第9节 群的同态基本定理

合集下载

叙述并证明群同态基本定理

叙述并证明群同态基本定理

叙述并证明群同态基本定理
政务民生:群同态基本定理
群同态基本定理是一个重要的数学定理,特别是在抽象代数学研究中提出的。

它指出,群中的每一个元素都是同态的,这意味着它是唯一可以把群上的每一个元素映射到自己,它可以使得所有操作都保持不变的函数。

群同态基本定理由数学家史奕柏在20世纪50年代早期提出,它表明群中所有
元素都是同态的,即群中的每一个元素都有一个唯一的同态。

同态是反应群在抽象代数学中的一个重要概念,它可以用来分析和推导群的结构和性质。

由群同态基本定理,我们可以得出下列定理:如果G为一个群,那么对于G的
每一个元素a,就有一个唯一的同态f,定义为f(g)=ag,映射r(h)=f(g)hg=ag hg,映射r是G上的同态。

通过群同态基本定理,我们可以进一步分析群的内部结构,由此可以推导出各
种与群有关的数学性质、定理,为数学进行进一步的研究提供各种有代表性的概念。

群同态基本定理也给数学界带来了极大的灵感,使得后世数学家更多能够将群的功能应用到其他相关学科,从而为科学进步和发展作出贡献。

同态基本定理与同构定理

同态基本定理与同构定理

第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ))()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。

3。3同态基本定理

3。3同态基本定理

§3.3 群的同态基本定理1.定义;设,G G 是两个群,如果映射:G Gϕ→满足,,a b G ∀∈ 都有()()(),ab a b ϕϕϕ=则ϕ称是G 到G 的一个同态。

若ϕ分别是单射、满射、双射,则称ϕ是单同态,满同态和同构。

用GG≅表示G 到G 的同构。

定理1 设,NG 则GG N。

证明 在G 与G N 之间建立映射如下::GG Nτ→,()a aN τ=,a G ∀∈。

则显然τ是G 到G N 的一个满射。

又,a b G ∀∈,都有 ()()()()()()ab ab N aN bN a b τττ==⋅=, 即τ是G 到G N 的一个同态映射。

所以G G N 。

注:以后将上面的同态映射τ称为G 到G N 的自然同态。

核与像:设ϕ是群G 到群G 的一个同态映射,称 ker {|,()},Na a G a e ϕϕ==∈=为ϕ的核,其中e 为G 的单位元;称Im {()|}a a G ϕϕ=∀∈ 为ϕ的像。

定理2 (同态基本定理) 设ϕ是群G 到群G 的一个同态满射,则ker ,.GN G G Nϕ=≅ 且证明 首先,{}e G ,由上一节定理2有{}1ker -=N e G ϕϕ= 。

其次,在G N 与G 之间建立映射如下: :GGN σ→,()()aN aa σϕ==,a G ∀∈。

(1)设aNbN=,则1a b N -∈,于是1()a b e ϕ-=,即11()()a b a b e ϕϕ--==,从而ab=,即G N 中的每个赔集在σ下的像唯一,因此σ确为G N 到G 的一个映射。

(2)a G ∀∈,因为ϕ是满射,所以存在a G ∈,使得()a a ϕ=, 从而存在G aN N ∈,使得()aN a σ=,即σ是满射。

(3)设()()aN bN σσ=,即11()()()()()a b a b e a b eϕϕϕϕϕ--=⇒=⇒=,所以1ker a b N ϕ-∈=,从而aNbN=,即σ是单射。

群同态基本定理与同构定理

群同态基本定理与同构定理
证明过程细节
思路拓展
采用归纳法,将问题划分为小规模子问题,通过递归调用,逐步缩小问题规模,最终得出证明结果。
证明过程细节
在归纳过程中,需要建立递归终止条件和归纳转移条件,并利用群的定义和性质,逐步缩小问题规模,最终得出 $f(a)=f(b)$ 的矛盾结果。
群同态基本定理的证明方法二
应用场景一
应用场景二
群的同构定理的表述与证明
应用一
在有限群表示论中,群的同构定理可以用来判断两个群是否具有相同的表示。
应用二
在代数拓扑中,群的同构定理可以用来判断两个拓扑空间是否同胚。
群的同构定理的应用举例
密码学中的许多算法都涉及到了群结构,如对称加密算法中的有限域等。
同构定理可以用来判断两个有限群是否同构。如果两个有限群同构,则它们具有相同的性质和结构,因此可以用来构造相同的密码学算法。但是,如果两个有限群不同构,则它们具有不同的性质和结构,因此不能用来构造相同的密码学算法。因此,同构定理在密码学中具有重要的作用。
2023
群同态基本定理与同构定理
CATALOGUE
目录
群与群同态基本概念群同态基本定理的证明群的同构定理群同态基本定理与同构定理的应用群同态基本定理与同构定理的推广
01
群与群同态基本概念
群是一个非空集合,其中存在一个二元运算符,满足封闭性、结合律、单位元存在性和逆元存在性。
封闭性:对于任意$a,b\in G$,有$a\cdot b\in G$。
操作系统的权限管理
群同态基本定理可以用于将一些数据结构的设计问题转化为群同构问题,从而设计出更有效的算法。
数据结构与算法设计
在计算机科学中的应用
量子计算
在量子计算中,同构定理可以用于量子态的变换和量子测量等问题。

群同态群同态基本定理

群同态群同态基本定理
{ } Kerf = g | f(g) = eH and Imf = {f(g) | g ∈ G}
首先这个定理很直观,如果商集比较熟悉的话,一眼就可以看出来这个定理其实,对于Kerf 的话,对应值域的e ,商掉Kerf 的话,剩下的其实 就是Imf 证明的话需要证明映射的良序性,单射和满射 证明:
φ:G /Kerf → Imf 群第一同构定理:H /(H ∩ K) ≅ HK /K
群同构第二定理
/ G/H ≅ (G/K) (H /K)
Processing math: 100%
( ) ( ) ( ) ( ) f e1 = f e21 = f , △) 则Kerf = {e} → f 为单同态 Imf = {f(g) | g ∈ G} → f为满同态
群同构基本定理
f:G → H (G, ⋅ ) → (H, △)
G
Kerf ≅ Imf
网络错误503请刷新页面重试持续报错请尝试更换浏览器或网络环境
群同态群同态基本定理
群同态与同构
群同态
f: (G, ⋅ ) → (H, △) , f(g1 ⋅ g2) = f(g1)△f(g2) 定义名称: f为单射 → 单同态 f为满射 → 满同态 f为双射 → 同构
性质
单位元具有唯一性且单位元具有对应性:

群同态基本定理与同构定理

群同态基本定理与同构定理
群论的基础
群论是数学中的一个重要分支,它研究的是具有某种性质的 元素的集合。群同态基本定理和同构定理是群论中的两个基 础概念,它们为研究群的结构和性质提供了有力的工具。
应用广泛
除了在代数结构中的应用外,群同态基本定理和同构定理在 拓扑学、物理学等各个领域也有广泛的应用。例如,在量子 力学中,它们被用来描述量子态的演化。
THANKS
谢谢您的观看
群同态基本定理的证明方法
证明方法通常采用构造法,即通过构造一个 具体的映射函数来实现同态映射,并证明这 个映射函数保持了群的运算律。
在证明过程中,通常需要使用到群的定义和 性质,以及一些重要的引理和定理。
02
同构定理
同构定理的内容
定义
如果存在一个从集合A到集合B的映射,该映射保持集合A中的元素之间的加 法运算,则称A与B同构。
对群同态基本定理与同构定理的展望
进一步研究与应用
群同态基本定理和同构定理是群论中的经 典理论,对于它们的进一步研究可以促进 我们对群论的理解。同时,这两个定理在 许多其他数学领域中也有着广泛的应用, 例如代数学、拓扑学等。
推广与扩展
目前,群论中的许多概念和定理已经推广 到了更广泛的范围,例如量子群、李群等 。未来,我们可以进一步探索群同态基本 定理和同构定理在这些新领域中的表现和 作用。
04
举例说明群同态基本定理与同构定理的应用Biblioteka 举例说明群同态基本定理的应用
01
群同态基本定理是群论中一个重要的定理,它表明任何两个群之间的同态映射 都可以扩展到从这两个群的陪集的并集上的全映射。这个定理在许多数学领域 中都有应用,例如代数学、拓扑学等。
02
1. 在代数学中的应用:群同态基本定理在代数学中被广泛应用。例如,在模论 中,该定理可以用来证明一些重要的结论,如“任何两个模之间的同态映射都 可以扩展到从它们的张量积上的全映射”。

同态基本定理与同构定理

同态基本定理与同构定理

第九节 同态基本定理与同构定理重点、难点:同态基本定理,满同态与子群的关系.一 同态基本定理前几节是研究一些定量的东西,下面我们来研究一些定性的东西.本节中的同态基本定理是群论中的研究基础.定理2.9.1 一个群G 与它的每一个商群N G /同态.证 令G a aN a N G G ∈∀→,;/: π显然π是G 到N G /的满射.G b a ∈∀,,)()())(()()(b a bN aN N ab ab πππ=== 故π是一个满同态.注1 定理2.9.1中的π称为自然同态;注2 自然同态π一定是满同态.利用子群来研究群本身,任意给定一个不变子群N ,有两个可以供我们参考的群: N 和N G /,由于0/→→→N G G N ,故更容易推测G 的性质.自然会问:定理2.9.1的逆命题是否成立?即0→'→G G ,G '是否与G 的某个商群是同构的呢?我们说是对的.首先有一个概念.定义2.9.1 设G G '→Φ:为一个群同态.e '为G '的单位元,集合})(|{e a G a Ker '=Φ∈=Φ称为同态映射Φ的核.注1 未必要求Φ为满射,但本书中同态均为满同态;注2 一个同态是单同态⇔G e Ker ⊆=}{φ.推论2.9.2 设π是N G G /→的自然同态,则N Ker =π.证 由于N G /的单位元是N ,则N N a G a N aN G a N a G a Ker =∈∈==∈==∈=}|{}|{})(|{ππ.定理2.9.3 (同态基本定理)设ϕ是群G 到群G '的一个同态满射,则(1)G Ker ϕ;(2)G Ker G '≅ϕ/.证 (1)由于φϕϕ≠⇒∈Ker Ker e .,,,G x Ker b a ∈∀∈∀ϕ则e b a '==)()(ϕϕ为G '的单位元.则e e e e e b a b a ab e e bb b b '='⋅'='⋅'===--'===----11)()()()(11)()()()()()(11ϕϕϕϕϕϕϕϕϕ即G Ker Ker ab ≤⇒∈-ϕϕ1.又由于e x x x e x x a x xax '=='==----1111)()()()()()()()(ϕϕϕϕϕϕϕϕ,即G Ker Ker xax ϕϕ⇒∈-1.(2)令G a a aKer G Ker G ∈∀'→),(;/:ϕϕϕψ .下证ψ为一个同构映射:(ⅰ)ψ为映射:).()()()()(111b a e a b e a b Ker a b bKer aKer ϕϕϕϕϕϕϕϕ=⇒'=⇒'=⇒∈⇒=--- (ⅱ) ψ为满射:,,G a G a ∈∃'∈'∀使得a a aKer a a '==⇒'=)()()(ϕϕψϕ(ⅲ) ψ为单射:ϕϕϕKer G bKer aKer /,∈∀,则ϕϕϕϕϕϕϕψϕψbKer aKer Ker a b e a b b a bKer aKer =⇒∈⇒'=⇒⇒=--11)()()()()((ⅳ) ψ为一个同态:ϕϕϕKer G bKer aKer /,∈∀,则)()()()()()()(ϕψϕψϕϕϕϕψϕϕψbKer aKer b a ab abKer bKer aKer ====⋅.综上所述,G Ker G '≅ψϕ/. 注 一般地,设G G '→:ϕ为一个群同态,则⎩⎨⎧≅'≤ϕϕϕIm /Im Ker G G我们知道,群在一个群的满同态映射之下,一个群的若干性质会发生改变的,下面讨论哪些性质不发生变化.定义2.9.2 设A A →Φ:为集合之间的一个满射.(1) 设A S ⊆,记A S a a S ⊆∈Φ=Φ}|)({)(称为子集S 在Φ之下的像;(2)设A S '⊆',记})(|{)(1S a A a S '∈Φ∈='Φ-称为子集S '在Φ之下的逆像(或后像).注 一个不能多且一个不能少!定理2.9.4 设G G '→:ϕ是一个群之间的同态满射,(ⅰ),G H ≤∀ 则G H ≤)(ϕ;(ⅱ),G N ∀ 则G N )(ϕ;(ⅲ),G H ≤∀ 则G H ≤-)(1ϕ;(ⅳ),G N ∀ 则G N )(1-ϕ.证 (ⅰ)φϕφ≠⇒≠)(H H .b b a a t s H b a H b a ==∈∃⇒∈∀)(,)(..,,)(,ϕϕϕ, )()()()()()()(11111H b a b a b a b a Hb a ϕϕϕϕϕ∈⇒==-∈----,故G H ≤)(ϕ. (ⅱ).),(G x N a ∈∀∈∀ϕ 则⎩⎨⎧==∈∈∃a a x x t s G x N a )()(..,,ϕϕ .从而 )()()()()(111N xax x a x x a x ϕϕϕϕϕ∈==---,故G N )(ϕ.(ⅲ)由φϕ≠⇒≤-)(1H G H .()(1H e H e -∈⇒∈ϕ))()()()()(),()(,11111H b a H b a H b a H b a H b a -----∈⇒∈⇒∈⇒∈⇒∈∀ϕϕϕϕϕϕϕ即G H ≤-)(1ϕ.(ⅳ),),(1G x N a ∈∀∈∀-ϕ则 )()()()()()(,)(1111N xax N xax N x a x G x N a N ----∈⇒∈⇒∈⇒∈∈ϕϕϕϕϕϕϕ 故G N )(1-ϕ.注第(ⅰ)条不需要用道ϕ为满射.由(ⅳ)可知G e Ker )(1'=-ϕϕ.二 同构定理第一同构定理 设G G f '→:为群同态,则f G f Kerf G fIm )(/=≅ 第二同构定理(方块定理)H K H G HK G K G H ⋂≤⇒≤,,且有K H K H HK ⋂≅//.第三同构定理(分式定理) 设G K G H K ,≤≤,则①GH G H ⇔(K G G K H H /,/==) ② H G K H K G ≅.第四同构定理(对应定理) 设G G f '→:为群的满同态,则}{}|{11的子群G H Kerf G H −→←⊆≤- ;Kerf K K f K ≅)(且正规子群对应与正规子群.有兴趣的读者可以参考相关文献书籍.作业:Page 79 第2题,第3题。

群同态基本定理与同构定理

群同态基本定理与同构定理
应用2
在代数学中,同构定理是研究群论的重要工具。例如,可以利用同构定理来研究群的性质、结构以及 群之间的关系。
03
群同态基本定理与同构定 理的关系
两者之间的联系
01
群同态基本定理是同构定理的基础,它为同构定理提供了基本 的理论支持。
02
同构定理是群同态基本定理的推广,它把群同态基本定理中的
群推广到更一般的代数结构。
深入,人们发现非交换群在许多领域中也有着广泛的应用。因此,对非
交换群的同态基本定理的研究也变得十分重要。
定理的深化
精细的同态基本定理
在群同态基本定理的证明过程中,有一些关 键的步骤需要用到一些特殊的技巧和方法。 这些技巧和方法可以被称为精细的同态基本 定理。它们对于理解群的结构和性质具有重 要的意义。
THANKS
感谢观看
限群。无限群是指包含无限个元素的群,其运算并不一定满足封闭性,
因此需要更精细的处理方法。
02

从群到环和域
群同态基本定理的推广并不仅限于群,还可以将其推广到环和域等数学
对象。这些对象在代数学中被广泛研究,因此,对它们的同态基本定理
的研究也具有重要意义。
03
从交换群到非交换群
在最初的研究中,群同态基本定理主要关注的是交换群,但随着研究的
两者都是研究群的结构和性质的重要工具。
03
两者之间的区别
群同态基本定理主要关注的是有限群与其子群之间的映射关系,而同构定理则更注重不同代数结构之 间的映射关系。
群同态基本定理的证明方法相对简单,主要基于群的定义和性质,而同构定理的证明则更加复杂,需要 引入更多的代数工具。
在应用上,群同态基本定理主要用于解决有限群的问题,而同构定理则可以应用于更广泛的代数结构, 包括环、域、模等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

性质4 设H是群G的子群,则H的所有左陪集构成的 3/22 集族是G的一个划分.
近世 代数
陪集的基本性质
性质5 设H是群G的子群,则 a, b∈G,|aH|=|bH|=|H|=|Ha|=|Hb| . 性质6 设H是群G的子群,令Sl为H的所有左陪集构 成的集族,Sr为H的所有右陪集构成的集族,则 | Sl | = | Sr |.
8/22
近世 代数
等价关系与子群的陪集
等价类的性质: 设R是非空集合X上的等价关系, 则a, b∈X, 有 (a, b)∈R a∈[b] b∈[a] [a] = [b].
陪集的性质: 设H是群G的子群,则a, b∈G有 a∈bH b∈aH a1b∈H aH=bH .
9/22
10/22
近世 代数
等价关系与子群的陪集
左陪集的定义: 设H是群G的子群,a∈G. 子群H在G中的左陪集:aH={ah | h∈H} 等价类的定义: [a]={b | (a, b)∈R, b∈G} 由于 a, b∈G, (a, b)∈R a1b∈H 所以,子群H在G中的左陪集: aH ={ah | h∈H}={b | (a, b)∈R, b∈G}=[a] ={ b | a1b∈H, b∈G}
15/22
近世 代数
群的同态性质
定理4 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的满 同态,则 (1)如果H1是G1的子群,则f(H1)是G2的子群; (2)如果N1是G1的正规子群,则f(N1)是G2的正规子群; (3)如果H2是G2的子群,则f -1(H2)是G1的子群; (4)如果N2是G2的正规子群,则f -1(N2)是G1的正规子群.
如果同态f是单射,则称f 是G1到G2的一个单同态(映 射),而称群G1 与G2 单同态.
13/22
近世 代数
群的同态性质
定理1 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的同 态,则 (1) f(e1)=e2 ; (2) x G1 有 [ f(x)]-1= f(x-1). 定理2 设(G1,∘)是一个群,( G2,)是一个代数系统。 如果存在一个从G1到G2的满射f,使得x, y G1 有 f(x∘y) = f(x) f(y), 则( G2,)是一个群.
14/22
近世 代数
群的同态性质
定理3 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的满 同态,则G2的单位元e2的完全原象 f -1(e2)={x | x G1, f (x)=e2} 是G1的一个正规子群. 定义2 设(G1,∘)和( G2,)是两个群。 f是从G1到G2的满 同态,e2是G2的单位元,则G1的正规子群f -1(e2)称为 同态f 的核,记为Ker f。f(G1)称为f 下G1的同态象. 显然,当 f是同态(未必是满同态),则G1 ~ f(G1).
近世 代数
群的同态基本定理的应用
定理8 设(G1,∘)和( G2,)是两个群。 f 是从G1到G2的满 同态,N2是G2的正规子群, N1 =f -1(N2),则 G1/ N1 G2/ N2 . 定理9 设N是G的正规子群,H是G的任一子群,则 N∩H是H的正规子群,且HN/N H/(N∩H). 例:设G是一个mn阶群,N是G的一个n阶正规子群, m与n互素. 试证: N是G的惟一的n阶正规子群.
7/22
近世 代数
等价关系与子群的陪集
设H是群G的子群,在G上定义二元关系R: a, b∈G, (a, b)∈R a1b∈H 则 R是G上的等价关系,且[a]R = aH.
等价类的性质: 设R是非空集合X上的等价关系, 则 a∈X, a∈[a]。
陪集的性质: 设H是群G的子群,则 (1) eH = H; (2) a∈G 有a∈aH.
2/22
近世 代数
左陪集的基本性质
性质1 设H是群G的子群,则 (1) eH = H; (2) a∈G 有a∈aH.
性质2 设H是群G的子群,则a, b∈G有 a∈bH b∈aH a1b∈H aH=bH .
性质3 设H是群G的子群, 则 (1) a∈G,aH≠ ; (2) a, b∈G,aH = bH 或 aH∩bH = ; (3) ∪aH = G .
20/22
近世 代数
等价关系与子群的陪集
等价类的性质: 设R是非空集合X上的等价关系, 则 (1) a∈X, [a]≠ 。 (2) a, b∈X, [a] = [b] 或 [a]∩[b] = ; (3) ∪[a]= X . 陪集的性质: 设H是群G的子群, 则 (1) a∈G,aH≠ ; (2) a, b∈G,aH = bH 或 aH∩bH = ; (3) ∪aH = G .
近世 代数
上一节:子群的陪集
主要内容:
子群的陪集 Lagrange定理 Lagrange定理的应用 正规子群与商群
1/22
近世 代数
陪集的定义
定义1 设H是群G的子群,a∈G. 令 aH={ah | h∈H} 称aH是子群H在G中的左陪集. 称a为aH的代表元素. 令Ha={ha | h∈H},称Ha是子群H在G中的右陪集. 称a为Ha的代表元素.
4/22
近世 代数
Lagrange定理
定理1 (Lagrange)设G是有限群,H是G的子群,则 | G | = | H | ·[G:H] 其中[G:H] 是H在G中的不同左陪集(或右陪集) 个数, 称为H在G 中的指数. 推论1 设G是n阶群,则a∈G,|a|是n的因子,且有 an = e.
推论2 对阶为素数的群G,必存在a∈G使得G = (a).
16/22
近世 代数
群的同态基本定理
定理5 设N是G的正规子群,则G ~ G/N. 如果f是G到G/N的自然同态,则Ker f=N. (*) 定理6(群的同态基本定理) 设(G1,∘)和( G2,)是两个群。 f 是从G1到G2的满同态,E=Ker f,则 G1/E G2 . 说明:(1)定理5 告诉我们:一个群G和它的每一个商 群满同态. (2)定理6 告诉我们:抽象的看,群G只能和它 的商群满同态. 定理7 群(G1,∘)到群(G2,∘)的任一满同态f 均可分解成一 个自然同态g与一个同构h的合成,即f=hg并且h是惟 17/22 一的.【回头看看:映射按等价关系分解】
18/22
近世 代数
总结:群
主要内容:
群的定义及其基本性质 子群的判别定理 变换群、置换群、循环群 陪集的定义及其性质 Lagrange定理及其应用 正规子群与商群 群的同态基本定理
19/22
近世 代数
总结:群
基本要求:
判断或证明给定集合和运算是否构成群 熟悉群的基本性质 能够证明G的子集构成G的子群 熟悉n元置换的表示方法、乘法以及n元置换群 会求循环群的生成元及其子群 熟悉陪集的定义和性质 熟悉Lagrange定理及其推论,学习简单应用 熟悉正规子群的定义及商群的构造
5/22
近世 代数
LagraLeabharlann ge定理的应用命题:如果群 G 只含 1 阶和 2 阶元,则 G 是Abel群.
例1 证明 6 阶群中必含有 3 阶元. 例2 证明阶小于6 的群都是Abel群.
6/22
近世 代数
Lagrange定理的注释
注意:设G是一个n阶有限群,由Lagrange定理可 知:G的子群的阶必是n的一个因子. 但反过来,则未必成立,即: 对n的任一因子d,G未必有一个d阶子群. 例如:交代群A4中就没有6阶子群. 但在群论中有以下结论: 结论:若G是一个有限交换群,则Lagrange定理的 逆成立. 例如:若G=(a)是n阶循环群,则对n的每个正因子 d,G有且仅有一个d 阶子群.
11/22
近世 代数
第9节 群的同态基本定理
主要内容:
群的同态定义 群的同态基本定理
预备知识:
映射 映射按等价关系分解(3.7节)
12/22
近世 代数
群的同态定义
定义1 设(G1,∘)和( G2,)是两个群。如果存在一个从 G1到G2的映射f,使得x, y G1 有 f(x∘y) = f(x) f(y), 则称f 是G1到G2的一个同态(映射), 而称群G1 与G2 同态. 如果同态f是满射,则称f 是G1到G2的一个满同态(映 射),而称群G1 与G2 满同态,并记为G1 ~G2 .
相关文档
最新文档