原理等。

排列是指从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

例如,从 5 个不同的数字中选取 3 个进行排列,计算方法为5×4×3 = 60 种。

组合则是从给定的元素集合中,不考虑顺序地选取若干个元素。

比如,从 5 个不同的数字中选取 3 个的组合数,计算方法为 5×4×3÷(3×2×1) = 10 种。

二项式定理在组合数学中也占据重要地位。

对于任意的正整数 n,有\((a + b)^n =\sum_{k=0}^n C(n, k) a^{n k} b^k\),其中\(C(n, k)\)表示从 n 个元素中选取 k 个元素的组合数。

容斥原理用于计算多个集合的并集的元素个数。

例如,有三个集合A、B、C,要计算它们并集的元素个数,需要先分别计算 A、B、C 的元素个数,然后减去两两交集的元素个数,再加上三个集合交集的元素个数。

组合数学在现实生活中的应用十分广泛。

在计算机科学中,组合数学的作用不可小觑。

在算法设计中,经常需要考虑各种可能性的数量和排列组合方式。

比如,在搜索算法中,需要计算搜索空间的大小,以评估算法的效率和复杂度。

在密码学中,组合数学的原理被用于生成和破解密码。

通过对密钥空间的组合分析,可以评估密码系统的安全性。

组合数学在生物学中也有应用。

在基因测序中,需要分析基因片段的排列组合,以确定基因的结构和功能。

在生物进化的研究中,组合数学可以帮助分析物种的遗传变异和多样性。

在经济学领域,组合数学被用于投资组合的优化。

投资者需要从众多的投资项目中选择一组,以在风险和收益之间达到最佳平衡。

这就涉及到对不同投资项目组合的可能性和收益风险的计算。

组合数学原理的应用

组合数学原理的应用

组合数学原理的应用1. 引言组合数学是数学中一个重要的分支,它研究的是离散对象的集合和组合方式。

组合数学的原理可以应用于各个领域,包括计算机科学、统计学、密码学等。

本文将介绍一些组合数学原理的应用案例。

2. 应用案例2.1. 组合数学在计算机科学中的应用•密码学:组合数学中的排列组合原理可以用于密码学中的密钥生成和密码破解。

通过利用不同组合方式生成密钥,可以提高密码的安全性。

同时,通过分析密码的组合方式,可以对密码进行破解。

•图论:在图论中,组合数学的原理可以用于计算图的连通性、最短路径和最大流等问题。

通过使用组合数学的算法,可以高效地解决这些问题。

•算法设计:在算法设计中,组合数学的原理可以用于优化算法的运行效率。

例如,在动态规划算法中,通过利用组合数学的原理,可以减少算法的计算量,提高算法的执行效率。

2.2. 组合数学在统计学中的应用•概率统计:组合数学中的概率原理可以用于计算事件的概率。

通过计算组合数,可以得到某种事件发生的可能性。

这对于统计学中的实验设计和数据分析非常重要。

•抽样理论:在抽样理论中,组合数学的原理可以用于计算样本的组合方式和排列方式。

通过分析样本的组合方式,可以选择更合适的抽样方法,使得样本更具有代表性。

•回归分析:在回归分析中,组合数学的原理可以用于分析自变量和因变量之间的关系。

通过利用组合数学的方法,可以得到较为准确的回归模型,从而对数据进行预测和分析。

2.3. 组合数学在其他领域的应用•市场调研:在市场调研中,组合数学的原理可以用于计算不同市场变量的组合方式。

通过分析市场变量的组合方式,可以预测市场的发展趋势,从而制定更合理的市场策略。

•工程优化:在工程优化中,组合数学的原理可以用于计算不同参数的组合方式。

通过分析不同参数的组合方式,可以找到最优解,并优化工程设计。

•物流管理:在物流管理中,组合数学的原理可以用于计算不同物流方式的组合方式。

通过分析物流方式的组合方式,可以降低物流成本,并提高效率。

组合数的概念

组合数的概念

组合数的概念组合数的概念是数学中的一个重要概念,它描述的是从一个给定集合中选取特定数量的元素的方式数。

组合数在概率论、统计学、计算数学、组合优化等领域中都有广泛的应用。

在数学中,我们经常遇到从一组元素中选择若干个元素的问题。

组合数就是描述这种选择问题的数学工具。

假设有一个集合S,它包含n个元素,我们想要从中选择r个元素。

那么从集合S中选取r个元素的选择方式的数量,就称为S中的组合数,通常用C(n, r)来表示。

组合数的计算通常使用排列组合公式:C(n, r) = n! / (r!(n-r)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

组合数具有以下几个特点:1. 组合数是一个非负整数。

因为选取元素的数量不可能是负数,所以组合数一定是非负整数。

2. 组合数的大小与顺序无关。

也就是说,从集合S中选取的元素的顺序不会影响组合数的大小,只与选取的元素的数量有关。

例如,从集合{1,2,3}中选取2个元素的方式数与选取的元素的顺序无关,因此组合数C(3,2)是一样的,无论是选择{1,2}、{2,3}还是{1,3}。

3. 组合数满足性质C(n, r) = C(n, n-r)。

根据组合数的定义可知,选择r个元素的方式数与选择n-r个元素的方式数是相等的。

例如,从集合{1,2,3}中选择2个元素的方式数与选择1个元素的方式数相等,都是3种。

因此,C(3,2) = C(3,1) = 3。

组合数的应用十分广泛。

以下是一些主要的应用领域:1. 概率论:在概率计算中,经常需要计算事件发生的样本空间,这就涉及到从一个集合中选取若干个元素的组合数。

例如,投掷一枚骰子,选择两个点数之和为7的方式数,就是从六个点数中选择两个点数的组合数C(6,2) = 15。

2. 统计学:在统计学中,组合数用于计算排列组合问题的概率。

例如,从一个样本中选择几个元素,计算得到的组合数可以用来计算事件发生的可能性。

排列组合在数学问题中的应用

排列组合在数学问题中的应用

排列组合在数学问题中的应用在数学中,排列组合是一种非常重要的概念,它在解决各种数学问题中起到了关键的作用。

排列组合不仅仅在数学领域有应用,也广泛应用于许多其他领域,如计算机科学、统计学、经济学等等。

本文将探讨排列组合在数学问题中的应用,并阐述其重要性。

一、排列组合的定义排列和组合是两个与集合相关的概念,它们描述了从给定对象中取出若干元素形成一个子集的方式。

- 排列:从n个不同元素中取出m个元素,按照一定的顺序排列起来,称为一个排列。

排列的个数用符号P(n,m)表示。

- 组合:从n个不同元素中取出m个元素,不考虑元素的顺序,称为一个组合。

组合的个数用符号C(n,m)表示。

二、排列组合的应用1. 数学竞赛问题:在数学竞赛中,排列组合是经常出现的考点。

学生需要通过排列组合的知识,解决各种组合数学问题,如有多少种不同的座位安排方式,有多少种不同的密码组合等等。

2. 概率问题:排列组合也与概率问题密切相关。

在概率计算中,我们经常需要计算某事件的发生概率。

而排列组合可以帮助我们计算事件的总数和有利结果的总数,从而计算出事件的概率。

3. 组合优化问题:在某些实际问题中,我们需要找到最佳的组合方式,以达到某种最优化的目标。

比如,在物流配送中,我们希望找到一种最优的配送路线组合,使得总体成本最低。

4. 计算机科学问题:在计算机科学中,排列和组合也有广泛的应用。

比如,在密码学中,排列和组合常用于生成和破解密码;在算法设计中,排列和组合可以用于解决图论问题、排序问题等。

5. 统计学问题:在统计学中,排列组合可以用于计算样本空间总数、计算事件发生的方式数以及计算排列组合的期望值等。

6. 经济学问题:在经济学中,排列组合有时被用来解决资源的分配问题、市场需求分析问题等。

综上所述,排列组合在数学问题中起到了不可替代的作用,它们能够帮助我们解决各种复杂的计数和计算问题。

无论是在数学竞赛中、在概率计算中、还是在计算机科学、统计学、经济学等领域中,排列组合都发挥着重要的作用。

软件工程领域中组合数学的应用

软件工程领域中组合数学的应用
同组成现代数学 ,是科研 领域 的一大突破 ,对于我国经济发展具 有重要的意义 。组合数学是随着计算机 的发展而逐步兴起的一种研究方 式 ,具有较强 的综合性以及边缘性 。随着经济全球化趋势的出现,在 国 际软件市场发展上 ,美国处于绝对 的优势地位 ,这其中最主要 的原 因就 是美国最早开发 了世界上最快最为先进的电脑芯片 ,奠定其领导者 的 地位 。而在 当今世界 ,计算机界 的权威人士在早期大多是进行组合数学 的研究 的,为其进行软件工程 的开发奠定了 良好的基础。而在美 国,计 算机专业 的授课科 目中 ,就有着组合数学这一项 ,由专业 的组合数学家 对其进行授课 ,同时在 国外的大的公司 , 一般都有专业 的组合研究部 门, 这就充分证 明组合数学在软件工程领域的运用对于软件工程 的发展具有
重要 的意义。

被直接破译 , 利用组合变换的形式 ,以组合变换为底 的幂剩余函数作 和
利用毕达哥斯作加 ,进行解密变换 ,从而达到增强密码强度 , 保 障信息 安全性。这是一次具有改革意义的密码体制建立 , 在一定程度上保 障了
密码体制 的安全性。

组合数 学的概述
2 、在分区天气预报中的运用 。集合论 以及图论是组合数学 的基础 , 其用途十分广泛 ,适用于丰 十 会发展 的各个领域,如通信网路发展 、系统 工程学 、 计算机科学 ,组合数学在这些领域都有着较大的运用 , 促进该
对 于组合数学在软件工程领域 中的运用 ,不断进行深入的分析与 了解 , 使得其更好的为我国的经济发展服务。同时还要加强对于软件工程人才
是随着计算机的发展而兴起的一种新的数学分支 ,同时组合数学的发展 在一定程度上又促进 了电脑技术的进步。组合数学是 以离散构造作 为主 要的研究 问题的 , 所研究的主要 内容是构形计数问题 、 形的最优化问题 、 象形构的存 在性 问题 ,同时在数学发展历史上所提 出的的较为著名 的问

排列组合的基本概念与应用

排列组合的基本概念与应用

排列组合的基本概念与应用排列组合是组合数学中的一个重要概念,广泛应用于数学、统计学、计算机科学等领域。

本文将介绍排列组合的基本概念,并探讨它在实际问题中的应用。

一、排列与组合的概念1.1 排列排列是从一组元素中选择若干个元素按照一定的顺序排列而成的,不同顺序即为不同的排列。

设有n个元素,若从中选取m(m≤n)个元素排列,则称为从n个元素中选取m个元素的排列数,通常表示为P(n,m)。

排列数的计算公式为:P(n,m) = n! / (n-m)!其中,"!"表示阶乘,即n! = n×(n-1)×(n-2)×...×2×1。

1.2 组合组合是从一组元素中选择若干个元素而成的无序集合,不同选择方式即为不同的组合。

设有n个元素,若从中选取m(m≤n)个元素组合,则称为从n个元素中选取m个元素的组合数,通常表示为C(n,m)。

组合数的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、排列组合的应用2.1 数学中的应用排列组合在数学中有广泛的应用,例如概率论、统计学、组合数学等。

在概率论中,排列组合被用于计算事件的可能性;在统计学中,排列组合可以用于计算样本的排列方式;在组合数学中,排列组合被用于解决组合问题。

2.2 信息学竞赛中的应用排列组合在信息学竞赛中也是一个重要的概念,往往与计数问题有关。

在信息学竞赛中,经常会出现一些需要计算排列组合数的问题,比如从一组数中选取若干个数进行计算,或者对字符串进行排序等。

了解排列组合的基本概念和计算方法,能够帮助竞赛选手更好地解决这类问题。

2.3 实际问题中的应用排列组合在实际问题中也有广泛的应用。

举例来说,假设有一个班级里有10个学生,要从中选出3个学生组成一个小组,那么这个问题就是一个排列组合问题。

计算组合数可以得到答案,即C(10,3) = 120,表示共有120种不同的选组方式。

组合数学的应用与计算

组合数学的应用与计算

组合数学在密码学 中用于设计加密算 法,如RSA算法
组合数学在密码学 中用于研究密码破 解的难度,如哈希 函数
组合数学在密码学 中用于设计数字签 名方案,如DSA算 法
组合数学在密码学 中用于研究公钥基 础设施(PKI)的 可靠性,如数字证 书
数据压缩中的应用
组合数学用于数据压缩算法的 设计和优化
靠。
统计学与组合数学的结合, 为解决实际问题提供了强 有力的支持,推动了各领
域的发展和进步。
物理学
量子计算:组合数学在量 子计算中用于描述量子态
的演化
计算机科学:组合数学在 计算机科学中用于设计和
分析算法
统计力学:组合数学在统 计力学中用于描述大量粒
子的行为
物理学其他领域:组合 数学还应用于物理学中 的其他领域,如量子信
息、量子通信等
经济学
组合数学在经济学中用于研究资源的优化配置问题。 组合数学为经济学中的决策问题提供了数学模型和算法支持。 组合数学在金融领域中用于风险评估和投资组合优化。 组合数学在经济学中还用于研究市场结构和供需关系等问题。
Part Three
组合数学的计算方 法
排列的计算
定义:从n个不同元素中取 出m个元素的所有排列的
利用组合数学解决数据压缩中 的编码和解码问题
组合数学在图像和视频压缩中 的应用
组合数学在音频压缩中的应用
计算机图形学中的应用
图像编码与解码: 利用组合数学中 的排列组合原理, 对图像进行高效 的编码与解码, 提高图像传输效 率。
0 1
几何变换:通过 组合数学中的矩 阵运算,实现图 像的旋转、缩放 和平移等几何变 换。
组合数学的应用与计算
XX,a click to unlimited possibilities

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)1.组合数学概述 (1)2.组合数学在生活中的应用 (1)3.组合数学与计算机软件 (1)3.1 信息时代的组合数学 (2)3.2 组合数学在计算机软件的应用 (2)3.3组合数学与计算机软件的关系 (2)3.4组合数学在国外软件业的发展状况 (2)4 Ramsey 数在计算机科学中的应用 (3)4.1Ramsey 定理和Ramsey 数 (3)4.2信息检索 (3)参考文献 (5)组合数学在计算机中的应用摘要:介绍了组合数学的概念、起源与研究的主要内容,分析了组合数学的特点以及其在生活中的应用,阐述了组合数学与计算机软件的联系,并着重通过两个例子说明了Ramsey 数在计算机科学的信息检索中的重要应用。

关键词:组合数学;组合算法;Ramsey 数;信息检索;1:组合数学概述组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。

组合数学是计算机出现以后迅速发展起来的一门数学分支。

计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。

组合数学的发展改变了传统数学中分析和代数占统治地位的局面。

现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。

组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。

微积分和近代数学的发展为近代的工业革命奠定了基础。

而组合数学的发展则是奠定了本世纪的计算机革命的基础。

计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。

正是因为有了组合算法才使人感到,计算机好象是有思维的。

2:组合数学在生活中的应用在日常生活中我们常常遇到组合数学的问题。

如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。

这样的着色效果能使每一个国家都能清楚地显示出来。

但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。

当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。

从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。

航空调度和航班的设定也是组合数学的问题。

怎样确定各个航班以满足不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。

此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是组合数学的问题。

组合数学在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。

在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。

此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。

用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。

最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。

总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。

所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。

3:组合数学与计算机软件随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。

3.1 信息时代的组合数学现代数学可以分为两大类:一类是研究连续对象,如分析、方程等,另一类就是研究离散对象的组合数学。

计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,研究离散对象的科学恰恰就是组合数学。

因此,在信息时代的今天,组合数学就是信息时代的数学。

3.2 组合数学在计算机软件的应用随着计算机科学的发展,组合数学也在迅猛发展,而组合数学在理论方面的推进也促进计算机科学的发展。

计算机软件空前发展的今天要求有相应的数学基础,组合数学作为大多数计算机软件设计的理论基础,它的重要性也就不言而喻。

组合数学在计算机方面的应用极其广泛。

计算机软件与各种算法的研究分不开,为了衡量一个算法的效率,必须估计用此算法解答具有给定长的输入(问题) 时需要多少步(例如算术运算、二进制比较、程序调用等的次数) 。

这要求对算法所需的计算量及存储单元数进行估算,这就是计数问题的内容,而组合数学分析主要研究内容就是计数和枚举的方法和理论。

3.3组合数学与计算机软件的关系我国在软件上的落后,要说出根本的原因可能并不是很简单的事,除了技术和科学上的原因外,可能还跟我们的文化,管理水平,教育水平,思想素质等诸多因素有关。

除去这些人文因素以外,一个最根本的原因就是我国的信息技术的数学基础十分薄弱,这个问题不解决,我们就难成为软件强国。

然而问题决不是这么简单,信息技术的发展已经涉及到了很深的数学知识,而数学本身也已经发展到了很深、很广的程度并不是单凭几个聪明的头脑去想想就行了,而更重要的是需要集体的合作和力量,就象软件的开发需要多方面的人员的合作。

美国的软件之所以能领先,其关键就在于在数学基础上他们有很强的实力,有很多杰出的人才。

一般人可能会认为数学是一门纯粹的基础科学,1+1的解决可能不会有任何实际的意义。

如果真是这样,一门纯粹学科的发展落后几年,甚至十年,关系也不大。

然而中国的软件产业的发展已向数学基础提出了急切的需求:网络算法和分析,信息压缩,网络安全,编码技术,系统软件,并行算法,数学机械化和计算机推理,等等。

此外,与实际应用有关的还有许多许多需要数学基础的算法,如运筹规划,金融工程,计算机辅助设计等。

如果我们的软件产业还是把眼光一直盯在应用软件和第二次开发,那么我们在应用软件这个领域也会让国外的企业抢去很大的市场。

如果我们现在在信息技术的数学基础上,大力支持和投入,那将是亡羊补牢,犹未为晚;只要我们能抢回信息技术的数学基地,那么我们还有可能在软件产业的竞争中,扭转局面,甚至反败为胜。

吴文俊院士开创和领导的数学机械化研究,为中国在信息技术领域占领了一个重要的阵地,有了雄厚的数学基础,自然就有了软件开发的竞争力。

这样的阵地多几个,我们的软件产业就会产生新的局面。

值得注意的是,印度有很好的统计和组合数学基础,这可能也是印度的软件产业近几年有很大发展的原因。

3.4组合数学在国外软件业的发展状况纵观全世界软件产业的情况,易见一个奇特的现象:美国处于绝对的垄断地位。

造成这种现象的一个根本的原因就是计算机科学在美国的飞速发展。

当今计算机科学界的最权威人士很多都是研究组合数学出身的。

美国最重要的计算机科学系(MIT,Princeton,Stanford,Harvard,Yale,….)都有第一流的组合数学家。

计算机科学通过对软件产业的促进,带来了巨大的效益,这已是不争之事实。

组合数学在国外早已成为十分重要的学科,甚至可以说是计算机科学的基础。

一些大公司,如IBM,A T&T都有全世界最强的组合研究中心。

Microsoft 的Bill Gates近来也在提倡和支持计算机科学的基础研究。

例如,Bell实验室的有关线性规划算法的实现,以及有关计算机网络的算法,由于有明显的商业价值,显然是没有对外公开的。

美国已经有一种趋势,就是与新的算法有关的软件是可以申请专利的。

如果照这种趋势发展,世界各国对组合数学和计算机算法的投入和竞争必然日趋激烈。

美国政府也成立了离散数学及理论计算机科学中心DIMACS(与Princeton大学,Rutgers大学,A T&T 联合创办的,设在Rutgers大学),该中心已是组合数学理论计算机科学的重要研究阵地。

美国国家数学科学研究所(Mathematical Sciences Research Institute,由陈省身先生创立)在1997年选择了组合数学作为研究专题,组织了为期一年的研究活动。

日本的NEC公司还在美国的设立了研究中心,理论计算机科学和组合数学已是他们重要的研究课题,该中心主任R. Tarjan即是组合数学的权威。

除上述以外,欧洲也在积极发展组合数学,英国、法国、德国、荷兰、丹麦、奥地利、瑞典、意大利、西班牙等国家都建立了各种形式的组合数学研究中心。

近几年,南美国家也在积极推动组合数学的研究。

澳大利亚,新西兰也组建了很强的组合数学研究机构。

值得一提的是亚洲的发达国家也十分重视组合数学的研究。

日本有组合数学研究中心,并且从美国引进人才,不仅支持日本国内的研究,还出资支持美国的有关课题的研究,这样使日本的组合数学这几年的发展极为迅速。

台湾、香港两地也从美国引进人才,大力发展组合数学。

新加坡,韩国,马来西亚也在积极推动组合数学的研究和人才培养。

台湾的数学研究中心也正在考虑把组合数学作为重点方向来发展。

世界各地对组合数学的如此钟爱显然是有原因的,那就是没有组合数学就没有计算机科学,没有计算机软件。

4 Ramsey 数在计算机科学中的应用4.1Ramsey 定理和Ramsey 数众所周知,若有n +1 只鸽子同时飞进n 个鸽巢中,则一定有某个鸽巢中至少飞进两只鸽,这就是有名的鸽巢原理(也叫抽屉原理) 。

它非常简单,其正确性也显而易见,但却有很广泛的应用。

鸽巢原理有如下重要的推广:Ramsey 定理设q1 , q2 , ⋯, qn ; t 是正整数,且qi>=t ( i =1 , 2 , ⋯, n) ,则存在最小的正整数r (记作r ( q1 ,q2 , ⋯qn ; t) 使得:对任意m 元集合s ,若m E r ,当把S 的所有t 元子集放到n 个盒子里时,那么存在某个i (1 <=n) 和某qi 个元素,它的所有t 元子集都在第i 个盒子里。

这是称r ( q1 , q2 , ⋯qn ; t) 为Ramsey 数。

上述定理是Ramsey1930 年提出并给出证明。

当t =1 时,Ramsey 定理就是加强形式的鸽巢原理,且容易求出r ( q1 , q2 , ⋯qn ;1) = Σqi - n +1(i=1~n)Ramsey 定理是组合论中一个重要的存在性定理,它的发表推动了组合论等数理科学的发展,而且关于Ram2sey 定理和Ramsey 数自身的研究目前已成为组合学中一个重要的分支———n +1 ———Ramsey 理论。

但是,Ram2sey 定理只保证了Ramsey 数的存在性,并没有给出计算Ramsey 数的有效方法。

目前,确定Ramsey 数的问题仍是一个尚未解决的大难题,要找到一个很小的Ramsey 数是很困难的。

相关文档
最新文档