2.3群的同态与群同态基本定理
2-9群同态,群同构

11:56
例:A包含a, b, c三个元,A的乘法由下表规定,证明:A是一个群
证明: : G A, G {全体整数} 普通加法, A {a,b,c}
(x) a,若 x 0 (3), (x) b,若 x 1 (3)
abc aa b c
(x) c,若 x 2 (3), 显然是满射
三、同态核
思考题1:G ~ G , (e) e ,那么 1(e ) e ?
例1 G (Z, ) 与 G {0,1, 2, 3}, a b (a b) mod 4 同态
: x x mod 4, (x Z )
e (0) 0 mod 4 0
1(e ) { , 8, 4, 0, 4, 8, }
s 在 之下的象;
s A ,称 s 1(s ) {a | (a) a, a s }
为 s 在 之下的逆象.
2019/9/30
11:56
定理2
两个代数系统 G 与 G 同态, 若 G 是群,
则 G 也是群.
证明:
G
~
G
,G
是群,有结合律,则
G
也有结合律; 是同态满射,有
2019/9/30
11:56
推论1:设
G
与G
是有限群,且
G~G
,则 | G | 整除 | G | .
| G || G / Ker | | G |
推论2: 循环群的商群也是循环群.
2019/9/30
11:56
五、群的同构定理
定理5 设 是群 G 到群G 的同态满射 ,又 Ker N G, N (N ) ,则
Ker {全体偶数}2019/9/3011:56引理1
同态基本定理与同构定理

第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ))()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。
群论第2章

√
• 循环群:由一个元素X及其全部h个幂组成的集合, 其中Xh=E, h阶循环群。 循环群的特点:都是阿贝尔群 G3是3阶循环群
问题:四阶群有几种?其乘法表如何?
①四阶循环群G4
(1):
(1) G4
E
A
B
C
X=A,X2=B,X3=C,X4=E
其中:B-1=B, A-1=C ②存在G4(2),
(2) G4
ABC=A(BC)=(AB)C
若 AB=BA,
AB≠BA
则群为阿贝尔群(对易群)
③单位元素E: 群中必有单位元素(恒等元素) 存在。 单位元素与其它元素相乘可以交换顺序,且等于 元素本身。 若A∈G , ④逆元素: 群中每个元素必有自己的逆元素。 若A∈G,必有A-1∈G, 则 EA=AE=A
并有 AA-1=A-1A=E • 群G的单位元素是唯一的; • 若 A∈G,则G中A的逆元A-1是唯一; • E的逆元是其本身.
二阶群:
E A E A A E
E E A B A A B B
三阶群:
• 若AA=E,
则不满足重排原理,E、A 和B不构成群。
G3 E A B
G3 E A B
E A B E A B A ? B
E E A B A A B E B B E A
x
• 当AA=B,
满足重排原理,元素符合 群条件,其中 AA=B, AB=AAA=E
C3v ③ 求σ的共轭元素, E …. C3 通过相似变换可得σ σ’和 σ’’彼此 C32 E E C3 C32 C3 C3 C32 E C32 C32 E C3
结论:
① 恒等元素在任何群中自成一类。 ② 在群的各类中不会有相同的元素出现。
近世代数复习(1)

第一章 基本概念1.1 集合1.集合:由一些事物所组成的一个整体.通常用大写拉丁字母,,,A B C L L 表示.2.组成一个集合的各个事物称为这个集合的元素,通常用小写拉丁字母,,,a b c L L 表示.常见符号:;,.a A a A a A ∈∉∈3.子集:若,a A a B ∀∈⇒∈则称A 是B 的子集,B 是A 的扩集,或A 包含于B , B 包含A ,记作,A B B A ⊆⊇.当A 不是B 的子集时,记作“A B ⊄”.4.真子集:若A B ⊆,且b B ∃∈,而b A ∉,则称A 是B 的真子集,记作A B ⊂.5.幂集:由给定集合A 的全体子集所组成的集合称为A 的幂集,记作()2A P A =.6.设,A B 是全集U 的两个子集.{}|A B x x A x B ⋃=∈∈或{}|A B x x A x B ⋂=∈∈且A 的余:{}=|A x x U x A '∈∉,B 在A 中的余:{}{}\||.A B x x A x B x x A x B A B ''=∈∉=∈∈=⋂且 且 例. 设},,,,,{},,,,{},,,,,,,,{g f e d a N h e c a M h g f e d c b a U ===求,\,.M N M N M N ''⋃⋂解:{}{}{}{}{},,,,,,;\,;,,,,,,;.M N a c d e f g h M N c h M b d f g N b c h M N b ⋃==''''==⋂=1.2 映射1.映射:设,A B 是两个给定的非空集合,若有一个对应法则f ,使a A ∀∈,通过f ,!b B ∃∈与其对应,则称f 是A 到B 的一个映射,记作:f A B →或f A B −−→A 称为f 的定义域,B 称为f 的陪域.b 称为a 在f 下的像,a 称为b 在f 下的 原像,记作()b f a =或:.f a b a2.映射相等:设f 是1A 到1B 的映射,g 是2A 到2B 的映射,若1122,,A B A B ==且1x A ∀∈,都有()()f x g x =,则称f 与g 相等,记作f g =.3.设,,A B C 是三个集合,f 是A 到B 的映射,g 是B 到C 的映射,规定:(()),,h x g f x x A ∀∈a则h 是A 到C 的映射,称为f 与g 的合成(或乘积),记作h g f =o ,即()(()),.g f x g f x x A =∀∈o4.设f 是A 到B 的一个映射.(1)若12,a a A ∀∈,当12a a ≠时,有12()()f a f a ≠,则称f 是A 到B 的一个单射;(2)若,b B a A ∀∈∃∈,使()f a b =,则称f 是A 到B 的一个满射;(3)若f 既是单射,又是满射,则称f 是一个双射.例如,映射:,2,,f x x x →+∀∈ a ?是从¡到¡的一一映射.设f 是A 到B 的映射,g 是B 到C 的映射,若g f o 有左逆映射,则f 有左逆映射.但是g 没有.1.3 卡氏积与代数运算1.设,A B 是两个集合,作一个新的集合:{}(,)|a b a A b B ∈∈,称这个集合是A 与B 的笛卡尔积(简称卡氏积),记作A B ⨯.例如,集合A 中含有m 个元素,集合B 中含有n 个元素,则A 与B 的卡氏积 A B ⨯中含有mn 个元素.n 个集合的卡氏积12,,,n A A A L 定义为{}12(,,,)|1,2,,,n i i a a a a A i n ∈=L L ,并记作12n A A A ⨯⨯⨯L ,或1ni i A =∏.2.设,,A B D 是三个非空集合,从A B ⨯到D 的映射称为,A B 到D 的代数运算.特别,当A B D ==时,,A A 到A 的代数运算简称为A 上的代数运算.3.设o 是集合A 上的一个代数运算,若123,,a a a A ∀∈,都有123123()(),a a a a a a =o o o o则称o 适合结合律.若12,a a A ∀∈,都有1221,a a a a =o o则称o 适合交换律.设e 是集合,B A 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),b a a b a b a ⊕=⊕e e e则称e 对于⊕适合左分配律.设⊗是集合,A B 到A 的代数运算,⊕是A 上的代数运算,若12,,a a A b B ∀∈∈,都有1212()()(),a a b a b a b ⊕⊗=⊗⊕⊗则称⊗对于⊕适合右分配律.4.设o 是集合A 上的一个代数运算,(1)若,,a b c A ∀∈,有,a b a c b c =⇒=o o则称o 适合左消去律.(2)若,,a b c A ∀∈,有,b a c a b c =⇒=o o则称o 适合右消去律.例. 在实数集¡上规定一个代数运算ο:,2b a b a +=ο问这个代数运算ο是否适合结合律、交换律?解:(1)由于,11325353)221(3)21(,1782181)322(1)32(1=⋅+==⋅+==⋅+==⋅+=οοοοοοοο 二者不等,代数运算ο不适合结合律.(2)由于,722323,832232=⋅+==⋅+=οο 二者不等,代数运算ο不适合交换律.1.4 等价关系与集合的分类1.设,A B 是两个集合,则A B ⨯的子集R 称为,A B 间的一个二元关系.当(,)a b R ∈时,称a 与b 具有关系R ,记作aRb ;当(,)a b R ∉时,称不具有关系R ,记作aR b '.,A A 间的二元关系简称为A 上的关系.2.设:是集合A 上的一个二元关系,若满足下列性质:(1)自反性:,;a A a a ∀∈:(2)对称性:,,;a b A a b b a ∀∈⇔::(3)传递性:,,,,;a b c A a b b c a c ∀∈⇔:::则称:是A 上的一个等价关系.当a b :时,称a 与b 等价.例如,定义为“8|a b a b ⇔-:”的二元关系“:”是偶数集2¢上的一个等价关系.3.设一个集合A 分成若干个非空子集,使得A 中每一个元素属于且只属于一个元 素,则这些子集的全体称为A 的一个分类.每个子集称为一个类.类里任何一个元 素称为这个类的一个代表.集合A 上的等价关系与集合的分类之间有着本质的联系,它们可以互相决定:{}[]|.a x x A x a =∈:,4.设:是集合A 上的一个等价关系,由A 的全体不同:等价类所组成的集合族称为A 关于:的商集,记作/A :.例. 若设,,A m =∈ⅴ令 {}(,)|,,|,m R a b a b m a b =∈-¢证明m R 是整数集¢上的一个等价关系,并给出由这个等价关系所确定的¢的一个分类.证明:显然m R 是⨯ⅱ的一个子集,所以m R 是¢上的一个关系.又(1),|,a m a b ∀∈-¢所以m aR a ;(2),,a b ∀∈¢若m aR b ,则|m a b -,于是|m b a -,所以m bR a ;(3),,,a b c ∀∈¢若,m m aR b bR c ,则|,m a b -|m b c -,于是|()()m a b b c -+-,即|m a c -,所以.m aR c因此,m R 是整数集¢上的一个等价关系.由这个等价关系m R 所确定的m R 等价类为:{}[0],2,,0,,2,,m m m m =--L L{}[1],21,1,1,1,21,,m m m m =-+-+++L L{}[2],22,2,2,2,22,,m m m m =-+-+++L L………{}[1],1,1,1,21,.m m m m -=-----L L第二章 群2.1 半群1.设S 是一个非空集合,若(1)在S 中存在一个代数运算ο;(2)ο适合结合律:()(),a b c a b c =o o o o ,,,a b c S ∀∈则称S 关于ο是一个半群,记作),(οS .若半群S 的运算还适合交换律:,,,a b b a a b S =∀∈o o则称S 是交换半群.半群的代数运算“ο”通常称为乘法,并将符号“ο”省略,即b a ο记作ab ,称为a 与b 的积.一个交换半群S 的代数运算常记作“+”,并称为加法,此时结合律、交换律分别为:()(),,,,,,.a b c a b c a b c S a b b a a b S ++=++∀∈+=+∀∈2.设S 是半群,,n a S ∈∈¥,n 个a 的连乘积称为a 的n 次幂,记作n a ,即.n n a aa a =678L且有:(),,,,.nm n m n m mn a a a a a a S m n +==∀∈∈¥ 如果S 是交换半群,且代数运算是加法时,a 的n 次幂应为a 的n 倍,表示n 个a 的和,记作na ,即.n na a a a =+++6447448L相应运算性质具有下列形式:,,.a S m n ∀∈∈¥(),()(),().ma na m n a n ma nm a n a b na nb +=+=+=+2.2 群的定义1.设(,)G g 是一个有单位元的半群,若G 的每个元都是可逆元,则称G 是一个群.适合交换律的群称为交换群或阿贝尔群.交换群G 的运算常用“+”号表示,并称G 是加群.2.设G 是半群,则下列四个命题等价:(1)G 是群;(2)G 有左单位元l ,而且G a ∈∀关于这个左单位元l 都是左可逆的;(3)G 有右单位元r ,而且G a ∈∀关于这个右单位元r 都是右可逆的;(4)G b a ∈∀,方程b ya b ax ==,在G 中都有解.3.若群G 所含元素个数有限,则称G 是有限群,称G 所包含元素的个数G 是G 的阶.4.群G 的运算适合左、右消去律.2.3 元素的阶1.设G 是一个群,e 是G 的一个单位元,a G ∈,使m a e =成立的最小正整数m 称为元素a 的阶,记作a m =.若使上式成立的正整数m 不存在,则称a 是无限阶的,记作a =∞.每个元素的阶都是无限的群不存在.当G 是加群时,其运算是加法,单位元为零元0,所以上式具有下列形式:0.ma =2.设G 是一个群,a G ∈,若,b G n ∀∈∃∈¢,使n b a =则称G 是由a 生成的循环群,a 是G 的生成元,记作().G a =循环群一定是交换群.3.设()G a =是一个循环群,(1)若a m =,则G 是含有m 个元素的有限群,有()m ϕ个生成元:,(,)1,r a m r =且{}0121,,,,;m G e a a a a -==L(2)若a =∞,则G 是无限群,有两个生成元:1,a a -,且{}21012,,,,,,.G a a a a a --=L L4.设G 是m 阶群,则G 是循环群当且仅当G 有m 阶元.例. 求出模12的剩余类加群12¢的每一个元的阶与所有生成元.解:12个元素:],11[],10[],9[],8[],7[],6[],5[],4[],3[],2[],1[],0[ 阶分别为:.12,6,4,3,12,2,12,3,4,6,12,1 由于12¢是由[1]生成的12阶循环群,所以12¢的生成元为:].11[],7[],5[],1[2.4 子群1.设G 是一个群,H G ∅≠⊆,若H 对G 的乘法作成群,则称H 是群G 的一个子群,记作.H G ≤2.设G 是群,H G ∅≠⊆,则下列各命题等价:(1)H G ≤(即H 对G 的乘法构成群);(2),a b H ∀∈,有1,ab a H -∈;(3),a b H ∀∈,有1.ab H -∈3.(1)无限循环群G 的子群,除单位元子群外,都是无限循环群.而且G 的子群的个数是无限的;(2)m 阶循环群G 的子群的阶是m 的因数;反之,若n|m ,则G 恰有一个n 阶子群,从而G 的子群的个数等于m 的正因数个数.任何一个群都不能是它的两个真子群的并.例1. 设12¢是一个模12的剩余类加群,证明:{}[0],[4],[8]H =是12¢的一个子群.证明:首先[0]H ∈,从而H ≠∅.又[0][0][0],[0][4][4],[0][8][8],[4][4][8],[4][8][0],[8][8][4],+=+=+=+=+=+= 而12¢是一个交换群,所以H 对12¢的加法运算封闭. 因此12.H <¢ 例2. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是:1,2,4.1阶子群是单位元群{}e ,4阶子群是4K 自身;2阶(素数阶)子群是由二阶元生成的循环群. 因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.5 变换群1.非空集合A 到A 自身的映射称为A 的变换,A 到A 自身的满射称为A 的满变换,A 到A 自身的单射称为A 的单变换,A 到A 自身的双射称为A 的一一变换,A A ={A 的所有变换}.()E A ={A 的所有一一变换}.()E A 称为A 的一一变换群,()E A 的子群称为A 的变换群.2.(1)一个包含n 个元的有限集合的一一变换称为(n 次)置换;(2)一个包含n 个元的有限集合的所有置换作成的群称为n 次对称群,记作n S ;对称群的子群称为置换群.3.设在n 次置换σ下,1j 的像是2j ,2j 的像是31,,r j j -L 的像是r j ,r j 的像是1j , 其余的数字(如果还有的话)保持不变,则称σ是一个r 项循环置换,记作()12,,,,r j j j σ=L也可以记作()()23111,,,,,,,,,.r r r j j j j j j j σσ-==L L L1项循环置换()j 是恒等置换,2项循环置换()12j j 又称为对换.4.(1)n S 中的所有偶置换作成n S 的子群(称为n 次交错群,记作n A );(2)n 次交错群n A 的阶是!.2n例1. 写出三次对称群3S 的所有元素.解:.123321,312321,231321,213321,132321,321321⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛例2. 设两个六次置换: ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=416532654321,526413654321τσ求.,,12-στστστ 解:123456,142536στ⎛⎫= ⎪⎝⎭ 2123456,134652τσ⎛⎫= ⎪⎝⎭ 1123456.231546στ-⎛⎫= ⎪⎝⎭例3. 将下列轮换的乘积表示为不相交轮换的乘积.()()()4251314234563解:记(3654),(3241),(31524)σδη===,则:1554,2411,3136,4322,5243,6665,σδηa a a a a a a a a a a a a a a a a a从而,(3654)(3241)(31524)(142)(365).=2.6 群的同态与同构1.设G 与G '都是群,f 是G 到G '的映射,若f 保持运算,即()()(),,,f xy f x f y x y G =∀∈则称f 是G 到G '的同态.若同态f 是单射,则称f 是单同态;若同态f 是满射,则称f 是满同态,并称G 与G '同态,记作G G ':;若同态f 是双射,则称f 是同构,并称G 与G '同构,记作.G G '≅2.设f 是群G 到群G '的同态,e '是G '的单位元,则称{}Im ()()|f f G f x x G ==∈是f 的同态像,称{}1()|()Kerf f e x G f x e -''==∈=是f 的同态核.3.设f 是群G 到群G '的同态,e 是G 的单位元,则(1)f 是满同态当且仅当Im ;f G '=(2)f 是单同态当且仅当{}.Kerf e =4.任意一个群G 都与一个变换群同构.5.设()G a =是循环群,则(1)若a m =,则(,);m G ≅+¢(2)若a =∞,则(,).G ≅+¢2.7 子群的陪集1.设H G ≤,在G 中定义一个(等价)关系l R :1,,.l aR b b a H a b G -⇔∈∀∈由等价关系l R 所决定的类称为H 的左陪集.包含元素a 的左陪集等于aH .2.设H G ≤,则下列各命题成立:(1)a aH ∈;(2)1.aH bH aH bH a b H b aH bH aH -=⇔⋂≠∅⇔∈⇔∈⇔⊆ 特别,;.aH H a H eH H =⇔∈=(3)在aH 与H 之间存在一个双射.3.设H G ≤,在G 中定义一个(等价)关系r R :1,,.r aR b ab H a b G -⇔∈∀∈由等价关系r R 所决定的类称为H 的右陪集.包含元素a 的左陪集等于Ha .4.(Lagrange 定理)设G 是有限群,H 是G 的子群,则||[:]||.G G H H =5.有限群G 的每一个元素的阶都是||G 的因数;素数阶的群都是循环群.例如,6阶有限群的任何子群的阶数都是其正因子:1,2,3,6. 设G 是有限群,H 是G 的正规子群,若||H 与[:]G H 互素,则H 是G 中唯一的||H 阶子群.例. 求出Klein 四元群{}4,,,K e a b ab =的所有子群.解:由Lagrange 定理,{}4,,,K e a b ab =的子群的阶只能是1,2,4,而1阶子群是单位元群{}e ,4阶子群是4K 自身.二阶(素数阶)子群是由二阶元生成的循环群,因此4K 的子群有且只有下列5个:1阶子群:{}e ;2阶子群:{}{}{}(),,(),,(),a e a b e b ab e ab ===;4阶子群:4.K2.8 正规子群与商群1.设N G ≤,若a G ∀∈都有,aN Na =则称N 是G 的正规子群或不变子群,记作.N G <2.设N G ≤,则下列各命题等价:(1)N G <(即,aN Na a G =∀∈);(2)1,,;ana N a G n N -∈∀∈∈(3)1,;aNa N a G -⊆∀∈(4)1,;aNa N a G -=∀∈(5)N 的每一个左陪集也是N 的右陪集.3.设G 是群,记作N G <,令{}/|,G N aN a G =∈规定:(),,/,aN bN ab N aN bN G N =∀∈g则(/,)G N g 是一个群,称为G 关于N 的商群.4.商群/G N 的阶是N 在G 中的指数[:]G N ,且当G 是有限群时,/G N 的阶是||.||G N 2.9 正规子群与商群1.一个群G 与它的每一个商群/G N 同态.:/,,G G N a aN a G π→∀∈a称为自然(满)同态.自然同态π的核为N.2.(同态基本定理)设f 是群G 到群G '的同态,则(1);Kerf G <(2)/Im .G Kerf f ≅3.(第一同构定理)设f 是群G 到G '的满同态,N G ''<,1()N f N -'=,则N G <,并且//.G N G N ''≅例. 设(6),(30)是整数加群¢的两个子群,证明:5(6)/(30).≅¢ 证明:令5:(6),6[6],f n n →则f 是到的一个满同态,且{}{}{}{}6(6)|(6)[0]6(6)|[6][0]6(6)|5|630|(30).Kerf n f n n n n n m m =∈==∈==∈=∈=¢因此,(30)(6)<,且5(6)/(30).≅¢ 第三章 环3.1 环的定义1、设R 是一个非空集合,具有两种代数运算:加法(记作“+”)与乘法(记作“g ”),若(1)(,)R +是一个加群;(2)(,)R g 是一个半群;(3),,a b c R ∀∈都有乘法关于加法的左右分配律:(),(),a b c a b a c b c a b a c a +=++=+g g g g g g 则称R 是一个结合环,简称环,记作(,,)R +g .2、常见环(1)数环:数集关于数的加法、乘法所作成的环.例如2.⊂⊂⊂⊂ⅱぁ?(2)R 上的n 阶全矩阵环()n M R :数环R 上全体n 阶矩阵关于矩阵加法、乘法.(3)R 上的一元多项式环[]R x :数环R 上全体一元多项式关于多项式的加法、乘法.(4)高斯(Gauss )整数环[]{|,}i m ni m n =+∈ⅱ关于数的加法、乘法作成一个环.(5)设G 是一个加群,()E End G =是G 的所有自同态所组成的集合,规定:,,E x G στ∀∈∈,()()()(),()()(()),x x x x x στστστστ+=+=g 则(,,)E +g 是一个环,称为G 的自同态环.(6)商集{}[0],[1],,[1]m m =-关于加法运算[][][],a b a b +=+与乘法运算[][][],a b ab =g作成一个环(,,)m +,称为模m 的剩余类环.3、环的初步性质环R 关于加法是一个加群,R 具有加群的运算性质:(1)00,;a a a a R +=+=∀∈(2)()()0,;a a a a a a a R -=+-=-+=∀∈(3)(),;a a a R --=∀∈(4),,,;a b c b c a a b c R +=⇔=-∀∈(5)(),(),,;a b a b a b a b a b R -+=----=-+∀∈(6)()(),(),,,,;m na mn a n a b na nb m n a b R =+=+∀∈∈¢其次,环R 关于乘法是一个半群,而且加法与乘法通过左右分配律相联,从而R 还具有如下性质:(7)(),(),,,;a b c ac bc c a b ca cb a b c R -=--=-∀∈(8)000,;a a a R ==∀∈(9)()(),()(),,;a b a b ab a b ab a b R -=-=---=∀∈00,,x y x y ⎛⎫∈ ⎪⎝⎭¡00,,x y x y ⎛⎫∈ ⎪⎝⎭¡(10)121212121111(),(),,;,,;n n n n i m n mn i j i j i j i j i j a b b b ab ab ab b b b a b a b a b a a b R a b a b a b R ====+++=++++++=+++∀∈⎛⎫⎛⎫=∀∈ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑L L L L(11)()()(),,,.na b a nb n ab n a b R ==∀∈∈¢4、若环R 的乘法运算g 适合交换律,则称R 是交换环.5、若在环R 中,半群(,)R g 有单位元,则称R 是有单位元环,或称R 是带1的环.6、设R 是一个环,0a R ≠∈,若0b R ∃≠∈,使0(0),ab ba ==则称a 是R 的一个左(右)零因子.当a 既是R 的左零因子,又是R 的右零因子时,则称a 是R 的零因子. 例如,模12的剩余类环12¢是有零因子环:[3][4][12][0]==.例1. 求所有形如的矩阵组成的环R 的零因子.解:对任意的由于00000,0a x y ⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭所以环R 的每个非零元素都是R 的右零因子,且每个形如00,00a a ⎛⎫≠ ⎪⎝⎭的元素都是R 的左零因子.又当0≠a 时,如果0000000,*a x y ax ay ⎛⎫⎛⎫⎛⎫⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则有0,0==y x .所以00,0*a a ⎛⎫≠ ⎪⎝⎭不是环R 的左零因子.所以环R 的左右零因子分别是00,00a a ⎛⎫≠ ⎪⎝⎭ 与 00,x y ⎛⎫ ⎪⎝⎭y x ,不全为0. 7、设环R 不含左、右零因子,则称R 是无零因子环.8、一个有单位元、无零因子的交换环称为整环.9、设R 是一个环,若(1)R 至少包含两个元素;(2)R 有单位元;(3)R 中每个非零元都可逆;则称R 是一个除环(或体,斜域).一个交换除环称为域.除环具有以下性质:(1)设R 至少包含两个元素,则R 是除环R ⇔中全体非零元组成的集合R *关于乘法作成一个群;(2)除环R 是无零因子环;(3)在除环R 中,,,0a b R a ∀∈≠,方程ax b =与ya b =都有唯一解.(4)一个至少含有两个元素,且没有零因子的有限环是除环.(5)一个有限整环是域.11、设R 是一个环,若存在最小正整数n ,使对于所有a R ∈,都有0na =,则称n 是环R 的特征(数).若这样的n 不存在,则称环R 的特征(数)是零.环R 的特征(数)记作chR .在一个无零因子环R 中,所有非零元(对于加法)的阶全相等.12、设R 是一个环,且0chR n =>,则(1)当R 是有单位元时,n 是满足10n =g 的最小正整数;(2)当R 是无零因子时,n 是素数.13、域F 的特征或是素数,或是零.3.2 子环1、设R 是一个环,S R ∅≠⊆,若S 关于R 的加法、乘法作成环,则称S 是R 的一个子环,R 是S 的扩环,记作S R ≤.平凡子环:{0},.R非平凡子环:,{0},.S R S S R ≤≠≠2、(1)设R 是一个环,S R ∅≠⊆,则S 是R 的子环,a b S ⇔∀∈,有,.a b ab S -∈(2)设R 是一个除环(域),S R ∅≠⊆,则S 是R 的子除环(子域),a b S ⇔∀∈,有1,(0).a b ab b S --≠∈3、当S 是R 的一个子环时,S 与R 在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则S 也是交换环.②当S 是交换环时,R 未必是交换环. 例如20|,,().0a a b M b ⎧⎫⎛⎫∈⎨⎬ ⎪⎝⎭⎩⎭ (2)在有无零因子上.①若R 是无零因子环,则S 也是无零因子环.②当S 是无零因子环时,R 未必是无零因子环. 例如12¢有零因子[3],[4]等,但{}[0],[4],[8]没有零因子.(3)在有无单位元上.①若R 有单位元,S 可以没有单位元. 例如¢有单位元1,但其子环2¢没有单位元.②若S 有单位元,R 可以没有单位元. 例如0|,,|,.0000a b a R a b S a b ⎧⎫⎧⎫⎛⎫⎛⎫=∈=∈⎨⎬⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭⎩⎭ ③若R 与S 都有单位元,它们的单位元可以不同. 例如210(),;01010|,,.0000M a S a b ⎛⎫ ⎪⎝⎭⎧⎫⎛⎫⎛⎫=∈⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭¡¡ 4、设R 是环,I 是一个指标集,()i S R i I ≤∈,则i i I S R ∈≤I .5、设R 是环,T R ∅≠⊆,令{}12|,n i S x x x x T n =±∈∈∑L ?则S R ≤.上述子环S 称为由T 生成的子环,记作[]T .并称T 中元素是[]T 的生成元,T 是[]T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称[]T 是有限生成的,并可以记作12[,,,]l t t t L .特别地,1[]|,m i i i i t n t n m =⎧⎫=∈∈⎨⎬⎩⎭∑ⅴ. 6、设R 是环,T R ∅≠⊆,{}|,i i M S T S R i I =⊆≤∈是R 的所有包含T 的子环族,则i i IT S ∈=I .3.3 环的同态与同构1、设R 与R '都是环,f 是R 到R '的映射,若f 保持运算,即,x y R ∀∈,有()()(),()()(),f x y f x f y f xy f x f y +=+= 则称f 是R 到R '的同态.单同态:同态f 是单射.满同态:同态f 是满射,并称R 与R '同态,记作R R ':. 同构:同态f 是双射,并称R 与R '同构,记作R R '≅. 环R 的自同态:R 与R 的同态;环R 的自同构:R 与R 的同构.2、设f 是环R 到环R '的同态.(1)若0是R 的零元,则(0)f 是R '的零元;(2),()()a R f a f a ∀∈-=-;(3)若S R ≤,则()f S R '≤;(4)若S R ''≤,则1()f S R -'≤.3、当:f R R '→是满同态时,R 与R '在是否可交换、有无零因子、有无单位元等性质上有一定的联系,但是并不完全一致.(1)在交换性上.①若R 是交换环,则R '也是交换环.②当R '是交换环时,R 未必是交换环. 例如0:.00a b a f c c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭a (2)在有无零因子上.①当R 是无零因子环时,R '未必是无零因子环. 例如:m f ,¢没有零因子,m 是合数时,m ¢是有零因子环.②当R '是无零因子环时,R 未必是无零因子环. 例如 0:;00001010.0000a b a f c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭a (3)在有无单位元上.①若R 有单位元1,则R '有单位元(1)f .②当R '有单位元时,R 未必有单位元. 例如010:;000000a b a f ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a 4、设环R R '≅,则R 是整环(除环,域)R '⇔是整环(除环,域).5、设f 是环R 到环R '的同态,g 是环R '到环R ''的同态,则f 与g 的合成g f o 是环R 到环R ''的同态.6、设f 是环R 到环R '的满同态(单同态,同构),g 是环R '到环R ''的满同态(单同态,同构),则f 与g 的合成g f o 是环R 到环R ''的满同态(单同态,同构).7、设f 是环R 到环R '的同态,0'是R '的零元,则称{}|()0Kerf x R f x '=∈=是的同态核.8、设f 是环R 到环R '的同态,0是R 的零元,则f 是单同态{}0.Kerf ⇔=3.4 理想与商环1、设(,,)R +g 是一个环,(,)A +是(,)R +的一个子加群,(1)若,r R a A ∀∈∈有ra A ∈,则称A 是R 的左理想;(2)若,r R a A ∀∈∈有ar A ∈,则称A 是R 的右理想;(3)若A 既是R 的左理想,又是R 的右理想,则称A 是R 的(双侧)(双边)理想,记作A R <.若A R <,且A R ≠,则称A 是R 的真理想.理想是子环,子环不一定是理想.2、只有零理想{}0与单位理想R 的环R 称为单环. 除环是单环.3、设R 是一个环,I 是一个指标集,()i A R i I ∈<,则i i IA R ∈<I .注:理想的并集一般不是理想.5、设R 是环,T R ∅≠⊆,{}|,i i M A T A R i I =⊆∈<是R 的所有包含T 的理想族,则称i i IA ∈I 是由T 所生成的理想,记作()T .并称T 中元素是()T 的生成元,T 是()T 的生成元集.若12{,,,}l T t t t =L 是有限集,则称()T 是有限生成的,并可以记作12(,,,)l t t t L . 特别地,由一个元素a 生成的理想()a 称为主理想.3、设R 是一个环,a R ∈,T R ∅≠⊆,则{}()|,,,,i i i i a x ay sa at na x y s t R n =+++∈∈∑¢.且有(1)若R 是有单位元环,则{}()|,i i i i a x ay x y R =∈∑;(2)若R 是交换环,则{}()|,a ra na r R n =+∈∈¢;(3)若R 是有单位元的交换环,则{}()|a ra r R =∈;(4){}()|(),i i i i T x x t t T =∈∈∑.例1. 求整数环¢上一元多项式环[]x ¢的理想(2,)x ,并证明(2,)x 不是主理想. 证明:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈¢¢ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.若(2,)(()),()[],x p x p x x =∈¢则2(()),(()),2()(),()(),(),()[],(),(),1(2,)p x x p x p x q x x p x h x q x h x x p x a x ah x a x ∈∈==∈=∈==±∈¢¢这与1(2,)x ±∉矛盾.得证.4、设R 是环,A R <,在商群{}{}(,)/(,)[]||R A x x R x A x R ++=∈=+∈中再规定:[][][],[],[]/x y xy x y R A =∀∈g ,则(/,,)R A +g 是一个环,/R A 称为R 关于A 的商环或剩余类环,[]x x A =+称为R 模A 的剩余类.5、(1)若R 是交换环,则/R A 也是交换环;(2)若R 是有单位元1的环,则/R A 有单位元[1].6、一个环R 与它的每一个商环/R A 同态.自然同态::/,[],R R A x x x A x R π→=+∀∈a . 且有.Ker A π=7、(同态基本定理)设f 是环R 到环R '的同态,则(1)Kerf R <;(2)/Im R Kerf f ≅.8、(第一同构定理)设f 是环R 到环R '的满同态,A R ''<,1()A f A -'=,则A R <,并且//R A R A ''≅.9、设f 是环R 到环R '的满同态,若A R <,则()f A R '<.3.5 素理想与极大理想1、设R 是交换环,P 是R 的一个理想,若,,a b R ab P a P ∀∈∈⇒∈或b P ∈,则称P 是R 的素理想.单位理想是素理想.当R 是无零因子交换环时,零理想也是素理想;当R 有零因子时,零理想不是素理想.2、设P 是有单位元的交换环R 的一个理想,则P 是R 的素理想/R P ⇔是整环.例1. 试求模18的剩余类环18¢的所有素理想.解:(1)18¢有6个子加群:{}{}{}{}{}18{[0]},[0],[1],,[17],([2])[0],[2],[4],[6],[8],[10],[12],[14],[16],([3])[0],[3],[6],[9],[12],[15],([6])[0],[6],[12],([9])[0],[9].=====它们也是18¢的所有子环,也是18¢的所有理想.(2)因为[2][3][6]([6]),=∈但是[2],[3]([6]),∉所以([6])不是18¢的素理想.同理可证,{0},([9])都不是18¢的素理想.(3)对于([3]),设18[],[],[][]([3])a b a b ∈∈¢,则[][]([3]),[3][0],18|3a b r ab r ab r =-=-,从而存在m ∈¢,使318,183.ab r m ab m r -==+因为3|18,所以3|ab ,从而3|a 或3|b ,因此[]([3])a ∈或[]([3])b ∈,所以([3])是18¢的素理想.同理可证,([2])也是18¢的素理想.(4)显然单位理想18¢是18¢的素理想.3、设M 是环R 一个真理想,若对于的理想N ,M N N R ⊂⇒=,则称M 是R 的极大理想.R 中包含极大理想M 的理想只有R 与M .环R 本身不是的极大理想.若R 只有平凡理想,则零理想是R 的极大理想. 一个环可以有多个极大理想,也可以没有极大理想.4、设M 是有单位元的交换环R 的一个理想,则M 是R 的极大理想/R M ⇔是域.5、在有单位元的交换环中,极大理想一定是素理想.例2. 证明:在整数环¢上一元多项式环[]x ¢中,(2,)x 是一个极大理想. 证:因为[]x ¢是有单位元的交换环,所以12120(2,){2()()|(),()[]}{2()|()[]},x f x xf x f x f x x a xf x f x x =+∈=+∈ⅱ 即(2,)x 是由[]x ¢中常数项为偶数的多项式组成.令[0],2|(0),(())[1],f f x ϕ⎧=⎨⎩其它 …………(3分) 则ϕ是满同态,且ker {()[]|(())[0]}{()[]|2|(0)}(2,),f x x f x f x x f x ϕϕ=∈==∈=¢¢ 由同态基本定理,2[](2,)x x ≅¢¢,2¢是域,则 [](2,)x x ¢ 也是域,(2,)x 是[]x ¢的极大理想. 3.6 商域1、(挖补定理)设S 是环R 的子环,S S '≅,S R '⋂=∅,则存在S '的扩环R ', 使R R '≅.2、每一个无零因子交换环R 都可以扩充为一个域F .3、无零因子交换环R 的扩域F 的构造为{}1|,F ab a R b R -*=∈∈.4、设R 是无零因子交换环,F 是R 的扩域,且{}1|,F ab a R b R -*=∈∈则称F 是R 的商域(或分式域).5、(1)设F 是环R 的商域,F '是环R '的商域,若R R '≅,则F F '≅.(2)设F 与F '都是环R 的商域,则F F '≅.即,在同构的意义下,环的商域是唯一的.(3)环R 的商域是R 的最小扩域.例如¤是¢的商域,¡不是¢的商域.3.7 多项式环1、设R '是一个有单位元1的交换环,1R R '∈≤,R α'∈,则R '中形如()2012,{0}n n i a a a a a R n ααα++++∈∈⋃L ?的元素称为R 上α的一个多项式,记作()f α;i a 称为()f α的系数,i i a α称为()f α的项.2、用[]R α表示全体R 上α的多项式所组成的集合,[]R α称为R 上α的多项式环.3、设R '是一个有单位元1的交换环,1R R '∈≤,x R '∈,若()201201,{0}0,nn i n a a x a x a x a R n a a a ++++∈∈⋃⇒====L ?L则称x 是R 上的未定元.称x 的多项式 ()2012(),{0}n n i f x a a x a x a x a R n =++++∈∈⋃L ?是一元多项式.当0n a ≠时,称n n a x 是()f x 的首项;称n a 是()f x 的首项系数;称n 是()f x 的次数,记作deg ()f x ,零多项式0没有次数.[]R x 称为R 上的一元多项式环.4、设(),()f x g x 是[]R x 中两个非零多项式,则(1)(){}deg ()()max deg (),deg ()f x g x f x g x +≤,(2)()deg ()()deg ()deg ()f x g x f x g x ≤+,且当()f x 与()g x 的最高次项系数不是零因子时,有()deg ()()deg ()deg ()f x g x f x g x =+5、设R 是一个有单位元的交换环,则一定存在R 上的未定元x ,从而存在一元多项式环[]R x .6、设(),()[]f x g x R x ∈,且()0g x ≠,若()g x 的首项系数是可逆元,则存在唯一的一对多项式(),()[]q x r x R x ∈,使()()()(),()0f x g x q x r x r x =+= 或 deg ()deg ()r x g x <.7、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n R ααα'∈L ,把环12[][][]n R αααL 称为R 上的12,,,n αααL 的多项式环,记作12[,,,]n R αααL .12[,,,]n R αααL 中的元素称为R 上12,,,n αααL 的多项式,它们都可以表示为()1212n n i i i i i i a a R ∈∑L L 其中仅有有限个120n i i i a ≠L ,12n i i i a L 称为这个多项式的系数.8、设R '是一个有单位元1的交换环,1R R '∈≤,12,,,n x x x R '∈L ,若()1212121212000,1,2,;1,2,,n n n n i i i i i i n i i i i i i j a x x x a i j n =⇒===∑L L L L L L则称12,,,n x x x L 是R 上的无关未定元.称12,,,n x x x L 的多项式()1212121212n n n n i i i i i i n i i i i i i a x x x a R ∈∑L L L L 是n 元多项式.称12[,,,]n R x x x L 是n 元多项式环.9、设R 是一个有单位元的交换环,n ∈¥,则一定存在R 上的无关未定元12,,,n x x x L ,从而存在n 元多项式环12[,,,]n R x x x L .第四章 整环里的因子分解在本章中,I 都表示整环,其单位元是1.4.1 不可约元、素元、最大公因子1、整环I 中的可逆元ε称为I 的单位.ε是单位()I ε⇔=.一个元素个数大于2的整环中至少有两个单位:1和1-.整数环只有两个单位,即1和1-.域F 中的每一个非零元都是单位.2、整环I 的全体单位关于I 的乘法构成一个交换半群.3、设,a b I ∈,若c I ∃∈,使a bc =则称b 整除a ,或b 是a 的因子,记作|b a .4、整除关系具有下列性质.(1)|,||c b b a c a ⇒;(2)|()()b a a b ⇔⊆;(3)|,|,a b b a b a εε⇔=是I 的单位()()b a ⇔=;(4)ε是I 的单位|1ε⇔;(5)设b I ∈,ε是I 的单位,若|b ε,则b 也是I 的单位;(6)设a I ∈,ε是I 的单位,则|,|a a a εε.5、设,a b I ∈,若|a b 且|b a ,则称a 与b 相伴,记作a b :.6、设,,a b c I ∈,则下列各个命题等价:(1)a b :;(2),b a εε=是I 的单位;(3)()()a b =.7、相伴关系是整环I 上的一个等价关系.8、设,a b I ∈,若|b a ,但b 不是单位,且b 与a 不相伴,则称b 是a 的真因子.9、设,a b I ∈,则b 是a 的真因子()()a b I ⇔⊂⊂.10、单位没有真因子.11、设a I ∈,且a bc =,若b 是a 的真因子,则c 也是a 的真因子.12、设a I ∈,且0a ≠,a 不是单位,若a 在I 中没有真因子,则称a 是I 的一个不可约元;若a 在I 中有真因子,则称a 是I 的一个可约元.13、设a I ∈,且0a ≠,a 不是单位,则a 是I 的可约元a bc ⇔=,且,bc 都不是单位.14、一个不可约元的相伴元也是不可约元.15、设p I ∈,且0p ≠,p 不是单位,若由|p ab 可推出|p a 或|p b ,则称p 是I 的一个素元.16、在整环I 中,每一个素元都是不可约元.17、设,a b I ∈,若d I ∃∈,使(1)|,|d a d b ;(2),|,||c I c a c b c d ∀∈⇒;则称d 是a 与b 的最大公因子. 18、最大公因子有以下基本性质:(1)(,0)a a :;(2)(,)00a b a b ⇔==:;(3)a I ∀∈与单位ε,有(,)a εε:.19、设,a b I ∈,a 与b 的最大公因子存在,且是单位,则称a 与b 互素.a 与b 互素,当且仅当除单位外,a 与b 无其他公因子20、若整环I 中任意两个元的最大公因子都存在,则,,a b c I ∈,有(1)(,(,))((,),)a b c a b c :;(2)(,)(,)c a b ca cb :;(3)(,)1,(,)1(,)1a b a c a bc ⇒:::.4.2 唯一分解环1、设a I ∈满足:(1)有一个因子分解式12r a p p p =L (i p 是I 中不可约元);(1)若同时又有因子分解式12s a q q q =L (j q 是I 中不可约元);那么s r =,并且可以适当调换因子的次序,使(1,2,,)i i q p i r =:L . 则称a 为I 中的唯一分解元,并称r 是a 的长.2、设a 是唯一分解元,若在a 的分解式中,有t 个不可约因子12,,,t p p p L 互不相伴,且其他的不可约因子都与某个i p 相伴,则a 的分解式可以写作:1212t e e e t a p p p ε=L ,其中ε是单位,i e ∈¥.这个式子称为a 的标准分解式.3、若整环I 中每一个既不是零又不是单位的元都是唯一分解元,则称I 是唯一分解环.4、在一个唯一分解环I 中,若元a 的不可约因子已知,则可确定出a 的所有真因子(至多相差单位因子),且元a 的长大于其任一真因子的长.5、在一个唯一分解环I 中,任意两个元都有最大公因子,每一个不可约元都是素元.7、若整环I 中任意两个元的最大公因子都存在,则I 中的每一个不可约元都是素元.8、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的每一个不可约元p 都是素元;则I 是唯一分解环.9、若整环I 满足:(1)I 中每一个既不是零又不是单位的元a 都有一个因子分解:12r a p p p =L (i p 是I 中不可约元);(2)I 的任意两个元都存在最大公因子;则I 是唯一分解环.例1. 设[3]{3|,}{3|,}I m n m n m n i m n =-=+-∈=+∈ⅱ?(1)ε是I 的单位2||11εε⇔=⇔=±;(2)求2的相伴元;(3)I 中适合条件2||4a =的元a 是I 的不可约元;(4)2是I 的不可约元,但不是I 的素元;(5)I 不是唯一分解环.证:(1)循环论证法.若ε是I 的单位,则I ε'∃∈,使1εε'=.两边取模的平方,得22||||1εε'=. 设3m n ε=+-,则222||3m n εεε==+是正整数.同理2||ε'也是正整数,于是2||1ε=.若2||1ε=,则2231m n +=,所以0,1n m ==±,即1ε=±.显然1±是I 的单位.(2)由(1)及相伴元的定义,2的相伴元只有2与2-.(3)因为2||4a =,所以0a ≠且不是单位.设3b m n I =+-∈是a 的一个因子,则a bc =,c I ∈,于是2224||||||a b c ==.但是对于任何正整数222,,||32m n b m n =+≠,所以2||1b =或4.若2||1b =,则b 是单位;若2||4b =,则2||1c =,于是c 是单位,所以b a :.从而a 只有平凡因子,因此a 是不可约元.(4)因为2|2|4=,由(1)知,2是I 的不可约元.下面证2不是I 的素元.首先2|(13)(13)+---.若2|13+-,则存在c I ∈,使132c +-=.于是222|13||2|||c +-=,即244||c =,从而2||1c =,1c =±,但这是不可能的.所以2/|13+-.同理2/|13--.因此2不是I 的素元.(5)I 的单位只有1与1-,从而4是I 中一个既不是零元也不是单位的元,而且422(13)(13)=⋅=+--- 因为222|2||13||13|4=+-=--=,所以都是I 的不可约元.又因为213/+-:,213/--:,所以4有两种本质上不同的不可约元的因子分解,从而4不是唯一分解元.因此[3]I =-¢不是唯一分解环.4.3 主理想环1、若整环I 的每一个理想都是主理想,则称是主理想环.例如,整数环¢和域F 上的一元多项式环[]F x 都是主理想环;但¢上的一元多项式环[]x ¢不是主理想环:(2,)x 不是主理想.2、设是一个主理想环,若在序列123,,,(,1,2,3,)i a a a a I i ∈=L L中每一个元都是前面一个元的真因子,则这个序列一定是有限序列.3、每一个主理想环都是唯一分解环.4、设I 是主理想环,,a b I ∈,则(,)()a b d d =⇔是a 与b 的一个最大公因子.5、设I 是主理想环,12,,,s a a a I ∈L ,则12(,,,)()s a a a d d =⇔L 是12,,,s a a a L 的一个最大公因子.6、设I 是一个主理想环,p 是I 中的非零元,则()p 是I 的极大理想p ⇔是I 的不可约元.4.4 欧氏环1、设I 是整环,若(1)存在一个由\{0}I I *=到非负整数集{0}⋃¥的映射ϕ;(2),,,a I b I q r I *∀∈∈∃∈,使,0b aq r r =+=或()()r a ϕϕ<;则称I 是一个欧氏环.例如,整数环¢,高斯整(数)环[]{|,}i m ni m n =+∈ⅱ,域F 上的一元多。
群同态基本定理.

( Ng1 Ng 2 ) ( Ng1 g 2 ) N ( f ( g1 g 2 )) N ( f ( g1 ) f ( g 2 )) N f ( g1 ) N f ( g 2 ) ( Ng1 ) ( Ng 2 ) (3) 单射 ( Ng1 ) ( Ng 2 ) N f ( g1 ) N f ( g 2 )
则在 f 之下 (1) G的一个子群G1的像H1是H的子群 (2) G的一个不变子群G2的像H2是H的不变子群 (3) H的一个子群H3的逆像G3是G的子群
(4) H的一个不变子群H4的逆像G4是G的不变子群
证明:(1) h1, h2 H1, g1, g 2 G1 ,使h1=f(g1) h2=f(g2)
h H , h bl 则a l G且f (a l ) bl
满态
例4 如果G和H都是有限群,其阶互素, 则只存在一个G→H的同态映射 证明:设 f 是G→H的同态映射,令k=kerf 由同态基本定理知:
|G| G / k Im f , G / k | Im f | |k| Im f G
Im f 是H的子群, 由Lagrange 定理: Im f ( G , H ) 1 Im f 1 g G, f ( g ) eH
H
例5 设G与G 群同态, N 是G 的一个不变子群, N是N 的逆像, 则 : G / N G / N (群同态基本定理的推广 形式) 证明: 令 f 为 G G 的群同态满射, 由定理5知 : N是不变子群 定义 : G / N G / N , ( Ng ) N f ( g ), 则是一一映射 (1) 映射 (2) 同态
3-1群同态与同构

∈ H,
( H ) ≤ G, 且显然 ϕ 诱导 ϕ .
2011-7-29
-1
( H )到 H
的一个同态映射
15:30
定理4 定理4
群G到G的同态映射 ϕ是单射的充分与 必要条件是 , 群G的单位元 e的逆象只有 e.
证 : 必要性显然, 下证充分性. 设ϕ是群G到群G的任一同态映射, 且在ϕ 之下 e的逆象只有e.又设在ϕ之下 a → a, b → b , 当a ≠ b时, 必a ≠ b : 因a = b, 则由于 ab → ab = e,
定理3 定理3
设 ϕ 是群 G 是群 G 的一个同态映射 是满射 ), 则
( 不一定
1) 当 H ≤ G 时 , 有 ϕ (H) ≤ G , 且 H ~ ϕ (H); 2) 当 H ≤ G 时 , 有 ϕ -1 ( H ) ≤ G, 且在 ϕ 之下诱导 出 ϕ ( H ) 到 H 的一个同态映射
-1
-1 -1
故ab = e, a = b, 矛盾.因此, ϕ是单射.
-1
2011-7-29
15:30
例4
பைடு நூலகம்
设6阶群G不是循环群.证明 : G ≅ S3 .
证 : 因为 G 不是循环群 , 故 G 没有 6阶元 . 从而由 Lagrange 定理知 , G 必有 2阶元 或 3阶元 .
2011-7-29
2011-7-29
15:30
定理3 定理3
2 )当 H ≤ G 时 , 由于 ϕ a → a, 则 从而 ab 即ϕ
-1 -1 -1
( H ) 显然非空
, 任取
a, b ∈ ϕ -1 ( H ), 且在 ϕ 之下令 b → b. → a b -1 ,
第三章 正规子群和群的同态与同构

§1群同态与同构的简单性质
(Basic Properties of Homomorphism and Isomorphism of the groups)
一 定义
定义1 设 ( G, ) 和 G, 是两个群,如果存在映射ϕ:G → G满足
( )
ϕ (a b) = ϕ (a) ϕ (b)(∀a, b ∈ G(即ϕ 保运算) )
G ⇒ ϕ ( N ) G;
( 2) N
G ⇒ ϕ −1 ( N ) G
5.子群之积
定理3 若群G的一个正规子群和一个子群之积仍是G的子群, 两个正规子群之积仍是正规子群,也就是说,若H ≤ G , N ≤ G, 则
(1) 若N ( 2 ) 若H
G ⇒ NH ≤ G且N G且N G ⇒ HN
NH , H ∩ N
H
G,进一步,若还有H ∩ N = {e},
则∀h ∈ H , ∀n ∈ N 都有hn = nh
例4 若H ≤ G,那么N ( H ) = {x ∈ G | xH = Hx}叫做H 在G中 的正规化子,试证H N ( H ) ≤ G。
二
1. 商群的定义
设N 即
商
群
G,任取2个陪集aN , bN。则 (aN )(bN ) = a ( Nb) N = abNN = (ab) N, (aN )(bN ) = (ab) N
ϕ
三 循环群的同态象
定理3 设G和G为两个群,且G ∼ G,若G为循环群, 则G也为循环群。
推论2 循环群的商群仍为循环群. 推广 交换群的满同态象仍为交换群;交换群的商群 也是交换群.
ϕ
四 同态映射下两个群的子群之间的关系
引理 设σ :G → G是群同态映射,又H ≤ G,如果H ⊇ Kerϕ, 则
群论四大定理的探讨

本科毕业论文题目群论四大定理的探讨专业数学与应用数学作者姓名庄静学号**********单位聊城大学数学科学学院指导教师李令强2014 年 05 月教务处编原创性声明本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。
除文中已经引用的内容外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。
对本文的研究作出重要贡献的个人和集体,均在文中以明确的方式表明。
本人承担本声明的相应责任。
学位论文作者签名:日期:指导教师签名:日期:目录1.引言 (1)2.群同态与同构基本定理 (2)2.1 群同态与同构 (2)2.2 群同态基本定理 (6)2.3 群同构基本定理 (7)2.4 群同态与同构的意义 (10)3.有限群理论重要定理 (11)3.1 Sylow定理 (11)3.2 有限交换群的基本定理 (16)4.定理的应用 (22)4.1 群同态与同构定理的应用 (22)4.2 Sylow定理和有限交换群基本定理的应用 (23)5.小结 (27)6.参考文献 (28)7.致谢 (29)摘要在了解有关群论的基本定义的基础上把握群论的四大定理:群同态基本定理;群同构基本定理;Sylow定理;有限交换群基本定理,理解并掌握定理的深刻含义.群同态基本定理与群同构基本定理主要探讨的是有关群的结构、数量、联系的问题,在这两个定理的研究中,是从已知的群出发,来研究与之相关联的群,一步一步慢慢引申,更进一步来研究各类群之间的联系,把成千上万的,看起来杂乱无章的群进行归类,再研究每一类群的内在结构.有限群又是群论中非常值得研究的一类群,先通过介绍Sylow引理,循序渐进的探讨了Sylow三大定理的逻辑证明过程.紧接着又进一步探讨了另一种特殊的而又重要的群——有限交换群,探究这一类群是为了对群进行分解,分解成我们所熟知的一些群类,便于研究与应用.在最后论述这四大定理的一些应用,从而说明其重要性.关键词:群;群同态基本定理;群同构基本定理;Sylow定理;有限交换群基本定理.AbstractOn the basis of the understanding about the basic definition of group theory to grasp the four theorems of group theory: Group; Group of homomorphism fundamental theorem; The basic theorem; The Sylow theorem; The basic theorem of finite Abelian group, understand the profound meaning and master theorem. Group of homomorphism fundamental theorem and the basic theorem mainly discussed about the group structure, the number and contact problem.To solve this problem is to rely on basic theorem group homomorphism and isomorphism theorems, in the study of these two theorems, starting from the known group, to the research of the group, step by step slowly extended, further to study the connection between the various groups, tens of thousands of, seem to be the group are classified, then study the internal structure each group. A finite group is a very worthy of study groups in group theory. This paper first introduce Sylow lemma theorem of Sylow, step by step on three theorems of the logic process of proof. Followed by a further discussion group important another special and -- finite abelian groups, study of this group is to decompose into the group, we know some class of groups, for research and application. In the last of the four theorems are discussed some applications ,to show its importance.Key words: Group; Group of homomorphism fundamental theorem; The basic theorem; The Sylow theorem; The basic theorem of finite Abelian group.1.引言群论有着悠久的历史,现在已发展成一门范围广泛和内容十分丰富的数学分支,在近世代数和整个数学中占有重要地位.对于映射的同态与同构已有所了解,而近世代数很少考察一般的映射,近世代数的研究对象是代数系统.其中群是最简单的代数系统,因为它在一个集合中只定义了一种代数运算.群的同构与同态在研究中有着它的重要作用,随着现代数学的高度抽象化和广泛应用,群的同构和同态的研究也越来越受到人们的重视.所以本文将对群论中的同态与同构进行一定的深入研究,了解其中的含义及内在意义.群的同态与同构都是研究群与群之间关系的重要手段.同构映射是群之间保持运算的映射,存在同构映射的两个群可以看成同一个群,因为它们有相同的群结构.代数中最基本与最重要的课题就是搞清楚各种代数体系在同构意义下的分类.而同态映射只要求保持运算,显然它比同构映射更灵活,它能研究两个不同构的群之间的联系.特别重要的是几个同态定理,如同态基本定理告诉我们,两个群在满同态的条件下蕴含着一个群同构.在处理一些同构问题时,我们也常常反过用这个定理,也就是说先构造出满同态.保持运算的映射既然能研究两个代数体系之间的一些关系,那么对于复杂一些的代数体系我们就可以用一些简单的代数系统去研究它们.有一种特殊的群——有限群,是值得我们深入研究的,这就要求我们必须认真把握与其有关的两大定理.2.群同态与同构基本定理2.1 群同态与同构定义:如果G 与F 是两个群,如果有一个G 到F 的映射Φ保持运算,即 )()()(b a ab ΦΦ=Φ ),(G b a ∈∀则称Φ为群G 与群F 的一个同态映射.当Φ又是满射时,则称群G 与F 同态,并表示为G ∽F .当Φ是一个双射时,称Φ为群G 到群F 的一个同构映射.如果群G 到群F 存在同构映射,就称群G 与群F 同构,记为G ≌F .群G 到自身的同态映射与同构映射,分别称为群G 的自同态映射和自同构映射,简称为群G 的自同态和自同构.注意:⑴ 同态具有方向性,即G 与F 同态,不一定G 与F 同态;⑵ 显然只含有恒元的群与任何群同态[]1.(映射规则取为乘群元素的逆一般不考虑这种同态)同态是一种等价关系①.它虽是满映射,但并不是一一映射,即F 的一个元素可对应着G 的多个元素.性质1 设G 是一个群,G 是一个有代数运算(也称为乘法)的集合.如果G 满同态于G ,则G 也是一个群.证明 因为G ∽G ,G 是群,其乘法满足结合律,所以G 的乘法也满足结合①等价关系的定义:集合M 的一个关系R 满足以下条件: ⑴. 对M 中任意元素a 都有aRa ; (反身性)⑵. 如果,aRb 必有bRa ; (对称性)⑶. 如果bRc aRb ,,必有aRc . (传递性)律.设e 是群G 的单位元,a 是G 的任一元素,又设Φ是G 到G 的满同态,且在Φ之下 ,,a a e e →→于是 a e ea →.但是,a ea =故a a e =.即e 是G 的单位元.又设 11--→a a则 a a a a 11--→但是,1e a a =-故e a a =-1.即1-a 是a 的单位元. 因此G 也是一个群.应注意性质1,如果集合G 与G 各有一个代数运算,且G ∽G ,则当G 为群时,G 不一定是群.而且性质1的意义在于,要验证一个集合G 对所指的代数运算作成群,可找一个已知群,并通过同态来实现.性质2 设Φ是群G 到群F 的一个同态映射(不一定是满射).则群G 的单位元的像是群F 的单位元,G 的元素a 的逆元的像是a 的像的逆元.即11--=a a 或 ()()11--Φ=Φa a 例1 令{=G 全体正负奇数},代数运算为数的普通乘法;又{}1,1-=G 关于数的普通乘法作成群,令 :Φ正奇数1→,负奇数1-→.则易知Φ是G 到G 的一个同态满射,故G ∽G .G 是群,但G 却不是群.例2 证明:{}3,2,1,0=G 对代数运算r b a = (r 为b a +用4除所得余数)作成一个群.证明 令Z 是整数加群,则易知':x x →Φ )(Z x ∈∀是Z 到G 得一个同态满射,其中'x 为x 整数用4除所得余数.由于Z 是群,故由性质1知,G 也是群. 这样在证明G 是一个群时,可以减少一些麻烦的验算过程.性质3 设Φ是群G 到G 的一个同态映射(不一定是满射),则⑴ 当H ≤G ①时,有()G H ≤Φ,且H ∽()H Φ;⑵ 当G H ≤时,有()G H ≤Φ-1,,且在Φ之下诱导出()H 1-Φ到H 的一个同态映射.证明 ⑴ 任取()H b a Φ∈,,且在Φ之下令 b b a a →→,,其中H b a ∈,.由于G H ≤,故H ab ∈,且 b a ab →. 从而()H b a Φ∈,即()H Φ对G 的乘法封闭,且H ∽()H Φ但H 是子集,从而()H Φ也是群且是G 的子群.⑵ 当G H ≤时,由于()H 1-Φ显然非空,任取()H b a 1,-Φ∈,且在Φ之下令 b b a a →→,.则11--→b a ab ,①符号“G H ≤”表示群H 是群G 的子群,即H 是G 的非空子集,如果H 本身对G 的乘法也做成一个群,则称H 为群G 的子群.其中H b a ∈,,而G H ≤,故H b a ∈-1,从而()H ab 11--Φ∈. 即()G H ≤Φ-1,且显然Φ诱导出()H 1-Φ到H 的一个同态映射.性质4 群G 到群G 的同态映射Φ是单射[]2的充要条件是,群G 的单位元e 的逆像只有e .证明 必要性显然,下证充分性.设Φ是群G 到群G 的任一同态映射,且在Φ之下e 的逆像只有e ,又设在Φ之下 b b a a →→,,当b a ≠时,必有b a ≠:因若b a =,则由于 e b a ab =→--11,故b a e ab ==-,1,矛盾.因此,Φ是单射.性质5 设N 是群G 的任一正规子群①,则G ∽N G ,即任何群都与其商群②同态.证明 在群G 与商群N G 之间建立以下映射:)(:G a aN a ∈∀→τ, 这显然是G 到N G 的一个满射.① 正规子群的定义:设N 是群G 的一个子群,若果对G 中每个元素a 都有 Na aN =,即N aNa=-1,则称N 是群G 的一个正规子群(或不变子群). ② 商群的定义:将正规子群H 及其全部陪集作为元素,以陪集乘法定义为群乘法而形成的新群称之G 相对正规子群H 的商群,通常记为H G /.商群的单位元素为H ,各个陪集是商群的其它元素.又任取G b a ∈,,则有))(()(bN aN N ab ab =→,即τ是G 到N G 的同态满射,故G ∽N G .今后称群G 到商群N G 的这个同态满射τ为G 到商群N G 的自然同态.2.2 群同态基本定理群同态基本定理: 设Φ是群G 到群G 的一个同态满射,则Φ=Ker N 是G 的正规子群,且 G N G ≅/.证明 首先,由于G 的单位元是G 的一个正规子群,由此可知,其所有逆象的集合,即ΦΦ=Ker N 的核也是G 的一个正规子群.其次,设 a a →Φ: ),(G a G a ∈∈ 则在G 与N G /间建立以下映射: )(:a a aN Φ=→σ⑴ 设bN aN =,则N b a ∈-1.于是 b a e b a b a ===--,11即N G /中的每个陪集在σ之下在G 中只有一个象,因此,σ确N G /为到G 的一个映射;⑵ 任取G a ∈,则因Φ是满射,故有G a ∈使a a =Φ)(.从而在σ之下元素a 在N G /中有逆象aN ,即σ为到G 的一个满射; ⑶ 又若bN aN ≠,则N b a ∉-1,从而b a e b a ≠≠-,1,即σ为N G /到G 的一个单射.因此,σ是N G /到G 的一个双射.又由于有 b a ab abN bN aN =→=))((故σ为同构映射,从而G N G ≅/.应注意,本定理中的Φ是一个同态满射.如果Φ只是一个同态映射(不一定是满射),虽然也有ΦKer 是群G 的正规子群,但最后结论应改为 ΦKer G ≌()Φ=ΦIm G .由上一节的性质5和群同态基本定理知:G G −→−Φ,)(a a a Φ=→;又G N G G −→−−→−στ,)(a a aN a Φ=→→,其中Φ=Ker N .因此,στ=Φ.上一节的性质5表明,任何群都同它的商群同态[]3;本节群同态基本定理表明,如果一个群G 同另一个群G 同态,则这个群G 在同构意义下是G 的一个商群.因此,在同构意义下,两个的意思是:每个群能而且只能同它的商群同态.这是群论中最重要的结论之一,在很多场合下,都要经常用到这个事实. 另外,由群同态基本定理的证明知,若G ∽G ,且同态核①是N ,则G 中每个元素的全体逆象恰好是关于N 的一个陪集.G 中元素与陪集的这种对应不仅是一个双射,而且是一个同构映射.2.3 群同构基本定理这部分我们将介绍三个定理,这三个定理在群论的研究中都很重要,它们的证明有多种方法,其中有的与群同态基本定理有直接的关系.① 设Φ是群G 到群F的一个同态映射,G 的单位元在Φ之下所有逆像作成的集合,叫作Φ的核,记为ΦKer .定理 1(第一同构定理[]4) 设Φ是群G 到群'G 的一个同态满射,又N Ker ⊆Φ是G 的正规子群,)(N N Φ=,则N G /≅N G /证明 令τ:N G G →()N a a Φ→ (G a ∈∀)⑴ τ是映射:设b a =(G b a ∈,),因为Φ是同态映射,故()()b a Φ=Φ从而()()N b N a Φ=Φ,即τ是G 到N G 的映射.⑵ τ是满射:任取N G N a ∈(G a ∈),则因Φ是满同态,故有G a ∈使()a a =Φ从而在τ之下N a 有逆像a ,即τ是满射.⑶ τ保持运算:在τ之下有()()()()()N b N a N b a N ab ab b a Φ⋅Φ=ΦΦ=Φ→=⋅,故τ为G 到N G 的同态满射.又因为τKer ={G a ∈|()}N a =τ={G a ∈|()}N N a =Φ ={G a ∈|()}N a ∈Φ={G a ∈|()}N a 1-Φ∈={G a ∈|()}N ΦΦ-1={G a ∈|}N a ∈=N故由群同态基本定理知 N G ≌N G .以上的同构当然也可以写成 N G ≌()()N G ΦΦ但应注意,定理1中的Φ必须是满同态而且N 必须是G 的包含核Φker 的正规子群. 另外,此定理的证明也可以是找一个τ是商群N G 到N G 的一个同构映射,依次证明τ是映射,是单射,满射且保持运算.定理2(第二同构定理) 设G 是群,又G H ≤,N 是G 的正规子群,则N H 是H 的正规子群,并且)/(/N H H N HN ≅证明 因为G H ≤,N 是G 的正规子群,故G HN ≤,且N 是HN 的正规子群,又易知xN x →Φ: )(H x ∈∀是子群H 到商群N HN /的同态满射,且核为N H ,故由群同态基本定理知: N H 是H 的正规子群且 N H H ≌N HN从而结论成立.定理3(第三同构定理[]5) 设G 是群,又N 是G 的正规子群,N G H /≤.则 ⑴ 存在G 的惟一子群H ⊇N ,且N H H /=;⑵ 又当H 是N G /的正规子群时,有惟一的H 是G 的正规子群使 NH H /=且 N H N G H G ///≅ 证明 ⑴ 设在自然同态G :σ∽N G / 之下H 的逆象为H ,则G H H N ≤=⊆-)(1σ,且因σ是满同态,故可知 []H H H ==-)()(1σσσ但又知,N H H /)(=σ故 N H H /=由同态基本定理的定理,由于G 中含N 的不同子群其象也不同,故可知这样的H 也是惟一的.⑵ 当H 是N G /的正规子群时,由2.3.1中的定理2可知,G 有惟一正规子群N H ⊇使N H H /=,又由于在自然同态G ∽N G /之下有N H ⊇,且H 的象是N H /,故由第一同构定理知, N H H G H G ///≅此定理表明,商群N G /的子群仍为商群,且呈N H /形,其中H 是G 的含N 的子群;又H 是G 的正规子群当且仅当N H /是N G /的正规子群.通过群同构三大定理的证明过程我们看出,群同态基本定理是群同构三大定理的基础,通过群同态基本定理只要找准同态核就能很容易的找出一对具有同构关系的群.2.4 群同态与同构的意义由群同态基本定理知,在同构的意义下,任何群都能而且只能与其商群同态.所以要特别强调一下群同构的意义[]6.设}{ ,,,c b a M =是一个有代数运算 的群,而M {} ,,,c b a =是另一个有代数运算 的群.如果M ≌M ,且在这个同构之下,c c b b a a →→→,,…则根据同构的定义,c b a = 当且仅当c b a = .这就是说,除去元素本身的性质和代数运算名称与所用的符号不同之外,从运算的性质看,M 与M 并没有任何实质性的差别.更具体的说,就是由M 仅根据代数运算所推演出来的一切性质和结论.都可以自动地全部转移到与M 同构的一切代数系统上去.因此,在近世代数中常把同构的代数系统等同起来,甚至有时候不加区分.这正表现出这门学科所研究的问题的实质所在.3.有限群理论重要定理有限群是代数学的一个重要分支,它在群的理论中占有非常重要的地位.有限群之所以重要,不仅因为这种理论对数学本身特别是群产生重要影响,而且在实际应用中,例如在理论物理、量子力学、量子化学以及结晶学等方面都有广泛应用,所以本节将集中介绍有限群理论中两个最基本最重要的内容,即Sylow 定理和有限交换群①基本定理.3.1 Sylow 定理为了证明Sylow 定理,下面先介绍重陪集概念及其简单性质.定义1 设K H ,为群G (不一定有限)的两个子集,又令G x ∈,则称G 的子集{hxk HxK =|}K k H h ∈∈,为群G 关于子群K H ,的重陪集.简称HxH 为关于子群H 的一个重陪集.引理1 对群G 的任二重陪集Hxk 与HyK ,若≠HyK HxK φ,则必有HyK HxK =.证明 由于≠HyK HxK φ,故有元素∈a HyK HxK .令()K k H h yk h xk h a i i ∈∈==,2211则HyK k yk h h x ∈=--112211.从而对任意K k H h ∈∈,,有HyK k k k y h hh hxk ∈=--)()(112211①如果对群G 中任意二元素b a ,均有a b b a =,即群的代数运算满足交换律,则称G 为交换群.而且群G 中只含有有限个元素,则称群G 为有限交换群.因此,HyK HxK ⊆.同理有HxK HyK ⊆.故HyK HxK =.下面的引理回答了包含在重陪集HxK 内的H 右陪集有多少个. 引理2 在群G 的重陪集HxK 中,含子群H 的右陪集的个数等于(H :K Hx x 1- );含子群K 的左陪集的个数等于(H :1-xKx H ).证明 设{Hxk S =|}K k ∈, {k Hx x K T )(1-= |}K k ∈; 并令)()(:1K k k Hx x K Hxk ∈∀→Φ-如果),(2121K k k Hxk Hxk ∈=,则Hx x k k H x k xk 11211121,----∈∈⋅,从而Hx x K k k 1121--∈ .因此 2111)()(k Hx x K k Hx x K --= ,这说明Φ是S 到T 的一个映射.类似证明,可知Φ是单射,又显然Φ是满射.因此Φ是S 到T 的一个双射.同理可证引理中的另一结论.引理3[]7 设H Hx H Hx H Hx G r 21=是有限群G 关于子群H 的重陪集分解,则对任意)(H N Ha ⊂,都有某个j Hx 使)1(r j Hx Ha j ≤≤=.证明 因为任何右陪集必含于某个重陪集之中,故不妨设 H Hx Ha j ⊆,r j ≤≤1,于是H Hx a j ∈.令),(2121H h h h x h a j ∈=,则1211--=ah h x j .据此,并根据)(H N Ha a ⊆∈与Ha aH =便可得Ha Hx j =,即j Hx Ha =.定理1( 第一Sylow 定理——存在性和包含性[]8 ) 设G 是有限群,且m p G s =,其中p 是素数,s 是正整数,p 不整除m .则对G 的每个)1,,1,0(-=s i p i 阶子群H ,总存在G 的1+i p 阶子群K ,使H 是K 的正规子群.证明 设G 关于)0(s i p i <≤阶子群H 的重陪集分解为 H Hx H Hx H Hx G r 21=, ⑴ 且H Hx j 是由j t 个H 的右陪集所组成.于是由引理2及⑴知:.,,2,1),:(1r j Hx x H H t j j j ==-⑵r t t t H G +++= 21):( ⑶ 又因为)0(s i p G i <≤=,故):():(H G p H G H m p G i s ===,从而p |):(H G ,于是分别由⑶及⑵得p |r t t t +++ 21,j t |r j p i,,2,1 = ⑷ 下证:j t =1 )(H N Hx j ⊆⇔.1) 设j t =1 .由⑵得1=):(1j j Hx x H H -,因此j j j j Hx x Hx x H H 11--⊆= . 但是j j Hx x H 1-=,故j j Hx x H 1-=,)(,H N x Hx H x j j j ⊆=.从而)(H N Hx j ⊆2)设)(H N Hx j ⊆,由于j j Hx x ∈,故H Hx x Hx H x j j j j ==-1,.从而1):(1==-j j j Hx x H H t .由引理3,正规化子集)(H N 内的右陪集均呈j Hx 形,故以上说明:在r t t t ,,21中1=j t 的个数就是)(H N 中右陪集的个数,也就是指数):)((H H N ,从而由⑷知:p |):)((H H N 或 p |H H N )(. 于是商群H H N )(有p 阶子群.又由群的第三同构定理,此p 阶子群设为H K (H 为K 的正规子群且)(H N K ≤),从而H 为K 的正规子群且1+=⋅=⋅=i i p p p H H K K .于是当0=i 时10=p 阶子群(即单位元群)总存在,从而以上论证表明s p p p ,,,2 阶子群总是存在的,且其中的i p 还是1+i p 阶子群的正规子群.特别其中的s p 阶子群就是G 的Sylow p -子群.定理2(第二Sylow 定理——共轭性[]9) 设G 是有限群,p 是素数.则G 的所有Sylow p -子群恰好是群G 的一个共轭子群类.证明 设,m p G s =p 不整除m .显然,与Sylow p -子群共轭的子群都是Sylow p -子群.下面进一步证明:G 的任意二Sylow p -子群必共轭.设K H ,是群G 的任二Sylow p -子群,从而s p K H ==.根据引理1,设G 关于K H ,的重陪集分解为K Hx K Hx K Hx G r 21=,且重陪集中H 的右陪集的个数为r i Hx x K K t i i i ,,2,1):(1 ==-. 由此得r t t t H G +++= 21):(. ⑴ 由于):(H G H G =和s p H =,故p 不整除):(H G ;又因为每个i t 都是p 的非负整数次幂,故由⑴知,至少有一个1=i t .例如不妨设11=t ,即1):(111=-Hx x K K ,从而111111Hx x Hx x K K --⊆= .但是s p Hx x K ==-111,故 111Hx x K -=,即H 与K 共轭.因此,G 的全体Sylow p -子群恰好是一个共轭子群类.例3 求出三元对称群3S 的所有Sylow p -子群.解 由于3263⋅==S ,故当素数3,2≠p 时,3S 的Sylow p -子群就是3S 的10=p 阶子群,即{})1(.3S 的Sylow2-子群(p =2)有3个,即{}{}{})23(),1(,)13(),1(,)12(),1(321===H H H .它们是3S 的一个共轭子群类.最后,3S 的Sylow3-子群(p =3)只有一个,即{})132(),123(),1(4=H .它当然是3S 的一个正规子群.定理3(第三Sylow 定理——计数定理[]10) 设G 是有限群,且m p G s =,其中p 是素数,p 不整除m .若的Sylow p -子群共有k 个,则k |G 且p |1-k ,即)(mod 1p k ≡.证明 首先,设H 是群G 的一个Sylow p -子群,则))(:(H N G k =.从而k |G .其次,根据引理1,设H Hx H Hx H Hx G r 21=是G 关于H 的重陪集分解,并设):(1i i i Hx x H H t -= ),,2,1(r i =是H Hx i 中含H 的右陪集的个数,则r t t t H G +++= 21):( ⑴ r t t t ,,,21 中共有):)((H H N 个是1,而其余的i t 都是p 的正整数次幂.于是由⑴知: p |):)(():(H H N H G - ⑵ 但是):)(():)(())(:():(H H N k H H N H N G H G =⋅=, ⑶ 故由⑵知,p 整除):)(():)((H H N H H N k -,即p |)1():)((-⋅k H H N ⑷ 又因为现在的H 是群G 的一个Sylow p -子群,故p 不整除):(H G ,从而由⑶知, p 不整除):)((H H N ,再由⑷得p |1-k ,即)(mod 1p k ≡.本节所论述的Sylow 定理是有限群中非常重要的定理,三个定理都与素数p 有关,三个定理是彼此相关的.对于任意的素数p ,首先论述G 的Sylow p -子群是否存在?接着的定理回答了,如果存在,有多少个及它们之间有什么样的关系?3.2 有限交换群的基本定理上一节利用Sylow 定理证明了有限交换群可以分解成它的Sylow 子群的直积.但Sylow 子群不一定是循环群,也不一定是不可分解群,所以本节将进一步加细这种分解,从而得到有限交换群的基本定理.为证明有限交换群的基本定理,先证明以下引理1 设a 是群G 的一个有限阶元素,且G H ≤.又设k 是使H a k ∈得最小正整数,则1) 当H a s ∈时,k |s ;2) 当e H a ≠ 时,a k <.证明 1)令k r r kq s <≤+=0,. 则由于G H ≤,故H a a a a a a q k s r r kq s ∈⋅=⋅=-)(,再由k 最小性知,0=r .因此,k |s .2)因为e H a ≠ ,故有e b H a b ≠∈, .令H a b s ∈=. 因为H e a a∈=,故由k 的最小性知,a k ≤. 如果a k =,则由1)知,a |s .于是e a b s ==,这与e b ≠矛盾.因此,a k ≤.定理1(有限交换群基本定理[]11 ) 任何阶大于1的有限交换群G 都可以唯一的分解为素幂阶循环群(从而为不可分解群)的直积:n a a a G ⨯⨯⨯= 21, 其中i a 是i a i p (i p 为素数,n i ,,2,1 =且0>i a )阶循环群.我们称每个素数幂i a i p (n i ,,2,1 =)为G 的初等因子,而称其全体{}n a n a a p p p ,,2121为群G 的初等因子组. 证明 由于阶大于1的有限交换群都可以唯一的分解为其Sylow 子群的直积,故只需假设G 是素幂阶有限交换群即可.因此,设a p G =, p 是素数, a 是正整数.1)存在性.设n a a a G ,,,21 =,且n a a a ,,,21 是G 的使n a a a +++ 21最小的一组n 元生成系.即对G 的任一n 元生成系n x x x ,,,21 均有n a a a +++ 21≤n x x x +++ 21.下证n a a a G ⨯⨯⨯= 21. ⑴ 为此,令n t t i a a a a H 111+-=, n t ,,2,1 =因此,要证⑴成立显然只需证明:n t eH a t t ,,2,1 ==. 设若不然,例如不防设r i eH a i i ,,2,1 =≠,n r t e H a j j ,,1 +==,其中1≥r .现令i k 是使),,2,1(r i H a i k i i =∈得最小正整数,且不妨设),,,m in(211r k k k k =. 则由于i a i H e a i ∈=,故由引理,i k |i a .但是,a p G =,故每个i a (从而每个i k )都是p 的方幂.于是1k |i k r i ,,2,1 =. ⑵特别地,由引理还可知:11a k < ⑶ 再由于11k a n a a a H 321=∈,故可令n r r s n s r s r s s s a a a a a a 13211321++=. ⑷ 但是∈j s j a n r j e H a j j ,,1,+==故n r j e a j s j ,,1, +==.于是由⑷知:r s r s s k a a a a 321321=. ⑸由此等式又可知i s i H a i ∈,从而再由引理,i k |i s .再由⑵知,1k |i s (r i ,,2,1 =).令r i q k s i i ,,2,1,1 == ⑹并且,令r q r q a a a b --= 2211. ⑺ 则由此可知r q r q a a b a 2211=.从而n a a b G ,,,21 =,即n a a b ,,,21 也是群G 的一组n 元生成系.然而由⑺以及⑸、 ⑹可知e a a a b r q k r q k k k ==--12111211 , 于是由⑶知,111a k b <≤.从而n a a b +++ 21<n a a a +++ 21, 这与n a a a +++ 21的最小性矛盾,所以⑴成立.2)唯一性.设r a a a G ⨯⨯⨯= 21s b b ⨯⨯⨯= 21⑻是G 的两种这样的分解,且其初等因子组分别为:{}r m m m ,,,21 , {}s n n n ,,,21 ,其中每个i m 和每个j n ()s j r i ,,2,1;,,2,1 ==都是p 的方幂.不妨假定r m m m ≥≥≥ 21,s n n n ≥≥≥ 21.若s r ≠且不妨设s r <.① 若r r n m n m == ,11,则由⑻知,G 的阶按第一种分解为=r m m m 21s n n n 21,而按第二种分解又为⋅r n n n 21s r n n 1+,这显然是不可能的.② 若1111,--==t t n m n m ,但t t n m >.则令{}G x x H t n ∈=,并由此容易知道G H ≤,且由⑻有t t t t n s n n r n b b a a H ⨯⨯=⨯⨯= 11. 因为i i m a =,故()r i m n m a i t i n i t ,,2,1,, ==. 但因i m 与j n 都是p 的方幂,故),2,1(t i m n i t =.从而H 的阶按第一种分解为正整数),(,,),(,,,,,11121r t r t t t t t t t t t m n m m n m n m n m n m n m ++-, 之积.同理,H 的阶按第二种分解又为正整数1,,1,,,,121 tt t t n n n n n n - 之积.显然也是不可能的.因此,由①与②可知:s r =且i i n m =(r i ,,2,1 =),从而i a ≌i .亦即G 的两种分解的初等因子组相同.应注意,如果有限交换群G 的初等因子组为{}n k n k k p p p ,,2121,则其中的素数n p p p ,,,21 不一定是互异的,甚至也可以是完全相同的.另外,在G 的两种这样的分解中,如果i i b a =,则只能肯定i a ≌i b ,但不一定有 i a =i b .由定理1知,一个有限交换群完全由其初等因子组所决定.定理2 两个阶大于1的有限交换群同构的充要条件是,二者有相同的初等因子组.由前面的讨论可知,循环群是完全研究清楚了的一个群类.现在由定理1与定理2可知,有限交换群也是完全研究清楚的另一个重要群类.这两类群在群论的整个研究中占重要的地位并起着基本的作用.另外,由本节的讨论我们可知,有限交换群的初等因子的概念和理论,完全类似于高等代数中 -矩阵的初等因子的概念和理论.所以可以进行类比的理解学习.4.定理的应用4.1 群同态与同构定理的应用研究各种代数体系就是要解决这些代数体系的下面三个问题:存在问题、数量问题以及结构问题.如果这些问题都得到完满的解答就算达到了目的.研究群时,需要明白共有多少个不同的群,每个群的结构如何,结构相同的群如何对待等.对群进行比较时,采用的主要工具就是同态和同构. 群的同构是一个等价关系,通过同构群的意义我们知道,彼此同构的群具有完全相同的性质.这样通过对群的比较,从而揭示出两个群的某些共同性质,以至区别二者的异同.在群论中,主要研究本质上不同的群之间的关系,所以同构是群论中非常重要的手段.这无疑是在群的研究中具有重要意义的基本观念和基本理论,同时也是实践性很强的基本方法.群同态与同构在群论中最重要的应用就是便于分类[]12,这样可以把千千万万的群归纳为几类,因此只要研究透彻每一类的具有代表性的群后就可以知晓群论中群的特点,便于在各个领域的灵活运用.为了深入研究代数系统的结构,须将同类型的代数系加以比较,以得到这种体系更为本质的性质,使得将这种类型的代数系统分类成为可能,分类的目的就是减少研究对象,即通过对少数特殊代数系的研究,把结果移植到与其有相同或相似结构的对象中.同构与同态就是实现这种分类的主要途径,也是代数学的最基本的研究工具.对于同构的群G 与G ,我们认为G 与G 是代数相同的,因为这是对于近世代数所研究的问题来说,除了符号与名称上的区别之外,二者没有实质的差异.例4 设两个群{}+,Z 和{},Z ,其中:{};,3,2,1,0,1,2,3, ---=Z{}{},10,10,10,10,10,10,10,103210123---=∈=Z n Z n作,:Z Z →ϕn n 10→,(Z n ∈∀)显然,ϕ是双射,且:()()()n m m n n m n m ϕϕϕ⋅=⋅==++101010于是知:Z Z ≅{},Z +与{},Z 这两个群没有实质性的差异,其中一个是另一个以不同符号和名称实现出来的结果.例5(循环群的结构定理]13[)设a G =是由生成元a 生成的循环群,则⑴ 当a =∞时,G ={} ,,,,,,212a a e a a a --=为无限循环群,且与整数加群Z 同构.⑵ 当a =n 时,G =a ={}12,,,,-n a a a e 为n 阶循环群,且与n 次单位根群n U 同构.由于群间的同构关系具有反身性,对称性和传递性,故此定理说明,凡无限循环群都彼此同构,凡有限同阶循环群都彼此同构,而不同的群,由于不能建立双射,当然不能同构.这样,抽象地看,即在同构意义下,循环群只有两种,即整数加群Z 和n 次单位根群n U .所以循环群的存在问题,数量问题,构造问题已彻底解决.4.2 Sylow 定理和有限交换群基本定理的应用作为Sylow 定理的一个应用,我将证明下述定理:定理1 设G 是有限群,pq G =,其中q p ,是互异的素数,且p 不整除1-q ,q 不整除1-p ,则G 是一个循环群①.证明 由第三Sylow 定理,G 的Sylow p -子群的个数k 整除pq G =,且 ① 循环群的定义:如果群G 可以由一个元素a 生成,即,则称G 为由a 生成的一个循环群,并称a 为的G 一个生成元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 群论 §2.3 群的同态和同态基本定理
2020/3/16
23:27
一、定义1
2020/3/16
23:27
定义2
若存在群 G 到群 G 的同态满射
,则称群 G 与群 G 同态;
若存在群 G 到群 G 的同构映射
,则称群 G 与群 G 同构.
假定 是集合 A 到 A 的一个满射,
2020/3/16
23:27
二、群同态性质
定理2 群 G 与 G 同态, 是 G 到 G
的同态满射,则
(1) H G H (H ) G (2) H G H (H ) G (3) H G H 1(H ) G (4) H G H 1(H ) G
(5) G 是循环群,则 G 也是循环群.
2020/3/16
23:27
定理2
两个代数系统 G 与 G 同态, 若 G 是群,
则 G 也是群.
证明:
G
~
G
,G
是群,有结合律,则
G
也有结合律; 是同态满射,有
a G, a G, st. (a) a (e) (a) (ea) (a),
23:27
例3
2020/3/16
23:27
例4
2020/3/16
23:27
二、群同态性质
定理1 群 G 与 G 同态, 是 G 到 G
的同态映射,则
(1) (e) e
(2) (a1 ) (a)1
(3) n是任一整数,则 (an ) ((a))n
(4)如果orda有限,则 ord(a) | orda
e (e) 是 G 的左单位元; (a1) (a) (a1a) (e) e ,
(a1 ) 是 a (a) 的左逆元
G 也是群.
2020/3/16
23:27
例 证明
G {0,1, 2, 3} 关于 a ob (a b) mod 4
做成群.
2020/3/16
23:27
例8
2020/3/16
23:27
2020/3/16
23:27
例 G ( Z , ),G (R,g)
: n (1)n 是 G 到 G 的同态映射
Ker {全体偶数}
2020/3/16
23:27
引理1
若 是群 G 到群 G 的同态映射
,则 是单射 Ker {e}.
证明:" "
a G,(a) (ea) (e)(a) (e) e
n Ker , (n) (e) e 而 是单射
n e, Ker {e}.
" " 若 (a) (b) ,则
(a) (b)1 (ab1 ) e ab1 e a b
是单射.
2020/3/16
23:27
引理2
若 是群 G 到群 G 的同态满射 ,则 Ker G.
证明:
G ~ G,{e } G Ker 1(e ) G
a G,n Ker ,
(ana1 ) (a) (n) (a)1
(a)e (a)1 (a) (a)1 e
ana1 Ker
Ker G.
2020/3/16
2020/3/16
23:27
说明:
定理3说明任何群都同它的商群同态;
定理4说明一个群G 同另一个群 G 同态, 则这个群 在同构意义下是 G 的一个商群.
因此,在同构意义下,定理3与定理4的意 思是:每个群能而且只能同它的商群同态.
2020/3/16
23:27
,称 s (s) {(a) | a s} 为
s 在 之下的象;
s A ,称 s 1(s ) {a | (a) a, a s }
为 s 在 之下的逆象.
2020/3/16
23:27
例1
2020/3/16
23:27
例2
2020/3/16
证明:取 G (Z, )
: x x mod 4, (x Z )
是 G 到 G 的同态满射,G ~ G 而 G 是群, 因此 G 是群.
2020/3/16
23:27
例
G {全体正负奇数}, G {1, 1}
代数运算均为数的普通乘法
: 正奇数
1
负奇数
-1
是 G 到 G 的同态满射,G ~ G.
e (0) 0 mod 4 0
1(e ) {L , 8, 4, 0, 4, 8,L }
2020/3/16
23:27
定义3
设 是群 G 到群 G 的同态映射,
e 是 G 的单位元. 称 e 在 G 中的所有
逆象组成的集合为同态映射 的核, 记作
Ker 1(e ) {a G | (a) e }.
G 是群,而 G 不是群.
2020/3/16
23:27
三、同态核
思考题1:G ~ G , (e) e ,那么 1(e ) e ?
例1 G (Z, ) 与 G {0,1, 2, 3}, a ob (a b) mod 4 同态
: x x mod 4, (x Z )
由群的同态基本定理,
2020/3/16
23:27
例4 N G, H G, N H ,则
G/H G/N H/N
证明:
G ~G / N
Ker N H G,
(H) H / N G/ N
G / H G / N H / N
2020/3/16
23:27
例7
2020/3/16
23:27
定义4 称群 G 到商群 G / N 的同态满射
: a aN, a G
为 G 到 G / N 的自然同态.
2020/3/16
23:27
定理4 (群同态基本定理)
群 G 与 G 同态, 是 G 到 G 的同态
满射,则 G / Ker G.
证明:取 : aKer a (a) (a G)
2020/3/16
23:27
证明:因为 N < G ,故 N < G 设 (x) (x)N是G到商群的映射,因为
(x1x2 ) (x1x2 )N (x1)(x2 )N (x1)N(x2 )N
又是满射,故是群G到商群的满同态映射
且 KerQ 1(N ) N
23:27
例5 例1至例4中的同态映射的核分别是
G, 2Z, R, H
2020/3/16
23:27
例6
2020/3/16
23:27
四、群同态基本定理
定理3 群 G 同它的每个商群 G / N 同态. ( : a aN , a G)
注: Ker N H G, (H) H / N
G~G
,则 | G | 整除 | G | .
| G || G / Ker | | G |
推论2: 循环群的商群也是循环群.
2020/3/16
23:27
五、群的同构定理
定理5 设 是群 G 到群G 的同态满射 ,又 Ker N G, N (N ) ,则
G/N G/N
证明:取 : aN (a)N