环的同态基本定理
环的同态、最大理想

Z /( p ) 是域 p 是素数. 定理9:
2013-7-4
20:15
练习: 求Z12的全部最大理想.
2013-7-4
20:15
(1) ( a b) ( a) ( b) (2) ( a b) ( a) ( b)
如果 既是单映射又是满映射,则称 为同构,记作 : R R ,并称 R与R 同构.
2013-7-4 20:15
定理1 若 R 与 R 是各有两个代数运算的系统, 且 : R ~ R ,则当 R 是环时,R 也是环. 定理2 若 R 与 R 是环,且 : R ~ R ,则 (2) ( a) ( a) (1) (0R ) 0R n n (3) (a ) ( (a)) (4)当 R 是交换环时,R 也是交换环; (5)当 R 是有单位元环时,R 也是有 单位元环时,且 1R (1R ).
又令 S {( a, 0) | a Z }
((a, 0) a) Z ( R S)
SZ
R Z {(a, b) | 0 b Z }, Z R
RR
2013-7-4 20:15
二、环同态基本定理 定理 5 R ~ R / I ( :aa I ) 定义2 设 为环 R到R 的同态,称集合 Ker {a R | (a) 0} 为同态 的核. 定理6(环同态基本定理)设 为环 R到R 的同态满射,则 (1) Ker为R的理想; ( 2) R / Ker R
近世代数
第三章 环与域 §5 环的同态、最大理想
2013-7-4
20:15
一、环同态的定义与性质 定义1 设 R和R 是两个环, 是集合 R到R 的映射.如果对任意的 a, b R ,有 ,则称 为环 R到R 的一个同态. 如果 为满映射,则称 为满同态, 记作 : R ~ R ,并称 R与R 同态.
05 商环、欧氏环

n 1
作成 R x 的一个理想。 注:以上是常数项为零的多项式的集合,关于多 项式的加法与乘法。 以上两个理想显然既不是零理想也不是单位理想。
7
理想的性质
8
推论 域是单环。
9
10
11
12
13
14
15
16
17
理想的交与和
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
谢
谢
192
19
20
21
22
理想的传递
设 N 是 R 的理想, I 是 N 的理想, 那么 I 不一定是 R 的理想。
x y 例.设 R z w | x , y , z , w Z M 2 ( Z ) ,
a1 , a2 2a1 a2 N | ai 2 Z 是 R 的理想,而 I | ai 2Z 是 N 的理想, a3 , a4 a3 a4
近世代数及其应用
罗守山 教授 博士生导师
北京邮电大学计算机学院
1
第5章 商环、欧氏环
群是只有一种二元运算的代数系统。第2章群 之后介绍第3章特殊子群,由正规子群引出商 群,得到群同态基本定理。 环是建立在群基础上的代数系统,有二种二元 运算。第4章环之后介绍第5章特殊子环:理想, 由理想引出商环,得到环同态基本定理。 整数环上整数相除有余数和商,推广引出欧氏 环。 学习环知识应随时与群的相应概念与理论进行 比较,即复习群的内容,又学习新的知识。
环的同态、最大理想

例2
做成环. : (a, b) a, (a, b Z ) R 的零元是 (0, 0) ,而
R {(a, b) | a, b Z }, (a1 , b1 ) (a2 , b2 ) (a1 a2 , b1 b2 ), (a1 , b1 )(a2 , b2 ) (a1a2 , b1b2 )
I是R的一个理想,则 R/I是一个域 I是最大理想。
Z /( p ) 是域 p 是素数. 定理9:
2013-7-4
20:15
练习: 求Z12的全部最大理想.
2013-7-4
20:15
x y ( 1 ( x) 1 ( y '))
xy ( 1 ( x) 1 ( y '))
2013-7-4 20:15
例4 设环
R {(a, b) | a, b Z },
(a1 , b1 ) (a2 , b2 ) (a1 a2 , b1 b2 ), (a1 , b1 )(a2 , b2 ) (a1a2 , b1b2 )
又令 S {( a, 0) | a Z }
((a, 0) a) Z ( R S)
SZ
R Z {(a, b) | 0 b Z }, Z R
RR
2013-7-4 20:15
二、环同态基本定理 定理 5 R ~ R / I ( :aa I ) 定义2 设 为环 R到R 的同态,称集合 Ker {a R | (a) 0} 为同态 的核. 定理6(环同态基本定理)设 为环 R到R 的同态满射,则 (1) Ker为R的理想; ( 2) R / Ker R
(1) ( a b) ( a) ( b) (2) ( a b) ( a) ( b)
代数结构与数理逻辑-环同态基本定理

C={a+ib|a,bR,i2=-1}, [C:R]=2
❖ 引进线性空间的目的是为了方便表示扩 域中的元素。
❖ 例:Z5[x]是域Z5上的多项式环, K=Z5[x]/(x3+x+1) ={(x3+x+1)+a0+a1x+a2x2|a0,a1,a2Z5} K为Z5上的线性空间,基为(1,x,x2), [K:Z5]=3。
❖ 因时间关系,14.5整环与分式域不做介 绍
第十五章 域
❖ 方程x2-2=0 ❖ 有理数域内无解 ❖ 扩充到实数域中则有解。 ❖ 域扩张
§1 扩域
❖ 一、扩域
❖ 1. 扩域
❖ 定义15.1:当[F;+,*]是域,F‘F,F’,F'按F中
的运算也是域时,称[F';+,*]是[F;+, *]的子域; 也称F为F'的扩域;又称F是域F'的一个扩张。
?
L K( 2 )
K( 2 )是包含 2的最小域
❖ 推广到一般情况:当F的扩域L为在F上添加 k≥1 个 元 素 1 , , k 得 到 的 , 我 们 就 把 它 记 为 L=F(1,,k)=F(1)(k-1)(k)。 这 k个 元 素 作扩张的先后次序不影响最终结果。
❖ 二、素域
❖ 定义15.4:一个没有真子域的域称为素域。 ❖ 设p为素数,则Zp是素域. ❖ 域F的特征数 ❖ 定理14.5:任何整环的特征数或为素数或
❖ [Q;+,]是实数域[R;+,]的子域, ❖ R是Q的扩域, ❖ 同理,复数域C 是实数域的扩张, 也是有
3.5子环、环同态

事实上, xs ys ( xs ) ( ys ) ( xs ys )( 是S 到S的同构映射)
xs ys ( xs ) ( ys ) ( xs ys )( R中 的定义) ( xs ys )( xs ys S ) xs ys
(平凡子环)
例2:一个环R的可以同每一个元交换的元作成 一个子环,叫做环R的中心.
Байду номын сангаас
§3.5 子环、环的同态
二、环的同态及其若干性质
定理1:设R是一个环, R是一个不空集合, R有两个代数运算,一个叫做加法,一个 叫做乘法.若存在一个R到R的满射,使得 R与R对于一对加法以及一对乘法来说都 同态,则R也是一个环.
则规定的法则是 A 的加法和乘法, 且 对于一对加法 和一对乘法来说都是同构映射.
§3.5 子环、环的同态
(1)构造R S ( R S ); 证明: (2)作一个R 到 R 的一一映射;
(3)在R中定义两个代数运算,使得 R R ; (4)证明S是R 的子环.
R
S
§3.5 子环、环的同态
(1)作R S (R S ) {as , bs , cs , } {a, b, c, }.
§3.5 子环、环的同态
(2)规定 :
RR
xs xs ( xs ), xs S , x x, x R S ,
则 是R到R的一一映射.
R
S
§3.5 子环、环的同态
§3.5 子环、环的同态
定义:设R和R 是两个环,则称R和R同态 (同构),若满足
(1)存在满射(一一映射) : R R (2)保持运算(保持加法和乘法运算) ( x y ) ( x ) ( y )(x, y R );
3.4环的同态与同构

由此可见,对任意a+bi∈ Z(i), 只要a,b的奇偶性相 同,恒有a+bi ≡ 0(I);若a,b奇偶性不同,则a+bi ≡ 1(I), 即 ,也即A/I只含两个元。 Z (i) / I {0,1} 类似可得,若 N {2(a bi) a, b Z} ,则
Z (i) / N {0,1, i,1 i} ( 事实上,对 a+bi∈ Z(i),
Def:设(R,+,· ),(R',+,· )是两个环,若存在 一个R到R'的映射f,满足 a,ቤተ መጻሕፍቲ ባይዱ∈R,都有 f (a+b) = f (a)+f (b), f (ab) = f (a) · f (b), 则称 f 是环R到环R'的同态映射,简称同态~ 。
R
f
R′
注1.有定义可知,环的同态映射 f 是保持加法和乘 法两种运算的映射。 注2. f 单射—— f 是单同态 f 满射—— f 是满同态 f 双射—— f 是同构,记作R R' 注3. f 是单同态—— R f(R), 称f 将R同构嵌入 到R'中 注4.当R' =R,即f:R→R时—— 自同态,自同构, 自同构群 Aut R={f∣f:R R}.
不难验证, σ是一个同态,且有σ(M2(R) M2(R)。 通常称σ把M2(R)同构嵌入到M3(R)中。 故在同构意义下,M3(R)是M2(R)的扩环。
Def:设
f : R R
是环的同态,则R' 的零元0' 的原象 f -1 (0') 称为 f -1的同态核
K Ker f f 1 (0) {x x R, f ( x) 0}
环同态及同态基本定理

环同态及同态基本定理定义2.设21:R R →ϕ是一个环同态,那么2R 中零元的完全原象}0)(|{)0(11=∈=-a R a ϕϕ叫作ϕ的模,通常记ϕϕKer =-)0(1.定理1.设R R −→−ϕ是一个环同态满射,令ϕKer I =那么(ⅰ) I R (ⅱ)R I R ≅证明:(ⅰ)对加法而言,ϕ显然是一个加群满同态,由第二章知 I R . (即I 是R 的不变子群).下面只需证明吸收律也成立即可..,R r I k ∈∀∈∀那么.00)()()()(I rk r k r rk ∈⇒===ϕϕϕϕ同理I kr ∈.∴ I R(ⅱ)由第二章知,存在R IR ≅Φ:.作为群同构,其中.][I R a ∈∀ ),(])([a a ϕ=Φ下面只需证明:I R b a ∈∀][],[,])([])([])][([b a b a ΦΦ=Φ但][][)()()(][])][([b a b a ab ab b a ΦΦ===Φ=Φϕϕϕ.∴ R I R →Φ:是环同构.即R IR ≅Φ. 定理 2.设R 是一个环而 I R ,那么必有环同态I R R →:ϕ.使得ϕ是满同态且模I Ker =ϕ.称这样的ϕ为环的自然同态.证明:令IR R →:ϕ,其中][)(a a =ϕ, 显然ϕ是个满射.而且R b a ∈∀,.)()(][][][)(b a b a b a b a ϕϕϕ+=+=+=+)()(]][[][)(b a b a ab ab ϕϕϕ=== ∴I R R ~.至于I Ker =ϕ是显然的.注意:上述定理1和定理2通称为环和同态基本定理.同时表明:环R 的任何商环I R 都是R 的同态象.而环R 的任何同态象实质上只能是R 的一个商环.与群同态类似,我们可以和到一些与第二章中平行的结果.定理3.设R R →:ϕ是环同态映射,那么(ⅰ)若S 是R 的子环)(S ϕ⇒是R 的子环(ⅱ)若I 是R 的理想且ϕ为满射)(I ϕ⇒是R 的理想(ⅲ)若S 是R 的子环)(1S -⇒ϕ是R 的子环(ⅳ)若S 是R 的理想)(1S -⇒ϕ是R 的理想证明: (ⅰ)S b a S b a ∈∃⇒∈∀,)(,ϕ使).(),(b b a a ϕϕ==所以S b a ∈-,于是R S S b a b a b a ≤⇒∈-=-=-)()()()()(ϕϕϕϕϕ.(子群)另外 ) ( S ab S ab b a b a ∈∈== )()()()(ϕϕϕϕ ∴)(S ϕ是R 的子环.(ⅱ) I R ,∴I 是R 的子环)()(I i ϕ⇒是R 的子环.须证明吸收律成立. ϕ是满射 ⇒⎪⎪⎭⎪⎪⎬⎫∈∈⇒=∈∃⇒∈∀=∈⇒∈∀I ai I ia IR a a R a R a i i I i I i ,)(,)()( ϕϕϕ使使 R I I ai i a i a I ia a i a i )()()()()()()()()(ϕϕϕϕϕϕϕϕϕ⇒⎪⎭⎪⎬⎫∈==∈== (ⅲ))(,1s b a -∈∀ϕ ∴S b a ∈)(),(ϕϕ, 而知S b a b a ∈-)()(),()(ϕϕϕϕ ∴⇒⎪⎭⎪⎬⎫∈⇒∈=∈-⇒∈-=---)()()()()()()()(11s ab S b a ab s b a S b a b a ϕϕϕϕϕϕϕϕ )(1s -ϕ是R 的一个子环.(ⅳ)R r R r S a s a ∈∴∈∀∈⇒∈∀-)(.,)().(1ϕϕϕ R S ,∴S a r S r a ∈∈)()(,)()(ϕϕϕϕ. 于是)()()()()()()()()(111s s ra S a r ra s ar S r a ar ---⇒⎪⎭⎪⎬⎫∈⇒∈=∈⇒∈=ϕϕϕϕϕϕϕϕϕ 满足吸收律.又由(ⅲ))(1s -⇒ϕ是R 的子环.于是R s )(1-ϕ.注意2.从定理3的证明中可知:除了(ⅱ)需要ϕ是满环同态外,其余情况都不需要ϕ是满射这个条件.极大理想的概念(1) 定义1. 设I 是R 环的一个理想且R I ≠,如果除了R 和I 以外,再也没有能包含I 的其他理想,那么称I 是R 的一个极大理想.∙ 将上定义更“数学化”些,就是:设 I R ,R I ≠,则I 是极大理想⇔不存在 I R 使R J I ⊄⊄∙ 欲判断理想 I R 是极大理想的一般有二步:① 验证 R I ≠ (即R r ∈∃ 但 I r ∉ ) 一般当R l R ∈,证I R ∉1② 设J R 且 J I ⊄,R J =⇒(2) 例子.例1. 设素数Z p ∈,那么由p 生成的理想()p I =必是极大理想.① 因为(){}()p Z n np p ∉⇒∈∀=1 (p 不整除1) ∴ Z p ≠② 设J Z ,且I ⊄J ,那么说明存在J g ∈但()p g ∉换句话说 p 不整除g ,由p 的性质 ()Z t s g p ∈∃⇒=⇒,.1, 使1=+tg sp . J I p ⊄∈,且 Z R J J tg sp J g ==⇒∈+=⇒∈1 例2. 设Q R =有理数环,那么取Q ∈2,则主理想()2=I 必不是极大理想.事实上 ()==2I {}Q g g ∈∀2, 则 Q x Q x ∈⇒∈∀2 I Q I x x =⇒∈⋅=22 ∴ I 不是极大理想. 例3. 设{}R ≠0为任一个环,则R 为单环⇔零理想{}0是极大理想.( ∴ 除环的极大理想只有 {}0 )例4. 设Z R 2=—偶数环,而R Z I 4=,可验证I 是R 的极大理想.事实上,① R ∈2 但I ∉2R I ≠⇒② 设R J I ⊄.须 证Z R J 2==.显然只需证明J ∈2即可.J j IJ ∈∃⇒但 I j ∉. 令m j 2= 而12+=k m .∴ ()24122+=+=k k j ,而J j ∈,且J k j J I K ∈-=⇒⊂∈424∴ R J J =⇒∈2极大理想的主要定理.引理1. 设 I R ,那么剩余类环I R为单环I ⇔是R 的极大理想. (这里R I ≠)证明: (⇐) 已知I 是R 的极大理想,须证I R R =只有平凡理想.设(){}J ≠0是R 的一个理想,而→R :πIR R =为自然同态映射, J R . 那么由§8知 ()J J 1-=π也是的理想,即J R .又注意到,I a ∈∀,则 ()[][]0a a =π ()πker =∴I[]J I J a J ⊆⇒∈⇒∈0 ,但 (){}J b J ∈∃⇒≠0 且 [][]J b b ∈⇒≠0 ,使 ()[][]I b b b ∉∴≠=,0π ,这说明 I ⊄J但I 是极大理想R J =⇒,于是利用π是满同态映射()()R R J J ===⇒ππ 即 R J =. ∴ I R R =是个单环.()⇒ 已知 IR R =是单环,(即R 只有平凡理想) 今设J R ,且,J I ⊄ 须证R J = :自然同态: →:πI R R =,且由§8定理3()J J =⇒π R .由J I ⊄J b ∈∃⇒且I b ∉, ∴ ()[][]0≠=b b π ( πker =I ) 而仅且 ()[]⇒∈=J b b π 这说明J 中有非零元[](){}0≠⇒J b ,但R 是单环R J =⇒. ∴ .R r ∈∀ ()[]J j J R r r ∈∃⇒=∈=π 使 ()[]()r r j ππ==∴ ()[]J I j r j r ∈=∈-⇒=-ππker 0∴ (),J j j r r ∈+-= 由 r 的任意性J R =⇒∴ I 是极大理想.引理2. 设{}0≠R ,且R 是可变换幺环,那么R 为域R ⇔为单环.证明: ()⇒ 若R 为域R ⇒必为单环()⇐ 显然需要证明R 是除环即可,也就是说:只要证明∙R 中每个元都可逆. ∈∀a ∙R ∴0≠a , 由a 生成的一个主理想{}()0≠a ,但R 是单 环()()a R R a R =∈∴=⇒1, 又 R 为可换幺环(){}ra R a ra a R =⇒∈∀=⇒1∴ a r a ⇒=-1可逆, 由a 的任意性R ⇒是除环即R 是域. 定理1. 设{}R ≠0为可变换的幺环,而R I ,那么I R 为域I ⇔是R 的一个极大理想.证明: ()⇒ I R 为域⇒I R 为单环I 1引理⇒为R 的极大理想.()⇐ I 为R 的极大理想1引理⇒I R 为单环 (1)又 I 为极大理想{} 0≠⇒≠⇒I R R I (2) R 可变换且I R R R ⇒∈1可变换且单位元为[]R 1 (3)由(1),(2),(3) 2引理⇒I R 为域.。
环的同态映射

环的同态映射在代数学中,环是一种重要的代数结构,它由一个非空集合和两个运算(加法和乘法)组成。
同态映射是保持运算结构的映射,它在环论中起着重要的作用。
本文将介绍环的同态映射及其性质,以及同态映射在环论中的应用。
一、环的定义与性质环是一个满足特定条件的代数结构。
一个环由一个非空集合R和两个二元运算“+”和“·”组成,满足以下条件:1. R关于“+”构成一个交换群;2. R关于“·”满足结合律;3. R关于“·”满足分配律。
在环中,加法运算“+”是交换的,且存在一个零元素0,使得对于任意元素a,有a+0=0+a=a。
乘法运算“·”不一定是交换的,但满足结合律。
同时,环中的乘法也满足分配律,即对于任意元素a、b、c,有a·(b+c)=a·b+a·c。
二、同态映射的定义与性质同态映射是保持运算结构的映射,它将一个环映射到另一个环,并保持环的加法和乘法运算。
具体地说,设有两个环R和S,它们的加法运算分别为“+R”和“+S”,乘法运算分别为“·R”和“·S”。
若存在一个映射f:R→S,满足以下条件:1. 对于任意元素a、b∈R,有f(a+b)=f(a)+f(b);2. 对于任意元素a、b∈R,有f(a·Rb)=f(a)·Sf(b);则称f为从环R到环S的同态映射。
同态映射保持了环的加法和乘法运算,即通过同态映射,环R中的运算结果在环S中保持不变。
同态映射还具有以下性质:1. 同态映射保持零元素:对于任意元素a∈R,有f(0R)=0S;2. 同态映射保持乘法单位元:对于任意元素a∈R,有f(1R)=1S;3. 同态映射保持逆元素:对于任意元素a∈R,有f(-a)=-f(a);4. 同态映射保持子环:若R中存在一个子环H,那么S中存在一个子环f(H)。
三、同态映射的应用同态映射在环论中有广泛的应用。
以下是同态映射的几个典型应用:1. 同态核与同态定理:同态核是同态映射的一个重要概念,它是使得同态映射为零的元素的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环的同态基本定理
(1) R 是环,S 是它的理想,则R 到商环S
R 有满同态()S a a +=ηη:,S a ∈∀, 称为R 到S
R 的自然同态; (2) R ,R '是环,ϕ是环R 到环R '的满同态,令ϕKer K =,则商环K R 与环R '
同构.
证明 (1) ()()()()()b a S b S a S b a b a ηηη+=+++=++=+, ()()()()()b a S b S a S ab ab ηηη=++=+=,()S +=11η.
故η保持加法和乘法,且把单位元映成单位元,它是同态.又
()(){}{}S R R a S a R a a R =∈+=∈=ηη,
即η是满同态.
(2) 首先,作为像集合()()a K a ϕϕ=+.这是因为K 中任一元k 在ϕ下的像为零,则
()()()()()a a k a K a ϕϕϕϕϕ=+=+=+0. 由此有K R 到R '的映射
R S
R '−→−ϕ ()()a K a K a ϕϕ=++ .
又
()()K b K a +++ψψ
=()()()()K b a b a b a ++=+=+ψϕϕϕ
=()()()K b K a +++ψ,
()()K b K a ++ψψ
=()()()()K ab ab b a +==ψϕϕϕ
=()()()K b K a ++ψ,
()()R R R K '==+111ϕψ,
故ψ是K R 到R '的环同态.又R 到R '的环的满同态ϕ,只看R 与R '的加法群结
构是加法群的满同态.而ϕKer K =是加法群同态的核.由群的同态基本定理,
ψ是K R 到R '的加法群同构,即ψ是双射.故ψ是环同构.
例11 F 是域,[]x F 是F 上多项式环,N 是[]x F 的非零理想,则有非零多项式()x m ,使()[]()()x m x F x m N ==.
证明 取N 中次数最低的多项式为()x m ,任取()N x f ∈,作除法算式
()()()()x r x m x q x f +=,
这里()0=x r 或()()()()x m x r ∂<∂.若()0≠x r ,则()()()()x m x r ∂<∂.由于N 是理想,()()N x m x q ∈,又()N x f ∈,故
()()()()N x m x q x f x r ∈-=.
这与()x m 是N 中最低次数多项式矛盾,因此()0=x r ,()()()x q x m x f =.这就证明了()[]x F x m N =.
例12 ()F M n 只有零元的理想和自身两个理想.
证明 设N 是()F M n 的非零理想.记ij e 为第i 行第j 列的元为1,其余位置上元为零的F 上n n ⨯方阵.回忆有性质
⎪⎩
⎪⎨⎧≠==.,0,,i s i s e e e lj ij ls 当当
F 上任意n n ⨯方阵()
ij a A =,可写成 ∑==
n j i ij ij e a A 1,.现设N A ∈≠0,则有0≠ik a ,某l ,k .于是
∑=∈==
n j i lk lk kk ij ll ij kk ll N e a e
e e a Ae e 1,.
对任i ,j ,作()ij kj lk lk il
lk e e e a e a =-1
,则N e ij ∈.于是任意()N e e b e b n j i ij ii ij n j i ij ij ∈=∑∑==1,1,.
这就证明了()F M N n =.
模同态基本定理
设η是-R 模M 到-R 模M '的一个模同态,则由η诱导出模同构()M N M ηη→:,()ηker =N ,使()()x N x ηη=+,M x ∈. 证明 设η为M 到M '的一个模同态,则其核()ηker 是M 的一个子模,同态象()M η是M '的一个子模.()ηker =N ,规定
()x N x ηη +:
()()x N x ηη=+,M x ∈ 于是η即为N M 到()M η的一个同构映射.这是因为:1)若N y N x +=+,则 N n ∈∃,使n y x +=,()()()()()y n y n y x ηηηηη=+=+=,故()()N y N x +=+ηη, 即在η之下,N M 的每一个元在()M η中有唯一的象,从而η是映射;2)()M x η∈'∀,M x ∈∃,()x x '=η,由η的定义知()()x x N x '==+ηη,故η是满射;3)若()()N y N x +=+ηη,则()()y x ηη=,于是
()()()N y N x N y x N y x y x y x +=+⇒+∈⇒∈-⇒=-⇒=-00ηηη, 故η为单射;4)η为N M 到()M η的模同态.事实上
R a N M N y N x ∈∈++∀,,
有 ()()()()()N y x N y N x ++=+++ηη
()()()()()N y N x y x y x +++=+=+=ηηηηη ()()()()ax N ax N x a ηηη=+=+
()()N x a x a +==ηη 因此,η为N M 到()M η的模同构,即
()M
≅
Mη
N
其中()η
N为η的核.
ker
=
参考文献
[16] 胡庆平,李丹,胡志刚.系统间的一类联系——同态与同构[J].昭通师范高等专科学校学报,2002,24(5):5-11.。