最新六年级数学易错题难题试题含答案

合集下载

最新小学六年级数学易错题难题训练含详细答案

最新小学六年级数学易错题难题训练含详细答案

最新小学六年级数学易错题难题训练含详细答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.3.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):日期一二三四五六日增减数/辆+4-1+2-2+6-3-5(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.4.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.5.瓶中装有浓度为的酒精溶液克,现在又分别倒入克和克的、两种酒精溶液,瓶中的浓度变成了.已知种酒精溶液浓度是种酒精溶液浓度的倍,那么种酒精溶液的浓度是百分之几?【答案】解:新倒入的纯酒精重量:(1000+100+400)×14%-1000×15%=210-150=60(克)设A种酒精溶液的浓度为x,则B种为。

最新六年级数学易错题难题试题含答案

最新六年级数学易错题难题试题含答案

最新六年级数学易错题难题试题含答案一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。

(2)根据表中的数据,先求出每天收盘时的每股的价格,从而就可得出本周内最高价股价和最低股价。

最新六年级数学易错题难题综合训练题含详细答案

最新六年级数学易错题难题综合训练题含详细答案

最新六年级数学易错题难题综合训练题含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.3.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

最新小学六年级数学易错题难题专题训练含详细答案

最新小学六年级数学易错题难题专题训练含详细答案

最新小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。

(1)2★5;(2)(-2)★(-5).【答案】(1)解:2★5=2×5-2-52+1=-16(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.4.古希腊著名的毕达哥拉斯学派把1,3,6,10,…这样的数称为“三角形数”,而把1,4,9,16,…这样的数称为“正方形数”.(1)第5个“三角形数”是________,第n个“三角形数”是________,第5个“正方形数”是________,第n个“正方形数”是________.(2)除“1”以外,请再写一个既是“三角形数”,又是“正方形数”的数________.(3)经探究我们发现:任何一个大于1的“正方形数”都可以看做两个相邻“三角形数”之和. 例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…请写出上面第4个和第5个等式.(4)在(3)中,请探究n2=________+________。

最新小学六年级数学易错题难题专题训练含详细答案

最新小学六年级数学易错题难题专题训练含详细答案

最新小学六年级数学易错题难题专题训练含详细答案一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。

2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

(3)解:由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.当小红累计购物150元时,甲、乙商场花费一样【解析】【解答】解:(1)在甲商场:271,0.9x+10;在乙商场:278,0.95x+2.5.【分析】(1)根据提供的方案列出代数式;(2)根据(1)中的代数式利用费用相同可得关于x的方程,解方程即可;(3)列不等式得出x的范围,可选择商场.3.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.4.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。

六年级小学数学毕业考试易错题目50道附参考答案(预热题)

六年级小学数学毕业考试易错题目50道附参考答案(预热题)

六年级小学数学毕业考试易错题目50道一.选择题(共10题,共20分)1.一种食品的包装袋上有净重(300±5)克的标记,这种食品的质量在()克之间是合格的。

A.300~305B.295~300C.295~3052.在直线上,点A表示的数是()。

A.-0.1 B. C. D.0.83.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克。

A.155B.150C.145D.1604.一条裙子原价430元,现价打九折出售,比原价便宜()元。

A.430×90%B.430×(1+90%)C.430×(1-9%)D.430×(1-90%)5.下面四句话中,错误的一句是()。

A.0既不是正数也不是负数B.1既不是素数也不是合数C.假分数的倒数不一定是真分数D.角的两边越长,角就越大6.圆的半径和面积()。

A.成正比例B.成反比例C.不成比例7.下列说法中,不正确的是()。

A.2019年二月份是28天。

B.零件实际长0.2厘米,画在图纸上长30厘米,这幅图的比例尺是1:150。

C.9时30分,钟面上时针与分针组成的较小夹角是一个钝角。

D.两个质数的积一定是一个合数。

8.计算(-3)×2的结果等于()。

A.8B.-6C.5D.-19.做一节圆柱形烟囱,至少需要多少铁皮,是求圆柱的()。

A.表面积B.侧面积C.体积10.一种饼干包装袋上标着:净重(150±5)克,表示这种饼干标准质量是150克,实际每袋最少不少于( )克。

A.145B.150C.155D.160二.判断题(共10题,共20分)1.两堆货物原来相差a吨,如果两堆货物各运去10%以后,剩下仍差a吨。

()2.零下3℃比0℃还要低3℃。

()3.圆柱体侧面积一定,它的底周长和高成反比例。

()4.一辆汽车的载重量一定,运送货物的总重量和运的次数成正比例。

最新小学数学六年级易错题难题题库 - 易错题难题题库含答案

最新小学数学六年级易错题难题题库 - 易错题难题题库含答案一、培优题易错题1.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆?【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆;(2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,比原计划增加了,增加了561-560=1辆.【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.3.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.4.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.5.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是________数(填“无理”或“有理”),这个数是________;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是________;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【答案】(1)无理;﹣2π(2)4π或﹣4π(3)解:①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π【解析】【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;故答案为:无理,﹣2π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.6.、、三瓶盐水的浓度分别为、、,它们混合后得到克浓度为的盐水.如果瓶盐水比瓶盐水多克,那么瓶盐水有多少克?【答案】解:设C瓶盐水有x克,则B瓶盐水为(x+30)克,A瓶盐水为100-(x+x+30)=70-2x克。

最新小学六年级数学易错题难题专题训练含答案

最新小学六年级数学易错题难题专题训练含答案一、培优题易错题1.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.3.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.4.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3=65×3=195(升),∵195>180,∴收工前需要中途加油,195-180=15(升),答:应加15升.【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.6.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.7.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤其是变化多次的,常用列表的方法,使它们之间的关系一目了然。

小学数学六年级上册期中易错题重难点试卷含详细答案解析4164

2024-2025学年人教版六年级上数学期中试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________ 一、选择题(共8题,总计0分)1.已知a×78=a×89=a÷910,a、b、c都不等于0,那么a、b、c的大小关系是()。

A.a>b>c B.b>a>c C.c>a>b2.下列问题,不能用“4209÷”来计算的是()。

A.20的49是多少B.一个数的49是20,这个数是多少C.20是49的几倍D.20里面有几个493.典典面向东站立,向左转30°后,面对的方向是()。

A.东偏北30°B.东偏南30°C.西偏北30°D.北偏东30°4.下列叙述其中正确的说法有()个。

①长方体、正方体、圆柱的体积都可以用“底面积×高”计算;②圆柱的半径一定,圆柱的侧面积和高成正比例关系;③甲:乙=4:5,则乙比甲多25%;④某地白天和夜晚的平均气温分别是9℃和-3℃,白天和夜晚的平均温度相差5℃。

A.1 B.2 C.35.已知被除数和除数的比为3:2,除数是100,则被除数是()。

A.200 B.150 C.3006.有两根绳子,第一根长20米,第二根比第一根长15,第二根绳长()A.4米B.16米C.25米D.24米7.()和南偏东30°是同一个方向。

A.南偏西60°B.东偏南30°C.东偏南60°8.521869⎛⎫+⨯⎪⎝⎭=( )A.211B.12 C.19 D.528二、填空题(共8题,总计0分)9.一个10分钟的沙漏计时器,里面共装沙45克,1分钟可以漏下这些沙的,漏下这些沙的34需要分钟。

10.计算.正方形的边长是512米,周长是米?11.23+( )=( )×67=( )-18=( )÷35=1。

六年级小学数学毕业考试易错题目50道含完整答案【易错题】

六年级小学数学毕业考试易错题目50道一.选择题(共10题, 共20分)1.下面说法正确的是()。

A.负数到0的距离比正数到0的距离小B.上升为正数, 下降为负数C.0大于一切负数, 小于一切正数2.小明的期末数学成绩高于平均分3分记为+3, 小亮的分数记为-4, 说明()。

A.高于平均分4分B.低于平均分4分C.小明和小亮相差4分3.下面各题中, 两种量成反比例关系的是()。

A.正方形的边长和周长B.订阅《小学生周报》的总价和数量C.被减数一定, 减数和差D.从武夷山东站到福州北站, 列车行驶的速度和所需的时间4.用铜制成的零件的体积和质量()。

A.成正比例B.成反比例C.不成比例5.学校举行自然科学知识竞赛, 抢答题的评分规则是答对一题加100分, 答错一题扣10分。

把加100分记作+100, 四年级同学答对了8道题, 答错了2道题, 他们的得分记作()。

A.+800B.-20C.+7806.把一块三角形的地画在比例尺是1: 500的图纸上, 量得图上三角形的底是12厘米, 高8厘米, 这块地实际面积是()。

A.480平方米B.240平方米C.1200平方米7.李大爷用一块地种土豆, 去年收土豆4.5吨, 比前年增产五成, 前年这块地收土豆()。

A.9吨B.3吨C.1.5吨D.5吨8.在比例里,两个外项互为倒数,如果一个外项是1.6,那么另一个外项是()。

A.6.1B.1.6C.135D.9.1700多年前, 我国数学家()首次明确提出了正负数的概念。

A.祖冲之B.刘徽C.华罗庚D.陈景润10.根据下表中的两种相关联的量的变化情况, 判断它们成不成比例?成什么比例?总价一定, 单价和数量()。

A.成正比例B.成反比例C.不成比例D.不成反比例二.判断题(共10题, 共20分)1.若两个圆柱体的侧面积相等, 则它们的体积也相等。

()2.一张图纸的比例尺是1∶50, 这个比例尺表示图上距离1厘米相当于实际距离50千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(小时)。
答:丙帮助甲搬运了 3 小时,帮助乙搬运了 5 小时。
【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两 个仓库的货物,用工作量 2 除以三人的工作效率和求出共同完成工作量需要的时间。在这 段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。用甲的工作效率 乘共同完成的时间即可求出甲完成的工作量,用 1 减去甲完成的工作量即可求出丙帮甲完 成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的 时间即可。
【解析】【分析】 当甲完成任务的 时,乙完成了任务的 还差 40 个,这时乙比甲少完成 40 个;当乙完成全部任务时,甲还剩下 20 个零件没完成,这时乙比甲多完成 20 个;所以 在后来的 7.5 小时内,乙比甲多完成了(40+20)个,那么乙比甲每小时多完成(40+20) ÷7.5 个,然后求出乙提高工效后每小时完成的个数即可。
【解析】【分析】由于交换前后两容器中溶液的重量均没有改变,而交换一定量的硫酸溶 液其目的是将原来两容器中溶液的浓度由不同变为相同,而且交换前后两容器内溶液的重 量之和也没有改变,根据这个条件可以先计算出两容器中的溶液浓度达到相等时的数值, 从而再计算出应交换的溶液的量。
5.蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需 小时;排光一池 水,单开排水管需 小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序 轮流各开 小时.问:多长时间后水池的水刚好排完?(精确到分钟)
10.搬运一个仓库的货物,甲需 小时,乙需 小时,丙需 小时.有同样的仓库 和 ,甲在 仓库,乙在 仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬
运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时?
【答案】 解:甲、乙、丙搬完两个仓库共用了:
(小时),
丙帮助甲搬运了:
(小时),
丙帮助乙搬运了:
最新六年级数学易错题难题试题含答案
一、培优题易错题
1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第 1 个至第 4 个台阶上依次标着 -5,-2,1,9,且任意相邻四个台阶上数的和都相等.
(1)求前 4 个台阶上数的和是多少? (2)求第 5 个台阶上的数 是多少? (3)应用 求从下到上前 31 个台阶上数的和. 发现 试用含 k(k 为正整数)的式子表示出数“1”所在的台阶数. 【答案】(1)解:由题意得前 4 个台阶上数的和是-5-2+1+9=3
17(8+4x)=18(12+3x) 136+68x=216+54x 68x-54x=216-136 14x=80
x=
工作总量:(2+3)×4+(4+3)× =20+40=60, 60÷(2+3)=12(天) 答:两队原计划完成修路任务要 12 天。
【解析】【分析】两人所得的工资的比就是两人工作效率的比,这样先求出原计划两人的 工作效率比,然后求出甲工作效率提高后两人总的工作效率的比。原来先工作了 4 天,原 来的甲工作效率是 2,现在甲的工作效率就是 4;根据总的工作效率的比是 18:17 列出比 例,解比例求出工作效率提高后还需要完成的天数,这样求出工作总量,用工作总量除以 原计划的工作效率和即可求出原计划完成的时间。
该开进水管了,每小时进水 后实际还有剩下的水量加上 。然后开排水管,用此时的水量 除以每小时的排水量即可求出剩下的水需要的时间。然后把总时间相加即可求出刚好排完 的时间。
6.有一条公路,甲队独修需 10 天,乙队独修需 12 天,丙队独修需 15 天.现在让 3 个队 合修,但中途甲队撤出去到另外工地,结果用了 6 天才把这条公路修完.当甲队撤出后,
【答案】 解: 小时排水比 1 小时进水多

各开 3 小时后还有的水量:

再开 1 小时进水管后的水量:

拍完这些水需要:
(小时)=54(分),
共需要:3×2+1+ = (小时)=7 小时 54 分。 答:7 小时 54 分后水池的水刚好排完。
【解析】【分析】进水管每小时进水量为 , 排水管每小时排水量为 , 这样就可以计算 出 1 小时排水比进水多的分率。假设两个水管各开了 3 小时(实际共 6 小时),用 1 小时 排水比进水多的分率乘。此时
乙、丙两队又共同合修了多少天才完成? 【答案】 解:
=
=
=1(天) 6-1=5(天) 答:当甲队撤出后,乙、丙两队又共同合修了 5 天。
【解析】【分析】甲队撤出,乙和丙一直修了 6 天,用两队的工作效率乘 6 求出乙、丙合 修的工作量,用 1 减去乙、丙合修的工作量求出甲完成的工作量,用甲完成的工作量除以 甲的工作效率即可求出甲的工作时间,用 6 减去甲的工作时间即可求出甲撤出后乙丙合修 的时间。
7.甲、乙两人同时加工同样多的零件,甲每小时加工 40 个,当甲完成任务的 时,乙完
成了任务的 还差 40 个.这时乙开始提高工作效率,又用了 小时完成了全部加工任 务.这时甲还剩下 20 个零件没完成.求乙提高工效后每小时加工零件多少个? 【答案】 解:40+(40+20)÷7.5 =40+60÷7.5 =40+8 =48(个) 答:乙提高工效后每小时加工 48 个零件。
(2)解:由题意得-2+1+9+x=3, 解得:x=-5, 则第 5 个台阶上的数 x 是-5
(3)解:应用:由题意知台阶上的数字是每 4 个一循环, ∵ 31÷4=7…3, ∴ 7×3+1-2-5=15, 即从下到上前 31 个台阶上数的和为 15; 发现:数“1”所在的台阶数为 4k-1 【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的 值,求出第 5 个台阶上的数 x 的值;(3)根据题意知台阶上的数字是每 4 个一循环,得到 从下到上前 31 个台阶上数的和,得到数“1”所在的台阶数为 4k-1.
3.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从 A 地出 发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12, +4,﹣5,+6 (1)收工时,检修小组在 A 地的哪一边,距 A 地多远? (2)若汽车每千米耗油 3 升,已知汽车出发时油箱里有 180 升汽油,问收工前是否需要 中途加油?若加,应加多少升?若不加,还剩多少升汽油? 【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km), 答:检修小组在 A 地东边,距 A 地 19 千米 (2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3 =65×3=195(升),∵ 195>180, ∴ 收工前需要中途加油, 195-180=15(升), 答:应加 15 升. 【解析】【分析】(1)先求出这组数的和,如为正则在 A 的东边,为负则在 A 的西边, 为 0 则在 A 处; (2)先求出这组数的绝对值的和与 3 的乘积,再与 180 比较,若大于 180 就需要中途加 油,否则不用.
3t=6, t=2, 2πt=4π,﹣πt=﹣2π, 则此时两圆与数轴重合的点所表示的数分别为 4π、﹣2π. iiii)当大圆向左滚动,小圆向右滚动时, 同理得:πt﹣(﹣2πt)=6π, t=2, πt=2π,﹣2πt=﹣4π, 则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π 【解析】【解答】解:(1)若大圆沿数轴向左滚动 1 周,则该圆与数轴重合的点所表示的 数是﹣2π•2=﹣4π, 故答案为:﹣4π; 【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第 几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数 之和为﹣10,即小圆最后的落点为原点左侧,向左滚动 10 秒,距离为 10π;(3)分四种 情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的 数.根据两圆与数轴重合的点之间相距 6π 列等式,求出即可.
2.如图,半径为 1 的小圆与半径为 2 的大圆上有一点与数轴上原点重合,两圆在数轴上做 无滑动的滚动,小圆的运动速度为每秒 π 个单位,大圆的运动速度为每秒 2π 个单位.
(1)若大圆沿数轴向左滚动 1 周,则该圆与数轴重合的点所表示的数是________; (2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间
8.一项工程,甲单独做 天完成,乙单独做 天完成.甲、乙合作了几天后,乙因事请 假,甲继续做,从开工到完成任务共用了 天.乙请假多少天? 【答案】 解:
=
=6(天)
16-6=10(天) 答:乙请假 10 天。 【解析】【分析】乙请假了,甲没有请假,所以甲一共工作了 16 天,用甲的工作效率乘 16 求出甲的工作量,用 1 减去甲的工作量即可求出乙的工作量。用乙的工作量除以乙的工 作效率求出乙工作的时间,用 16 减去乙的工作时间即可求出乙请假的天数。
记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8 ①第几次滚动后,小圆离原点最远? ②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是 多少?(结果保留 π) (3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的 点之间相距 6π,求此时两圆与数轴重合的点所表示的数. 【答案】(1)-4π (2)解:①第 1 次滚动后,|﹣1|=1, 第 2 次滚动后,|﹣1+2|=1, 第 3 次滚动后,|﹣1+2﹣4|=3, 第 4 次滚动后,|﹣1+2﹣4﹣2|=5, 第 5 次滚动后,|﹣1+2﹣4﹣2+3|=2, 第 6 次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10, 则第 6 次滚动后,小圆离原点最远; ②1+2+4+3+2+8=20, 20×π=20π, ﹣1+2﹣4﹣2+3﹣8=﹣10, ∴ 当小圆结束运动时,小圆运动的路程共有 20π,此时两圆与数轴重合的点之间的距离是 10π (3)解:设时间为 t 秒, 分四种情况讨论: i)当两圆同向右滚动, 由题意得:t 秒时,大圆与数轴重合的点所表示的数:2πt, 小圆与数轴重合的点所表示的数为:πt, 2πt﹣πt=6π, 2t﹣t=6, t=6, 2πt=12π,πt=6π, 则此时两圆与数轴重合的点所表示的数分别为 12π、6π. ii)当两圆同向左滚动, 由题意得:t 秒时,大圆与数轴重合的点所表示的数:﹣2πt, 小圆与数轴重合的点所表示的数:﹣πt, ﹣πt+2πt=6π, ﹣t+2t=6, t=6, ﹣2πt=﹣12π,﹣πt=﹣6π, 则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π. iii)当大圆向右滚动,小圆向左滚动时, 同理得:2πt﹣(﹣πt)=6π,
相关文档
最新文档