环的同态基本定理

合集下载

环的同态、最大理想

环的同态、最大理想
I是R的一个理想,则 R/I是一个域 I是最大理想。
Z /( p ) 是域 p 是素数. 定理9:
2013-7-4
20:15
练习: 求Z12的全部最大理想.
2013-7-4
20:15
(1) ( a b) ( a) ( b) (2) ( a b) ( a) ( b)
如果 既是单映射又是满映射,则称 为同构,记作 : R R ,并称 R与R 同构.
2013-7-4 20:15
定理1 若 R 与 R 是各有两个代数运算的系统, 且 : R ~ R ,则当 R 是环时,R 也是环. 定理2 若 R 与 R 是环,且 : R ~ R ,则 (2) ( a) ( a) (1) (0R ) 0R n n (3) (a ) ( (a)) (4)当 R 是交换环时,R 也是交换环; (5)当 R 是有单位元环时,R 也是有 单位元环时,且 1R (1R ).
又令 S {( a, 0) | a Z }
((a, 0) a) Z ( R S)
SZ
R Z {(a, b) | 0 b Z }, Z R
RR
2013-7-4 20:15
二、环同态基本定理 定理 5 R ~ R / I ( :aa I ) 定义2 设 为环 R到R 的同态,称集合 Ker {a R | (a) 0} 为同态 的核. 定理6(环同态基本定理)设 为环 R到R 的同态满射,则 (1) Ker为R的理想; ( 2) R / Ker R
近世代数
第三章 环与域 §5 环的同态、最大理想
2013-7-4
20:15
一、环同态的定义与性质 定义1 设 R和R 是两个环, 是集合 R到R 的映射.如果对任意的 a, b R ,有 ,则称 为环 R到R 的一个同态. 如果 为满映射,则称 为满同态, 记作 : R ~ R ,并称 R与R 同态.

05 商环、欧氏环

05 商环、欧氏环
a1 x a2 x an x
n 1
作成 R x 的一个理想。 注:以上是常数项为零的多项式的集合,关于多 项式的加法与乘法。 以上两个理想显然既不是零理想也不是单位理想。
7
理想的性质
8

推论 域是单环。
9
10
11
12
13
14
15
16
17
理想的交与和
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191


192
19
20
21
22
理想的传递
设 N 是 R 的理想, I 是 N 的理想, 那么 I 不一定是 R 的理想。
x y 例.设 R z w | x , y , z , w Z M 2 ( Z ) ,
a1 , a2 2a1 a2 N | ai 2 Z 是 R 的理想,而 I | ai 2Z 是 N 的理想, a3 , a4 a3 a4
近世代数及其应用

罗守山 教授 博士生导师

北京邮电大学计算机学院
1
第5章 商环、欧氏环




群是只有一种二元运算的代数系统。第2章群 之后介绍第3章特殊子群,由正规子群引出商 群,得到群同态基本定理。 环是建立在群基础上的代数系统,有二种二元 运算。第4章环之后介绍第5章特殊子环:理想, 由理想引出商环,得到环同态基本定理。 整数环上整数相除有余数和商,推广引出欧氏 环。 学习环知识应随时与群的相应概念与理论进行 比较,即复习群的内容,又学习新的知识。

环的同态、最大理想

环的同态、最大理想

例2
做成环. : (a, b) a, (a, b Z ) R 的零元是 (0, 0) ,而
R {(a, b) | a, b Z }, (a1 , b1 ) (a2 , b2 ) (a1 a2 , b1 b2 ), (a1 , b1 )(a2 , b2 ) (a1a2 , b1b2 )
I是R的一个理想,则 R/I是一个域 I是最大理想。
Z /( p ) 是域 p 是素数. 定理9:
2013-7-4
20:15
练习: 求Z12的全部最大理想.
2013-7-4
20:15
x y ( 1 ( x) 1 ( y '))
xy ( 1 ( x) 1 ( y '))
2013-7-4 20:15
例4 设环
R {(a, b) | a, b Z },
(a1 , b1 ) (a2 , b2 ) (a1 a2 , b1 b2 ), (a1 , b1 )(a2 , b2 ) (a1a2 , b1b2 )
又令 S {( a, 0) | a Z }
((a, 0) a) Z ( R S)
SZ
R Z {(a, b) | 0 b Z }, Z R
RR
2013-7-4 20:15
二、环同态基本定理 定理 5 R ~ R / I ( :aa I ) 定义2 设 为环 R到R 的同态,称集合 Ker {a R | (a) 0} 为同态 的核. 定理6(环同态基本定理)设 为环 R到R 的同态满射,则 (1) Ker为R的理想; ( 2) R / Ker R
(1) ( a b) ( a) ( b) (2) ( a b) ( a) ( b)

代数结构与数理逻辑-环同态基本定理

代数结构与数理逻辑-环同态基本定理
❖ 例:复数域[C;+,]是实数域[R;+,]的扩 张,(1, i)是它的一组基
C={a+ib|a,bR,i2=-1}, [C:R]=2
❖ 引进线性空间的目的是为了方便表示扩 域中的元素。
❖ 例:Z5[x]是域Z5上的多项式环, K=Z5[x]/(x3+x+1) ={(x3+x+1)+a0+a1x+a2x2|a0,a1,a2Z5} K为Z5上的线性空间,基为(1,x,x2), [K:Z5]=3。
❖ 因时间关系,14.5整环与分式域不做介 绍
第十五章 域
❖ 方程x2-2=0 ❖ 有理数域内无解 ❖ 扩充到实数域中则有解。 ❖ 域扩张
§1 扩域
❖ 一、扩域
❖ 1. 扩域
❖ 定义15.1:当[F;+,*]是域,F‘F,F’,F'按F中
的运算也是域时,称[F';+,*]是[F;+, *]的子域; 也称F为F'的扩域;又称F是域F'的一个扩张。
?
L K( 2 )
K( 2 )是包含 2的最小域
❖ 推广到一般情况:当F的扩域L为在F上添加 k≥1 个 元 素 1 , , k 得 到 的 , 我 们 就 把 它 记 为 L=F(1,,k)=F(1)(k-1)(k)。 这 k个 元 素 作扩张的先后次序不影响最终结果。
❖ 二、素域
❖ 定义15.4:一个没有真子域的域称为素域。 ❖ 设p为素数,则Zp是素域. ❖ 域F的特征数 ❖ 定理14.5:任何整环的特征数或为素数或
❖ [Q;+,]是实数域[R;+,]的子域, ❖ R是Q的扩域, ❖ 同理,复数域C 是实数域的扩张, 也是有

3.5子环、环同态

3.5子环、环同态

事实上, xs ys ( xs ) ( ys ) ( xs ys )( 是S 到S的同构映射)
xs ys ( xs ) ( ys ) ( xs ys )( R中 的定义) ( xs ys )( xs ys S ) xs ys
(平凡子环)
例2:一个环R的可以同每一个元交换的元作成 一个子环,叫做环R的中心.
Байду номын сангаас
§3.5 子环、环的同态
二、环的同态及其若干性质
定理1:设R是一个环, R是一个不空集合, R有两个代数运算,一个叫做加法,一个 叫做乘法.若存在一个R到R的满射,使得 R与R对于一对加法以及一对乘法来说都 同态,则R也是一个环.
则规定的法则是 A 的加法和乘法, 且 对于一对加法 和一对乘法来说都是同构映射.
§3.5 子环、环的同态
(1)构造R S ( R S ); 证明: (2)作一个R 到 R 的一一映射;
(3)在R中定义两个代数运算,使得 R R ; (4)证明S是R 的子环.
R
S
§3.5 子环、环的同态
(1)作R S (R S ) {as , bs , cs , } {a, b, c, }.
§3.5 子环、环的同态
(2)规定 :
RR
xs xs ( xs ), xs S , x x, x R S ,
则 是R到R的一一映射.
R
S
§3.5 子环、环的同态
§3.5 子环、环的同态
定义:设R和R 是两个环,则称R和R同态 (同构),若满足
(1)存在满射(一一映射) : R R (2)保持运算(保持加法和乘法运算) ( x y ) ( x ) ( y )(x, y R );

3.4环的同态与同构

3.4环的同态与同构

由此可见,对任意a+bi∈ Z(i), 只要a,b的奇偶性相 同,恒有a+bi ≡ 0(I);若a,b奇偶性不同,则a+bi ≡ 1(I), 即 ,也即A/I只含两个元。 Z (i) / I {0,1} 类似可得,若 N {2(a bi) a, b Z} ,则
Z (i) / N {0,1, i,1 i} ( 事实上,对 a+bi∈ Z(i),
Def:设(R,+,· ),(R',+,· )是两个环,若存在 一个R到R'的映射f,满足 a,ቤተ መጻሕፍቲ ባይዱ∈R,都有 f (a+b) = f (a)+f (b), f (ab) = f (a) · f (b), 则称 f 是环R到环R'的同态映射,简称同态~ 。
R
f
R′
注1.有定义可知,环的同态映射 f 是保持加法和乘 法两种运算的映射。 注2. f 单射—— f 是单同态 f 满射—— f 是满同态 f 双射—— f 是同构,记作R R' 注3. f 是单同态—— R f(R), 称f 将R同构嵌入 到R'中 注4.当R' =R,即f:R→R时—— 自同态,自同构, 自同构群 Aut R={f∣f:R R}.
不难验证, σ是一个同态,且有σ(M2(R) M2(R)。 通常称σ把M2(R)同构嵌入到M3(R)中。 故在同构意义下,M3(R)是M2(R)的扩环。
Def:设
f : R R
是环的同态,则R' 的零元0' 的原象 f -1 (0') 称为 f -1的同态核
K Ker f f 1 (0) {x x R, f ( x) 0}

环同态及同态基本定理

环同态及同态基本定理

环同态及同态基本定理定义2.设21:R R →ϕ是一个环同态,那么2R 中零元的完全原象}0)(|{)0(11=∈=-a R a ϕϕ叫作ϕ的模,通常记ϕϕKer =-)0(1.定理1.设R R −→−ϕ是一个环同态满射,令ϕKer I =那么(ⅰ) I R (ⅱ)R I R ≅证明:(ⅰ)对加法而言,ϕ显然是一个加群满同态,由第二章知 I R . (即I 是R 的不变子群).下面只需证明吸收律也成立即可..,R r I k ∈∀∈∀那么.00)()()()(I rk r k r rk ∈⇒===ϕϕϕϕ同理I kr ∈.∴ I R(ⅱ)由第二章知,存在R IR ≅Φ:.作为群同构,其中.][I R a ∈∀ ),(])([a a ϕ=Φ下面只需证明:I R b a ∈∀][],[,])([])([])][([b a b a ΦΦ=Φ但][][)()()(][])][([b a b a ab ab b a ΦΦ===Φ=Φϕϕϕ.∴ R I R →Φ:是环同构.即R IR ≅Φ. 定理 2.设R 是一个环而 I R ,那么必有环同态I R R →:ϕ.使得ϕ是满同态且模I Ker =ϕ.称这样的ϕ为环的自然同态.证明:令IR R →:ϕ,其中][)(a a =ϕ, 显然ϕ是个满射.而且R b a ∈∀,.)()(][][][)(b a b a b a b a ϕϕϕ+=+=+=+)()(]][[][)(b a b a ab ab ϕϕϕ=== ∴I R R ~.至于I Ker =ϕ是显然的.注意:上述定理1和定理2通称为环和同态基本定理.同时表明:环R 的任何商环I R 都是R 的同态象.而环R 的任何同态象实质上只能是R 的一个商环.与群同态类似,我们可以和到一些与第二章中平行的结果.定理3.设R R →:ϕ是环同态映射,那么(ⅰ)若S 是R 的子环)(S ϕ⇒是R 的子环(ⅱ)若I 是R 的理想且ϕ为满射)(I ϕ⇒是R 的理想(ⅲ)若S 是R 的子环)(1S -⇒ϕ是R 的子环(ⅳ)若S 是R 的理想)(1S -⇒ϕ是R 的理想证明: (ⅰ)S b a S b a ∈∃⇒∈∀,)(,ϕ使).(),(b b a a ϕϕ==所以S b a ∈-,于是R S S b a b a b a ≤⇒∈-=-=-)()()()()(ϕϕϕϕϕ.(子群)另外 )  ( S ab S ab b a b a ∈∈== )()()()(ϕϕϕϕ ∴)(S ϕ是R 的子环.(ⅱ) I R ,∴I 是R 的子环)()(I i ϕ⇒是R 的子环.须证明吸收律成立. ϕ是满射 ⇒⎪⎪⎭⎪⎪⎬⎫∈∈⇒=∈∃⇒∈∀=∈⇒∈∀I ai I ia IR a a R a R a i i I i I i ,)(,)()( ϕϕϕ使使 R I I ai i a i a I ia a i a i )()()()()()()()()(ϕϕϕϕϕϕϕϕϕ⇒⎪⎭⎪⎬⎫∈==∈== (ⅲ))(,1s b a -∈∀ϕ ∴S b a ∈)(),(ϕϕ, 而知S b a b a ∈-)()(),()(ϕϕϕϕ ∴⇒⎪⎭⎪⎬⎫∈⇒∈=∈-⇒∈-=---)()()()()()()()(11s ab S b a ab s b a S b a b a ϕϕϕϕϕϕϕϕ )(1s -ϕ是R 的一个子环.(ⅳ)R r R r S a s a ∈∴∈∀∈⇒∈∀-)(.,)().(1ϕϕϕ R S ,∴S a r S r a ∈∈)()(,)()(ϕϕϕϕ. 于是)()()()()()()()()(111s s ra S a r ra s ar S r a ar ---⇒⎪⎭⎪⎬⎫∈⇒∈=∈⇒∈=ϕϕϕϕϕϕϕϕϕ 满足吸收律.又由(ⅲ))(1s -⇒ϕ是R 的子环.于是R s )(1-ϕ.注意2.从定理3的证明中可知:除了(ⅱ)需要ϕ是满环同态外,其余情况都不需要ϕ是满射这个条件.极大理想的概念(1) 定义1. 设I 是R 环的一个理想且R I ≠,如果除了R 和I 以外,再也没有能包含I 的其他理想,那么称I 是R 的一个极大理想.∙ 将上定义更“数学化”些,就是:设 I R ,R I ≠,则I 是极大理想⇔不存在 I R 使R J I ⊄⊄∙ 欲判断理想 I R 是极大理想的一般有二步:① 验证 R I ≠ (即R r ∈∃ 但 I r ∉ ) 一般当R l R ∈,证I R ∉1② 设J R 且 J I ⊄,R J =⇒(2) 例子.例1. 设素数Z p ∈,那么由p 生成的理想()p I =必是极大理想.① 因为(){}()p Z n np p ∉⇒∈∀=1 (p 不整除1) ∴ Z p ≠② 设J Z ,且I ⊄J ,那么说明存在J g ∈但()p g ∉换句话说 p 不整除g ,由p 的性质 ()Z t s g p ∈∃⇒=⇒,.1, 使1=+tg sp . J I p ⊄∈,且 Z R J J tg sp J g ==⇒∈+=⇒∈1 例2. 设Q R =有理数环,那么取Q ∈2,则主理想()2=I 必不是极大理想.事实上 ()==2I {}Q g g ∈∀2, 则 Q x Q x ∈⇒∈∀2 I Q I x x =⇒∈⋅=22 ∴ I 不是极大理想. 例3. 设{}R ≠0为任一个环,则R 为单环⇔零理想{}0是极大理想.( ∴ 除环的极大理想只有 {}0 )例4. 设Z R 2=—偶数环,而R Z I 4=,可验证I 是R 的极大理想.事实上,① R ∈2 但I ∉2R I ≠⇒② 设R J I ⊄.须 证Z R J 2==.显然只需证明J ∈2即可.J j IJ ∈∃⇒但 I j ∉. 令m j 2= 而12+=k m .∴ ()24122+=+=k k j ,而J j ∈,且J k j J I K ∈-=⇒⊂∈424∴ R J J =⇒∈2极大理想的主要定理.引理1. 设 I R ,那么剩余类环I R为单环I ⇔是R 的极大理想. (这里R I ≠)证明: (⇐) 已知I 是R 的极大理想,须证I R R =只有平凡理想.设(){}J ≠0是R 的一个理想,而→R :πIR R =为自然同态映射, J R . 那么由§8知 ()J J 1-=π也是的理想,即J R .又注意到,I a ∈∀,则 ()[][]0a a =π ()πker =∴I[]J I J a J ⊆⇒∈⇒∈0 ,但 (){}J b J ∈∃⇒≠0 且 [][]J b b ∈⇒≠0 ,使 ()[][]I b b b ∉∴≠=,0π ,这说明 I ⊄J但I 是极大理想R J =⇒,于是利用π是满同态映射()()R R J J ===⇒ππ 即 R J =. ∴ I R R =是个单环.()⇒ 已知 IR R =是单环,(即R 只有平凡理想) 今设J R ,且,J I ⊄ 须证R J = :自然同态: →:πI R R =,且由§8定理3()J J =⇒π R .由J I ⊄J b ∈∃⇒且I b ∉, ∴ ()[][]0≠=b b π ( πker =I ) 而仅且 ()[]⇒∈=J b b π 这说明J 中有非零元[](){}0≠⇒J b ,但R 是单环R J =⇒. ∴ .R r ∈∀ ()[]J j J R r r ∈∃⇒=∈=π 使 ()[]()r r j ππ==∴ ()[]J I j r j r ∈=∈-⇒=-ππker 0∴ (),J j j r r ∈+-= 由 r 的任意性J R =⇒∴ I 是极大理想.引理2. 设{}0≠R ,且R 是可变换幺环,那么R 为域R ⇔为单环.证明: ()⇒ 若R 为域R ⇒必为单环()⇐ 显然需要证明R 是除环即可,也就是说:只要证明∙R 中每个元都可逆. ∈∀a ∙R ∴0≠a , 由a 生成的一个主理想{}()0≠a ,但R 是单 环()()a R R a R =∈∴=⇒1, 又 R 为可换幺环(){}ra R a ra a R =⇒∈∀=⇒1∴ a r a ⇒=-1可逆, 由a 的任意性R ⇒是除环即R 是域. 定理1. 设{}R ≠0为可变换的幺环,而R I ,那么I R 为域I ⇔是R 的一个极大理想.证明: ()⇒ I R 为域⇒I R 为单环I 1引理⇒为R 的极大理想.()⇐ I 为R 的极大理想1引理⇒I R 为单环 (1)又 I 为极大理想{} 0≠⇒≠⇒I R R I (2) R 可变换且I R R R ⇒∈1可变换且单位元为[]R 1 (3)由(1),(2),(3) 2引理⇒I R 为域.。

环的同态映射

环的同态映射

环的同态映射在代数学中,环是一种重要的代数结构,它由一个非空集合和两个运算(加法和乘法)组成。

同态映射是保持运算结构的映射,它在环论中起着重要的作用。

本文将介绍环的同态映射及其性质,以及同态映射在环论中的应用。

一、环的定义与性质环是一个满足特定条件的代数结构。

一个环由一个非空集合R和两个二元运算“+”和“·”组成,满足以下条件:1. R关于“+”构成一个交换群;2. R关于“·”满足结合律;3. R关于“·”满足分配律。

在环中,加法运算“+”是交换的,且存在一个零元素0,使得对于任意元素a,有a+0=0+a=a。

乘法运算“·”不一定是交换的,但满足结合律。

同时,环中的乘法也满足分配律,即对于任意元素a、b、c,有a·(b+c)=a·b+a·c。

二、同态映射的定义与性质同态映射是保持运算结构的映射,它将一个环映射到另一个环,并保持环的加法和乘法运算。

具体地说,设有两个环R和S,它们的加法运算分别为“+R”和“+S”,乘法运算分别为“·R”和“·S”。

若存在一个映射f:R→S,满足以下条件:1. 对于任意元素a、b∈R,有f(a+b)=f(a)+f(b);2. 对于任意元素a、b∈R,有f(a·Rb)=f(a)·Sf(b);则称f为从环R到环S的同态映射。

同态映射保持了环的加法和乘法运算,即通过同态映射,环R中的运算结果在环S中保持不变。

同态映射还具有以下性质:1. 同态映射保持零元素:对于任意元素a∈R,有f(0R)=0S;2. 同态映射保持乘法单位元:对于任意元素a∈R,有f(1R)=1S;3. 同态映射保持逆元素:对于任意元素a∈R,有f(-a)=-f(a);4. 同态映射保持子环:若R中存在一个子环H,那么S中存在一个子环f(H)。

三、同态映射的应用同态映射在环论中有广泛的应用。

以下是同态映射的几个典型应用:1. 同态核与同态定理:同态核是同态映射的一个重要概念,它是使得同态映射为零的元素的集合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环的同态基本定理
(1) R 是环,S 是它的理想,则R 到商环S
R 有满同态()S a a +=ηη:,S a ∈∀, 称为R 到S
R 的自然同态; (2) R ,R '是环,ϕ是环R 到环R '的满同态,令ϕKer K =,则商环K R 与环R '
同构.
证明 (1) ()()()()()b a S b S a S b a b a ηηη+=+++=++=+, ()()()()()b a S b S a S ab ab ηηη=++=+=,()S +=11η.
故η保持加法和乘法,且把单位元映成单位元,它是同态.又
()(){}{}S R R a S a R a a R =∈+=∈=ηη,
即η是满同态.
(2) 首先,作为像集合()()a K a ϕϕ=+.这是因为K 中任一元k 在ϕ下的像为零,则
()()()()()a a k a K a ϕϕϕϕϕ=+=+=+0. 由此有K R 到R '的映射
R S
R '−→−ϕ ()()a K a K a ϕϕ=++ .

()()K b K a +++ψψ
=()()()()K b a b a b a ++=+=+ψϕϕϕ
=()()()K b K a +++ψ,
()()K b K a ++ψψ
=()()()()K ab ab b a +==ψϕϕϕ
=()()()K b K a ++ψ,
()()R R R K '==+111ϕψ,
故ψ是K R 到R '的环同态.又R 到R '的环的满同态ϕ,只看R 与R '的加法群结
构是加法群的满同态.而ϕKer K =是加法群同态的核.由群的同态基本定理,
ψ是K R 到R '的加法群同构,即ψ是双射.故ψ是环同构.
例11 F 是域,[]x F 是F 上多项式环,N 是[]x F 的非零理想,则有非零多项式()x m ,使()[]()()x m x F x m N ==.
证明 取N 中次数最低的多项式为()x m ,任取()N x f ∈,作除法算式
()()()()x r x m x q x f +=,
这里()0=x r 或()()()()x m x r ∂<∂.若()0≠x r ,则()()()()x m x r ∂<∂.由于N 是理想,()()N x m x q ∈,又()N x f ∈,故
()()()()N x m x q x f x r ∈-=.
这与()x m 是N 中最低次数多项式矛盾,因此()0=x r ,()()()x q x m x f =.这就证明了()[]x F x m N =.
例12 ()F M n 只有零元的理想和自身两个理想.
证明 设N 是()F M n 的非零理想.记ij e 为第i 行第j 列的元为1,其余位置上元为零的F 上n n ⨯方阵.回忆有性质
⎪⎩
⎪⎨⎧≠==.,0,,i s i s e e e lj ij ls 当当
F 上任意n n ⨯方阵()
ij a A =,可写成 ∑==
n j i ij ij e a A 1,.现设N A ∈≠0,则有0≠ik a ,某l ,k .于是
∑=∈==
n j i lk lk kk ij ll ij kk ll N e a e
e e a Ae e 1,.
对任i ,j ,作()ij kj lk lk il
lk e e e a e a =-1
,则N e ij ∈.于是任意()N e e b e b n j i ij ii ij n j i ij ij ∈=∑∑==1,1,.
这就证明了()F M N n =.
模同态基本定理
设η是-R 模M 到-R 模M '的一个模同态,则由η诱导出模同构()M N M ηη→:,()ηker =N ,使()()x N x ηη=+,M x ∈. 证明 设η为M 到M '的一个模同态,则其核()ηker 是M 的一个子模,同态象()M η是M '的一个子模.()ηker =N ,规定
()x N x ηη +:
()()x N x ηη=+,M x ∈ 于是η即为N M 到()M η的一个同构映射.这是因为:1)若N y N x +=+,则 N n ∈∃,使n y x +=,()()()()()y n y n y x ηηηηη=+=+=,故()()N y N x +=+ηη, 即在η之下,N M 的每一个元在()M η中有唯一的象,从而η是映射;2)()M x η∈'∀,M x ∈∃,()x x '=η,由η的定义知()()x x N x '==+ηη,故η是满射;3)若()()N y N x +=+ηη,则()()y x ηη=,于是
()()()N y N x N y x N y x y x y x +=+⇒+∈⇒∈-⇒=-⇒=-00ηηη, 故η为单射;4)η为N M 到()M η的模同态.事实上
R a N M N y N x ∈∈++∀,,
有 ()()()()()N y x N y N x ++=+++ηη
()()()()()N y N x y x y x +++=+=+=ηηηηη ()()()()ax N ax N x a ηηη=+=+
()()N x a x a +==ηη 因此,η为N M 到()M η的模同构,即
()M


N
其中()η
N为η的核.
ker
=
参考文献
[16] 胡庆平,李丹,胡志刚.系统间的一类联系——同态与同构[J].昭通师范高等专科学校学报,2002,24(5):5-11.。

相关文档
最新文档