第一章 理想气体状态方程 物理化学课件
理想气体(物理化学)

即对于实际气体
lim pV nRT
p0
lim
p0
pVm
RT
看P10的图, 恒定温度下对几种气体pVm随压力的变化进行精确
测量,显然只有压力趋于零时,各种气体的pVm才具有相同的
数值 (pVm)p→0=RT
5000
4500 4000
N2 CH4
3500 3000
pVm / J mol 1 2500
2000 1500 1000
0
He
20 40 60 80 100 120 p/Mpa
而理想气体: pVm=RT(常数), 水平线
注意:根据现在处理数据的统一标准要求,要用纯数作图、 列表。因此坐标轴上的标注应该为纯数,所以坐标轴上物理量的
表示应该为
物理量 单位
,如上图及下表:
列表时: p/MPa
…………
pVm/J . mol-1
…………
↑
↑
表头中物理量的表示: 物理量 表中均为纯数
单位
⑶ 低压气体可近似视作为理想气体。
即低压气体可近似使用理想气体状态方程计算p、T、V 关系。
二 理想气体的微观模型(p9)
按照分子运动论,理想气体微观模型应该是:
1. 分子间无作用力; 2. 分子本身没有体积 3. 分子不停顿地作无规则的热运动。
物质的量n确定时 f (p、V、T) =0 或四变量函数式 f (p、V、T、n) =0
固体、液体物质的体积V受压力p与温度T的影响很小,即它 们的可压缩性(p→ V)及热膨胀性(T→ V) 与气体物质相比小都
很小,在通常的物理化学讨论中常常忽略它们的体积随压力及
温度的变化。而气体物质p、V、T之间相互影响很大,所以这 一章我们先来讨论气体的p、V、T关系,并且气体体系是物理
第一课无机化学课件 第一章

某组分气体的分压等于总压与 形式2 该组分PB 气P总体 nn摩总B 尔P总分 xB数的乘摩积尔分数
注意:分压公式中的体积一定为容器的总体积
即:PB
nB V总
RT
而并非:PB
nB VB
RT
T、P不变,n V
ni n
Vi V
其中Vi为组分i的分体积,V是混合气体的总体积
Pi
例
t
时
0
n B
/mol
N123.N20g2 g310H.2302Hg2g
2NHNH3 g3
0
g
ξ
0
t
时
1
n B
/mol
2.0
7.0
2.0
1 =?
t
时n
2B
/mol
ξ1'1ξ.51 Δννnn1NNNN22 225.52.02.130.01/312.30..m00ol
M
(3)计算气体密度
M mRT pV
M mRT M RT
pV
p
pM RT
例:为行车安全,可在汽车 中装备空气袋防止碰撞时司 机受到伤害。这种空气袋是 用氮气充胀起来的,所用的 氮气由叠氮化钠与三氧化二 铁在火花的引发下反应生成。 总反应是:
6NaN3+Fe2O3(s) 3Na2O(s)+2Fe(s)+9N2(g)
5、热力学能 (U)(thermodynamic energy)
系统内部含有的总能量称为热力学能(内能)
包括体系内质点的内动能(平动能、 振动能、转动能)、微粒间相互作用 所产生的势能等,但不包括体系整体
气体状态方程ppt课件

因理想气体分子间没有相互作用,分子本身又不占 体积,所以理想气体的 pVT 性质与气体的种类无关,因 而一种理想气体的部分分子被另一种理想气体分子置换, 形成的混合理想气体,其 pVT 性质并不改变,只是理想 气体状态方程中的 n 此时为总的物质的量。
可编辑课件PPT
12
pV nRT nBRT1.2.4a
Tc、pc、Vc 统称为物质的临界参数。
超临界态是指温度大于临界温度,压力大于临界压力 的状态。
可编辑课件PPT
25
3. 真实气体的 p -Vm 图及气体的液化
l´1 l´2
T1<T2<Tc<T3<T4
根据实验数据可绘出如左
p - Vm 图,图中的每一条曲线 都是等温线。图示的基本规
律对于各种气体都一样。
乙醇
t / ºC 20 40 60 78.4 100 120
p / kPa 5.671 17.395 46.008
101.325 222.48 422.35
可编辑课件PPT
苯
t / ºC 20 40 60 80.1 100 120
p / kPa 9.9712 24.411 51.993
101.325 181.44 308.11
16
例 1.2.1 :今有 300 K,104 . 365 kPa 的湿烃类混合气体 (含水蒸气的烃类混合气体),其中水蒸气的分压为3.167 kPa,现欲得到除去水蒸气的 1 kmol 干烃类混合气体,试求: (1)应从湿烃混合气体中除去水蒸气的物质的量;
(2)所需湿烃类混合气体的初始体积。
解: (1) 设烃类在混合气中的分压为 pA;水蒸气的分压 为 pB 。
B 凝结
物理化学 第一章 气 体

pV nRT
或
(1-1) (1-2)
pV
m RT M
其中的R称为摩尔气体常数,其值等于8.314J.K-1.mol-1,与气体种类无关。 理想气体状态方程只有理想气体完全遵守。 理想气体也可以定义为在任何温度、压强下都严格遵守理想气体状态方程的 气体。
实际气体处在温度较高、压力较低即气体十分稀薄时,能较好地符合这个关 系式。
图1.2 混合气体的分体积与总体积示意图
在压力很低的条件下,可得V=VA+VB,即混合气体的总体积等于所
有组分的分体积之和,称为阿马格分体积定律。通式为
V V i
式中 VB——组分B的分体积。 根据理想气体状态方程有
nB VB RT p
(1-5)
n总 V总 RT p
(1-
pV ZnRT
(1-16)
在压力较高或温度较低时,真实气体与理想气体的偏差较 大。定义“压缩因子(Z)”来衡量偏差的大小。
pV Z nRT
Z →
V V nRT / p V理想
等于同温、同压下,相同物质量的真实气体与理想气体的体
积之比。
理想气体的 pV=nRT , Z =1。
对于真实气体,若Z>1,则V> V(理想),即真实气体的体积 大于理想气体的体积,说明真实气体比理想气体难于压缩;
(1-13)
称为截项维里方程,有较大的实用价值。 当压力达到几MPa时(5MPa左右),第三维里系数渐显重要,其近 似截断式为:
Z
pV B C 1 2 RT V V
(1-14)
第四节 对应态原理及普遍化压缩因子图 一.对应态原理 二.压缩因子法 三.普遍化压缩因子图
物理化学第1章 热力学第一定律

系统从环境吸热Q为正值,系统放热于环境Q为
负值。 ⑶单位: 常用单位为焦耳(J)或千焦耳(kJ)。
⒉功 ⑴定义和符号
系统与环境之间除热以外被传递的其他各种形式
的能量统称为功,用符号W表示。 ⑵正负值规定 系统对环境做功W为负值,系统从环境获得功W为 正值。
⑶单位:常用单位为焦耳(J)或千焦耳 (kJ)。
p( H 2 ) y( H 2 ) p总 =0.6427 108.9=70.00 kPa
p( N2 ) p总 p( H2 ) 38.89 kPa
四、阿马格分体积定律
由A、B、C组成的理想气体混合物
nRT (nA nB nC ) RT V p p
VA VB VC
⑶热力学能是系统的广度性质,具有加和性。
热力学能的微小变化dU可用全微分表示
通常,习惯将热力学能看作是温度和体积的函数,
即U=f(T,V),则
U U dU ( )V dT ( )T dV T V
理想气体的热力学能只是温度的函数。
1.3热力学第一定律
一、能量守恒与热力学第一定律
1.能量守恒定律
自然界的一切物质都具有能量,能量有各种各样形式, 并且能从一种形式转变为另一种形式,但在相互转变过 程中,能量的总数量不变。 2.热力学第一定律
本质:能量守恒定律。 常用表述:“第一类永动机是不可能造成的。” 第一类永动机是指不需要供给能量而可以连续不断做功
的机器。
二、封闭系统热力学第一定律的数学表达式
⑶恒容过程:变化过程中系统的体积始终恒定不变过程。
⑷绝热过程:系统与环境之间没有热交换的过程。 ⑸循环过程:系统由某一状态出发,经历一系列的变化,又 回到原状态的过程。
物理化学第一章讲义

第一章气体的pVT 关系§1.1 理想气体状态方程§1.2 理想气体混合物§1.3 真实气体的液化及临界参数§1.4 真实气体状态方程§1.5 对应状态原理及普遍化压缩因子图教学重点及难点教学重点1.理解理想气体模型、摩尔气体常数,掌握理想气体状态方程。
2.理解混合物的组成、理想气体状态方程对理想气体混合物的应用,掌握理想气体的分压定律和分体积定律。
3.了解气体的临界状态和气体的液化,理解液体的饱和蒸汽压。
4.了解真实气体的pV m - p图、范德华方程以及压缩因子和对应状态原理。
教学难点:1.理想气体的分压定律和分体积定律。
前言宏观的物质可分成三种不同的聚集状态:气态:气体则最为简单,最易用分子模型进行研究。
液态:液体的结构最复杂,对其认识还很不充分。
固态:结构较复杂,但粒子排布的规律性较强,对其研究已有了较大的进展。
当物质的量n确定后,其pVT 性质不可能同时独立取值,即三者之间存在着下式所示的函数关系:f(p,V, T)= 0也可表示为包含n在内的四变量函数式,即f(p,V,T,n)= 0这种函数关系称作状态方程。
§1-1 理想气体的状态方程1.理想气体状态方程(1)气体的基本实验定律:波义尔定律:PV = 常数(n,T 恒定)盖·吕萨克定律:V/T = 常数(n,p恒定)阿伏加德罗定律:V/n=常数(T,p恒定)( 2 ) 理想气体状态方程上述三经验定律相结合,可整理得理想气体状态方程:pV=nRT(p: Pa(帕斯卡)V: m3(米3) T:K(开尔文)R(摩尔气体常数): J·mol-1·K-1(焦·摩尔-1·开-1))因为摩尔体积V m = V/n,气体的物质的量n=m /M理想气体状态方程又常采用下列两种形式:p V m=RT、pV=(m/M)RT2.理想气体模型(1)分子间力:分为相互吸引和相互排斥,按照兰纳德一琼斯的理论:E=E吸引+E排斥=-A r6+B r12由图可知:[1]当两个分子相距较远时,它们之间几乎没有相互作用。
第一章 气体pTV的关系 物理化学资料

现
nA=1
kmol,故得:
nB
pB pA
nA
3.167 101 .198
1000
31.30mol
(2) 设所求初始体积为V
V nRT nART nBRT 24.65m3
p pA pB
15
4. 阿马加定律
•数学表达式: V VB*
B
证: V nRT / p ( nB )RT / p
He CH4
2500
2000
15 100000 2 4 60 80 1001
3000K下N0 2,He,CH4的pVm2 –p等温2线5
N2
H2 问题:
CH4
CO2
N2、H2、 CH4、CO2何者
1.000
TB最高、最低?
p/MPa
26
2. 范德华方程
Van der Waals J D,1837—1923 27
( p a Vm2 )(Vm b) RT
范德华方程
29
内压:
压力修正项a Vm2
p内
1
Vm2
1 r6
pi.g. p a Vm2
p内 a Vm2
分子间引力愈大,a 愈大,愈易液化
• 体积修正项
30
例.试写出实际气体的范德华方程
。
2020/7/5
31
(2)范德华常数与临界参数的关系
p V TC 0, 2 p V 2 TC 0
水蒸气H2O(g),在平衡条件下,缓慢的压缩到压力
p=(
)kPa时,才可能有水滴H2O(l)出现。
2020/7/5
24
第四节 真实气体状态方程
1.真实气体的pVm – p图及波义尔温度
低压气体理想气体

§1-3 低压混合气体
解: T =(273+19)K = 292K
p=97.8kPa V=4.16L 292K 时,p(H2O)=2.20kPa
Mr (NH4NO2)=64.04
n(N2)
=
(97.8 8.314J
2.20)kPa 4.16L K-1 mol-1 292K
理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT
以此可相互计算 p, V, T, n, m, M, (= m/ V)
上一内容 下一内容 回主目录
§1-3 低压混合气体
一、 道尔顿分压定律 1.分压定律
低压混合气体的总压力等于组成混合气体的各气 体的分压力之和。
分压是指混合气体(包括理想的和非理想的)中的 某种气体单独占有混合气体的体积时所呈现的压强。
上一内容 下一内容 回主目录
§1-3 低压混合气体
即 P总 =PA +PB +PC +
根据分压的定义,应有关系式:
PBV总 =n BRT
混合气体的状态方程为:
P总V总 =n总RT
上一内容 下一内容 回主目录
§1-3 低压混合气体
两式相除,则有
PB P总
nB n总
yB
B气体的摩尔分数
PB P总 yB 表明了分压与混合
定义
=def
Z
PV nRT
PVm
RT
Z无量纲,可以用来描述实际气体偏离理想气体的程 度
Z<1,则Vm(实)< Vm(理) 气体易压缩 Z>1,则Vm(实)> Vm(理) 气体难压缩
上一内容 下一内容 回主目录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
状态原理。 (考核概率20%)
教学难点 1.理想气体的分压定律和分体积定律 。
2016/2/25
前言
宏观的物质可分成三种不同的聚集状态: 气态 气体则最为简单,最易用分子模型进行研究。 液态 液体的结构最复杂,对其认识还很不充分。 固态 结构较复杂,但粒子排布的规律性较强,对其研究已 有了较大的进展。 当物质的量n确定后,其pVT 性质不可能同时独立取值,即 三者之间存在着下式所示的函数关系:
混合物的总质量m与M mix的关系:
_
而
nB=yBn
_ _
2016/2/25
例:今有气体A和气体B构成的混合气体,二气体物质的量分别为 nA和nB 。 _ 试证此混合气体摩尔质量Mmix形式。若空气组成近似为y(O2)= 0.21, y(N2)= 0.79,试求空气的摩尔质量M(空气)
解:
设:气体A、B的摩尔质量分别为M A与MB,则
2016/2/25
2.理想气体模型
相互吸引 [1]分子间力 相互排斥 由图可知: [1]当两个分子相距较远时,它们之间几 乎没有相互作用。 [2]随着r的减小,相互吸引作用增大。 [3]当r = r0 时,吸引作用达到最大。 [4]分子进一步靠近时,则排斥作用很快 上升为主导作用。 按照兰纳德一琼斯的理论
注意:
2016/2/25
p p B nB ( RT / V )
B
B
理想气体
4.阿马加定律
[1]阿马加分体积定律:理想气体混合物的总体积V 为各组分分体积V*B之和
数学表达式: V V B B
[2]分体积:理想气体混合物中物质B分体积V*B等于纯气体B单独存在于 混合气体的温度、总压力条件下占有的体积。
f(p, V, T)= 0
也可表示为包含n在内的四变量函数式,即
f(p, V, T,n)= 0
这种函数关系称作状态方程。
2016/2/25
§1-1 理想气体的状态方程
1.理想气体状态方程 (1)气体的基本实验定律
波 义 尔 定 律 盖·吕萨克定律 阿伏加德罗定律
P V = 常数 (n、T 恒定) V/T = 常数(n、p恒定)
第一章 气体的pVT 关系
§1.1 理想气体状态方程
Physical Chemistry
§1.2 理想气体混合物 §1.3 真实气体的液化及临界参数 §1.4 真实气体状态方程 §1.5 对应状态原理及普遍化压缩因子图
2016/2/25
教学重点及难点
教学重点 1.理解理想气体模型、摩尔气体常数,掌握理想气体状态方程。 (考核概率100%) 2.理解混合物的组成、理想气体状态方程对理想气体混合物的应 用,掌握理想气体的分压定律和分体积定律。(考核概率100%) 3.了解气体的临界状态和气体的液化,理解液体的饱和蒸汽压。 (考核概率50%) 4.了解真实气体的pVm - p图、范德华方程以及压缩因子和对应
p
B
B
p
适用的条件:理想气体 低压气体近似符合 混合气体的总压力等于各组分单独存在于混合气体的温度、体积条件
下压力的总和。
p = nRT / V = (nA+ nB + nC +· · · )RT/V = nA RT /V + nB RT /V+ nC RT /V+· · ·
p
n
B
B
( RT / V )
2016/2/25
(2)范德华常数与临界参数的关系
临界点C,范德华方程可表示为: 对其进行一阶、二阶求导,并令其导数为零,则有: 联立求解得: 或:
(3)范德华方程的应用
A、用范德华方程来计算p-Vm等温线。 在临界温度以上时,符合较好 在临界温度以下的气一液两相共存 区,则有较大差别。 B、提供了一种实际气体的简化模型。
2016/2/25
(2)理想气体模型
理想气体在微观上具有以下两个特征: ①分子之间无相互作用力。 ②分子本身不占有体积。
3.摩尔气体常数 R (pVm=RT )
[1]不同气体在同样温度下,当压力趋于零时 (pVm)p→0 具有相同值。 [2]按300K条件下的(pVm)的数值,就可求 出各种气体均适用的摩尔气体常数R。 [3]R=(pVm)p→0 / T =(2494.35/300)J· mol-1· K-1 = 8.3145 J· mol-1· K-1 [4]其它温度条件下进行类似的测定,所得R的 数值完全相同。
[1] 混合理想气体的状态方程 一种理想气体状态方程为:pV = nRT 理想气体混合物的状态方程为: [2]混合物气体的摩尔质量 纯气体的摩尔质量M可由其相对分子质量直接得出 混合物气体的摩尔质量: M mix y B M B
B
_
_
混合物中任一物质 B 的质量
mB= nBMB
n:混合物中总的物质的量, nB:混合物中某种气体的物质的量, m:混合物的总质量, Mmix:混合物的摩尔质量。 p,V:混合物的总压及总体积。
物 质 He 临界温度 -267.96
(Tc / ℃)
下表为一些气态物质的临界温度
H2 -239.9 N2 -147.0 O2 -118.57 H2O 373.91 NH3 132.33
•非极性分子,由于范德华力很小,临界温度都很低,难以液化, •极性分子,则由于具有较大的分子间力而比较容易液化。
2016/2/25
2016/2/25
§1.3 气体的液化及临界参数
1.液体的饱和蒸气压 A (液态) 平衡时 饱和液体
蒸发
A (气态)
凝聚
饱和蒸气
其压力称饱和蒸气压 简称蒸气压
同一物质,蒸气压随温度 的升高而增大. 不同物质在同一温度下具 有不同的饱和蒸汽压. 液体饱和蒸气压与外界压 力相等时,液体沸腾,此 时相应的温度称为液体的 沸点. 习惯将 101325 Pa外压下 的沸点称为正常沸点. 大气中水蒸气的压力达到其饱和蒸气 压时的,称为相对湿度为 100%
V/n=常数(T、p恒定)
( 2 ) 理想气体状态方程 上述三经验定律相结合,可整理得 理想气体状态方程:
p V= n R T
p: Pa(帕斯卡) V: m3 (米3) T:K(开尔文) R(摩尔气体常数): J· mol-1· K-1(焦· 摩尔-1· 开-1)
因为摩尔体积Vm = V/n ,气体的物质的量n = m /M 理想气体状态方程又常采用下列两种形式:p Vm = R T p V=(m/M)R T
§1.4 真实气体状态方程
1、范德华方程
(1)考虑分子本身的体积所引起的修正
pVm=RT,Vm是每个分子可以自由活动的空间.当考
虑到分子的体积时,必须从Vm中减去一个反映气体 分子本身所占的体积的修正量b。 理想气体状态方程修正为:p(Vm - b)= R T
(2)考虑分子间的引力引起的修正
b
•气体内部的任一分子,引力相互抵消。 •靠近器壁的分子,其后面的分子对它的作用力,趋向于把它拉 向气体的内部。称这种作用力为内压力pi。 •内压力的作用,实际气体的压力(p)要比理想气体(pO)的为小, 因而气体施于器壁的压力应等于p = pO - pi p= R T/(Vm - b) - pi pi 与内部气体的单位体积内的分子数目n成正比, 故 pi ∝ n2 又和碰撞器壁的单位体积内分子数目 n成正比, 2 由于单位体积内分子数目反比于气体的摩尔体积。 故 pi = a/ V m
14
2. 临界参数
•理想气体能不能液化呢? •气体液化是否需要同时具备降温和加压的条件? •实验发现:采用单纯降温的方法也可以使气体液化? 但采用单纯加压的方法却不能,为什么? •临 界 温 度: 气体加压液化所允许的最高温度,以Tc表示。 •临 界 压 力: 临界温度Tc时饱和蒸汽压,以pC表示 •临界摩尔体积:物质在临界温度、临界压力下的摩尔体积,以 Vm,c表 示 •Pc、Tc、Vm,c总称为物质的临界参数 •
按理想气体状态方程,T、P条件下混合气体中任一组分B的分体积VB为 VB=nB(R T/p) 对各组分的分体积求和,得
V B ( nB )RT/p nRT/p V B B
结合上式,可得 VB/V=nB / n=yB 阿马加定律适用的条件:理想气体、低压气体近似符合
2维里方程
有下到两种表达方式:
说明(1)B、C、D、与B‘、C’、D‘…分别称为第二、第三、第四、… 维里系数。 (2)维里系数与气体性质有关,随着气体温度而变化。 (3)若气体的p→0,它的Vm→∞,维里方程还原为理想气体状态 方程。
2016/2/25
§1.5 对应状态原理及普遍化压缩因子图
1、压缩因子 定义压缩因子为: Z = pV /(nRT)= p Vm /(RT) 讨论: (1) 任何温度、压力下理想气体的压缩因子恒为1。 (2) Z的大小反映实际气体偏离了理想程度的大小。 即 Z=Vm(真实)/ Vm(理想) 若 Z > 1 比理想气体难压缩 Z < 1 比理想气体易压缩 [1] 临界压缩因子ZC 将压缩因子概念应用于临界点,可得ZC
本书对气体混合物的摩尔分数用y表示, 对液体混合物的摩尔分数用x表示.
物质B的摩尔分数定义为
[2]质量分数ω B 物质B的质量分数定义为 [3]体积分数
物质B的体积分数定义为
V*m,A表示在一定温度、压力下纯物质A的摩尔体积.
2016/2/25
B
B
1
2.理想气体状态方程对理想气体混合物的应用
例:某待分析的混合气体中仅含CO2一种酸性组分,在常温常压下 取100cm3,经NaOH溶液充分洗涤除去其中所含CO2后,于同样温 度、压力下测得剩余气体的体积为90.50cm3。试求混合气体中 CO2的摩尔分数y(CO2)。