沪科初中数学七年级下册《8.2 整式乘法《单项式与多项式相乘》教案1

合集下载

单项式与多项式相乘-沪科版七年级数学下册教案

单项式与多项式相乘-沪科版七年级数学下册教案

单项式与多项式相乘-沪科版七年级数学下册教案一、教学目标1.了解单项式和多项式的概念和特点。

2.掌握单项式与多项式相乘的方法。

3.能够应用单项式与多项式相乘的方法解决实际问题。

二、教学重难点1.教学重点:单项式与多项式相乘的方法;2.教学难点:如何应用单项式与多项式相乘的方法解决实际问题。

三、教学过程1. 导入新知教师通过引导学生复习代数式的基本概念和常数项的概念,引出本节课的主题:单项式与多项式相乘。

2. 呈现新知1.介绍单项式和多项式的概念可以从单项式和多项式的定义出发,引导学生理解单项式和多项式的概念和特点。

2.单项式与多项式相乘的方法–单项式相乘:将单项式的系数相乘,并将字母部分的次数相加。

–多项式与单项式相乘:将多项式中的每一项与单项式相乘,再将相乘得到的结果相加即可。

–多项式相乘:使用分配律逐项相乘,再将结果合并同类项即可。

3.示例分析根据教材中的示例,让学生通过实际计算掌握单项式与多项式相乘的方法。

同时,引导学生分析实际问题,理解并应用单项式与多项式相乘的方法。

3. 学生练习1.练习册上的练习题2.在教师的指导下,通过纸笔练习,加深记忆和理解。

4. 归纳总结教师通过呈现多项式相乘的方法,让学生领会乘法的分配律,并对单项式相乘和多项式与单项式相乘的方法进行总结和归纳。

5. 课堂小结教师对本节课学习的重点、难点进行强调和总结,并让学生对所学知识进行回顾和梳理,掌握知识点之间的联系和逻辑。

四、教学反思本节课通过引导学生理解单项式和多项式的概念和特点,让学生掌握单项式与多项式相乘的方法,并能够应用单项式与多项式相乘的方法解决实际问题。

教师注重结合实例进行详细讲解和示范,让学生理解和应用乘法的分配律以及单项式和多项式相乘的方法。

同时,教师注重对学生的思维和逻辑进行引导,让学生能够对所学知识点进行总结和梳理。

通过本节课的教学,学生能够更深入地掌握单项式与多项式相乘的方法和应用,为以后的代数学习打下坚实的基础。

沪科版数学七年级下册8.2.2单项式与多项式相乘(第2课时)教学设计教案

沪科版数学七年级下册8.2.2单项式与多项式相乘(第2课时)教学设计教案

8.2整式乘法1.单项式与单项式相乘第2课时单项式除以单项式1.复习单项式乘以单项式的运算,探究单项式除以单项式的运算规律;2.能运用单项式除以单项式进行计算并解决问题.(重点、难点)一、情境导入填空:(1)a m·a n=________;(2)(a m)n=________;(2)a m+n÷a n=________;(4)a mn÷a n=________.我们已经学习了单项式乘以单项式的运算,今天我们将要学习它的逆运算.二、合作探究探究点:单项式除以单项式【类型一】直接用单项式除以单项式进行计算计算:(1)-x5y13÷(-xy8);(2)-48a6b5c÷(24ab4)·(-56a5b2).解析:(1)可直接运用公式进行计算;(2)运算顺序与有理数的运算顺序相同,从左到右依次进行运算.解:(1)-x5y13÷(-xy8)=x5-1·y13-8=x4y5;(2)-48a6b5c÷(24ab4)·(-56a5b2)=[(-48)÷24×(-56)]a6-1+5·b5-4+2·c=53a10b3c.方法总结:计算单项式除以单项式时应注意商的系数等于被除式的系数除以除式的系数,同时还要注意系数的符号;整式的运算顺序与有理数的运算顺序相同.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型二】已知整式除法的恒等式,求字母的值若a(x m y4)3÷(3x2y n)2=4x2y2,求a、m、n的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a(x m y4)3÷(3x2y n)2=4x2y2,∴ax3m y12÷9x4y2n=4x2y2,∴a÷9=4,3m-4=2,12-2n=2,解得a=36,m=2,n=5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.变式训练:见《学练优》本课时练习“课后巩固提升”第2题三、板书设计1.单项式除以单项式的运算法则单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2.单项式除以单项式的相关计算在教学过程中,通过生活中的情景导入,引导学生根据单项式乘以单项式的乘法运算推导出其逆运算的规律,在探究的过程中经历数学概念的生成过程,从而加深印象。

沪科版七年级数学下册单项式与多项式相乘优秀教学案例

沪科版七年级数学下册单项式与多项式相乘优秀教学案例
3.教师对学生的学习情况进行总结性评价,关注学生的全面发展,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一些生活中的实际问题,如计算房屋面积、计算长方形体积等,让学生感受到数学在生活中的应用。
2.引导学生尝试解决这些问题,发现这些问题都可以归结为单项式与多项式相乘的问题。
3.由此导入新课,激发学生的学习兴趣,让他们自然地过渡到本节课的学习内容。
(五)作业小结
1.布置一些具有代表性的作业,让学生巩固所学知识,提高他们的实际应用能力。
2.要求学生在作业中运用乘法分配律,培养他们在解决问题时的逻辑思维。
3.对学生的作业进行及时批改,反馈他们的学习情况,鼓励他们不断提高。
五、案例亮点
1.生活情境的创设:本案例通过引入生活情境,如购买商品、计算建筑用料等,使学生能够直观地感受到数学在实际生活中的应用,增强了学生的学习兴趣,提高了他们的学习积极性。
三、教学策略
(一)情景创设
1.生活情境:结合学生的生活实际,创设购买商品、计算建筑用料等情境,让学生在解决实际问题的过程中,自然地引入单项式与多项式相乘的知识。
2.数学情境:通过图片、图形等展示单项式与多项式相乘的实际应用,如几何图形的面积计算等,激发学生的学习兴趣。
3.问题情境:设计一些具有启发性的问题,引导学生发现单项式与多项式相乘的规律,激发他们的探究欲望。
5.教学策略的灵活运用:本案例根据学生的实际情况,运用了情景创设、问题导向、小组合作等多种教学策略,使学生能够在不同的情境中学习,提高了他们的学习效果和学习能力。
2.鼓励学生发表自己的观点,互相启发、互相学习,提高他们的合作意识。
3.教师巡回指导,关注学生在讨论过程中的困惑,及时给予解答和引导。

沪科初中数学七下《8.2 整式乘法 单项式与多项式相乘精品课件

沪科初中数学七下《8.2 整式乘法 单项式与多项式相乘精品课件
• 单项式与多项式相乘,就 是用单项式去乘多项式的每一 项,再把所得的积相加.
注意: ☞
1.单项式乘多项式的结果是多项式, 积的项数与原多项式的项数相同. 2.单项式分别与多项式的每一项相 时,要注意积的各项符号的确定:
同号相乘得正,异号相乘得负
3.不要出现漏乘现象,运算要有顺序.
例4 计算:
(1) (-4 x2)·(3 +x 1), (2)(
巩固练习: 1.回答:(1)3a(5a-2b)
(2)(x-3y)·(-6x)
2.计算:(1)5x(3x+4)
(2)(5a2-
4 3
a+1)(-3a)
3.化简:课本的59页第2题 第3题
课堂小结:
1、这节课你学到了哪些知识? 2、你有什么想法要跟大家一起交流?
单项式与多项式相乘
问题:
• 三家连锁店以相同的价 格m(单位:元/瓶)销售某 种商品,它们在一个月内的 销售量(单位:瓶)分别是 a,b,c.你能用不同的 方法计算它们在这个月内销 售这种商品的总收入吗?
解法(一):先求三家连锁店的总销量,再求总收入,
即总收入(单位:元)为:
m(a+b+c) ①
3
明辨 & 是非 ☞
下面的计算对不对?如果不对,怎样改正?
(1)( - 3x)(2x - 3y)=6x2 - 9xy ( × )
注意:各项符号的确定!
(2) 5x(2x2 - 3x+1)=10x3 - 15x2 ( × )
防止漏项哦!
(3) am(am-a2+1)=a2m-a2m+am=am ( × ) (4) (-2x)•(ax+b-3)=-2ax2-2bx-6x ( × )

沪科版七年级数学下册整式乘法单项式与多项式相乘教案

沪科版七年级数学下册整式乘法单项式与多项式相乘教案

8.2.2 单项式与多项式相乘【教学目标】1、经历探索多项式乘法法则的过程,理解多项式乘法法则。

2、学会用多项式乘法法则进行计算。

3、培养学生用几何图形理解代数知识的能力和复杂问题转化为简单问题的转化思想。

【教学重点、难点】重点是掌握多项式的乘法法则并加以运用。

难点是理解多项式乘法法则的推导过程和运用法则进行计算。

【教学准备】展示课件。

【教学过程】一、回顾与思考教师引导学生复习单项式×多项式运算法则整式的乘法实际上就是单项式×单项式单项式×多项式和今天学多项式×多项式二、创设情景,导入课题展示:节前语和图片。

展示:课本中三图图5-4图5-6一间厨房的平面布局如图5-4,试用几种方法表示厨房的总面积。

(师生共同探索,鼓励学生用不同的表示方法完成,然后总结)由图5-5得总面积为(a+n)(b+m)由图5-6得总面积为a(b+m)+n(b+m)或ab+am+nb+nm此时提出问题《多项多的乘法》。

三、探索法则与应用(a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm根据分配律,我们也能得到下面等式:(a+n)(b+m)=ab+am+nb+nm1、在学生发言的基础上,教师总结多项式×多项式的乘法法则并板书法则。

让学生体会法则的理论依据:乘法对加法的分配律多项式乘以多项式先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。

2、例题讲题例1 计算(1)(x+y)(a+2b)(2)(3x-1)(x+3)强调法则的作用。

例2 先化简,再求值:(2a-3)(3a+1)-6a(a-4)其中a=2/17解:(2a-3)(3a+1)-6a(a-4)=6a2+2a-9a-3-6a2+24a=17a-3当a=2/17时,原式=17×2/17-3=-13、课内练习四、归纳小结,充实结构指导学生总结本节课的知识点、学习过程等的自我评价。

8.2.2 单项式与多项式相乘 课件 2023-2024学年沪科版数学七年级下册

8.2.2 单项式与多项式相乘   课件 2023-2024学年沪科版数学七年级下册
2
你能说出上面计算错误的原因吗?试试看!
2. 计算:
(1)(3ab 2a) a;
(2)(12m2n 15mn2 ) 6mn.
解:(1)(3ab 2a) a (2)(12m2n 15mn2 ) 6mn
=3ab a 2a a
12m2n 6mn 15mn2 6mn
=3b 2.
2m 5 n. 2
6.计算: (1) (-4x) ·(2x2 + 3x-1); 解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
=-8x3 - 12x2 + 4x.
(2)
(
2 3
ab2-2ab)
·12
ab.
解:原式= 2 ab2 ·1 ab-2ab ·1 ab
3
2
2
= 1 a2b3-a2b2.
关键: 应用法则是把多项式除以单项式转化为单项式除以 单项式.
典例精析 例1 计算: (1) (9x4 15x2 6x) 3x;
(2) (28a3b2c a2b3 14a2b2 ) (7a2b).
解:(1) (9x4 15x2 6x) 3x
=9x4 3x 15x2 3x 6x 3x = 3x3 5x 2.
3
7. 计算:- 2x2 ·( xy + y2 ) - 5x(x2y - xy2). 解:原式 = ( -2x2)·xy + (-2x2)·y2 + (-5x)·x2y + (-5x)·(-xy2)
= -2x3y + (-2x2y2) + (-5x3y) + 5x2y2
= -7x3y + 3x2y2. 注意 (1) 2x2 与 5x 前面的“-”不能看漏; (2) 单项式与多项式相乘的结果中,应将 同类项 合并.

整式乘法第课时单项式与多项式相乘教案精选全文

可编辑修改精选全文完整版教学设计8.2 整式乘法(第3课时) 单项式与多项式相乘一、教学目标:1 理解和体会单项式乘以多项式法则,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力.2 会进行单项式与多项式的乘法运算.二、重点、难点:重点:单项式与多项式的乘法法则.难点:单项式的系数符号是负数时的情况.三、教学方法分析及学习方法指导教法分析:采用引导发现法.通过精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,发挥教师主导作用和学生的主体作用,学生始终处在观察思考探究之中.学法分析:围绕问题进行,引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.培养学生问题解决的化归意识.通过例题的合作学习,学生认清解题应规范,使学生注重良好学习习惯的培养.与此同时还进行多次有较强针对性的自主学习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后面学习扫清障碍.四、教学过程:(一)知识回顾:1 如何进行单项式乘单项式的运算?2 计算:()()()3211 25 242a a x x y ⋅⋅- 设计意图:复习单项式乘以单项式法则,为学习单项式乘以多项式做铺垫.(二)情境导入:一个施工队修筑一条路面宽为 n m 的公路,第一天修筑 a m 长,第二天修筑 b m 长,第三天修筑 c m 长,3天共修筑路面的面积是多少?先按题意画图,结合图形考虑有几种计算方法?算法一:3天共修筑路面的总长为(a +b +c)m ,因为路面的宽为n m ,所以3天共修筑路面算法二:先分别计算每天修筑路面的面积,然后相加,则3天共修筑路面因此,有()n a b c na nb nc ++=++设计意图:创设情境激发学生的求知欲,引导学生主动探索解决问题,自然而然引入新课.(三)探究新知:()n a b c na nb nc ++=++你能用所学的知识解释这个等式吗?思路:⨯→⨯转化单多单单分配律单项式与多项式相乘的法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.设计意图:指导学生会用化归思想解决问题,在探究中认识到单项式乘以多项式的运算规律.(四)合作学习:例4 计算()()()()()()2221 2 2x x x a a a a a -++--1 -2设计意图:通过合作学习,进一步理解掌握单项式乘以多项式运算法则,并让学生认清解题应规范,使学生注重良好学习习惯的培养.(五)自主学习:1 下面的计算对不对?如果不对,怎样改正?22322322(1)3(23)69 ( ) (2)5(231)1015 ( )11(3)(2)2 ( ) (4)(2)(3)226 ( )33x x y x xy x x x x x m m n m m n x ax b ax bx x --=--+=--=--+-=---2 计算:2m 2m()()24 34 (2) (51)(3)3x x a a a ⋅+-+⋅-15 3 化简: ()()()()()()()2221 333112 2313x x x x x x x a ab a ab b ++----⎛⎫--+-- ⎪⎝⎭4 某长方体的长为a +1,宽为a ,高为3,问这个长方形的体积是多少?设计意图:教师组织学生通过自主学习,进行思考与交流以巩固探究的成果,从而使学生能够正确运用单项式乘以多项式运算法则解决问题.(六)课堂小结:这节课你有哪些收获?我们一 起来分享一下吧!设计意图:通过小结,让学生让学生谈收获及注意的问题,体验成功的喜悦;让学生认识自我,增强自信心.(七)布置作业:1 必做:课本65页习题8.2:第4、5题2 选做:如图,一块长方形地用来建造住宅、广场和商厦,你能求出这块土地的面积吗?板书设计:住宅用地 人民广场 商业用地3a+2b 2a-b 4a 3a 4a预设反思:创设情境激发学生的求知欲,引导学生主动探索和解决问题.自然地引入新课,通过感知生活,调动学生学习思考的积极性.在学生经历法则的探索过程中,引导学生积极思考,发展学生创新意识,体会单项式乘以多项式法则,锻炼学生语言表达能力.再通过合作交流,对做题出现的问题进行纠正;在自主学习中,透彻理解运用法则,给学生足够的时间与空间进行思考.。

七年级下 8.2整式乘法-单项式与多项式相乘教案

8.2 整式乘法第二课时单项式与多项式相乘教学目标:1. 熟练运用单项式乘多项式的计算;2. 经历探索单项式乘多项式法则的过程,发展有条理的思考及语言表达能力. 教学重点:单项式乘多项式法则.教学难点:通过探究理解单项式乘以多项式的运算法则教学过程:一、学前准备【回顾】1.请你用字母表示乘法分配律: a×(b+c) =a×b+a×c2.计算:(1) (2x)3·(-5x2y)(2) 23x3y2·(-32xy2)2-10x5y -x5y6【情景导入】课本P60问题2方法一:3天共修筑路面的总长为(a+b+c)米,因为路面的宽为n米,所以3天共修筑路面 n(a+b+c)平方米。

方法二:先分别计算每天修筑路面的面积,然后想家,则3天共修筑路面 na+nb+nc 平方米。

因此,有n(a+b+c) = na+nb+nc 。

结论:单项式乘以多项式的乘法法则:单项式与多项式相乘,用单项式和多项式卫生间 卧 室 厨 房 客 厅y 2y 4x 4y2x x 的每一项分别相乘,再把所得的积相加。

二、探究活动【例题分析】例4. (见p60)思考题:(见p61)例5. (见p62)【课堂自测】(多媒体放映)1.计算:(喊学生口答)(1) a (2a -3) (2) a 2 (1-3a )(3) 3x (x 2-2x -1) (4) -2x 2y (3x 2-2x -3)(5)(2x 2-3xy +4y 2)(-2xy ) (6) -4x (2x 2+3x -1)2、解方程: 2(1)(32)(2)12x x x x x x --+=-+-(上黑板解答)3、一家住房的结构如图,这家房子的主人打算把卧室以外的部分铺上地砖,至少需要多少平方米的地砖?如果某种地砖的价格是a 元/m 2,那么购买所需的地砖至少需要多少元? (让同学具体讲解)三、自我测试书本练习题(p61-62)四、应用于拓展(多媒体放映,下节课解答)1.解方程:2(25)(2)6x x x x x --+=-。

沪科版数学七年级下册《单项式与多项式相乘》教学设计1

沪科版数学七年级下册《单项式与多项式相乘》教学设计1一. 教材分析《单项式与多项式相乘》是沪科版数学七年级下册的一章内容。

本章主要介绍单项式与多项式相乘的法则,并通过具体的例题让学生掌握运算法则。

教材通过逐步引导学生,让学生自主探究和发现单项式与多项式相乘的规律,提高学生的数学思维能力。

二. 学情分析学生在七年级上学期已经学习了单项式和多项式的相关知识,对单项式和多项式的定义、运算有一定的了解。

但学生在实际运用中,对于如何将单项式与多项式相乘,可能会存在一定的困难。

因此,在教学过程中,需要结合学生的实际情况,通过具体的例题和练习,让学生理解和掌握单项式与多项式相乘的法则。

三. 教学目标1.让学生理解单项式与多项式相乘的法则。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生的数学思维能力和团队合作能力。

四. 教学重难点1.教学重点:单项式与多项式相乘的法则。

2.教学难点:如何将单项式与多项式相乘,并在实际问题中灵活运用。

五. 教学方法1.采用问题驱动法,引导学生自主探究和发现单项式与多项式相乘的规律。

2.通过具体例题和练习,让学生在实际操作中理解和掌握单项式与多项式相乘的法则。

3.采用小组合作学习,培养学生团队合作能力和数学思维能力。

六. 教学准备1.准备相关的教学PPT和教学素材。

2.准备练习题和拓展题,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)通过提问方式复习单项式和多项式的相关知识,引导学生回顾已学的知识,为新课的学习做好铺垫。

2.呈现(10分钟)通过PPT展示单项式与多项式相乘的例题,让学生观察和思考如何进行计算。

3.操练(10分钟)让学生在课堂上进行单项式与多项式相乘的练习,教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生通过小组合作,共同完成一些单项式与多项式相乘的练习题,巩固所学知识。

5.拓展(10分钟)让学生运用所学知识,解决一些实际问题,提高学生的应用能力。

新沪科版七年级数学下册《8章 整式乘法与因式分解 8.2 整式乘法 单项式与多项式相乘》教案_7

8.2 整式乘法—单项式与多项式相乘(1)学习目标:1、在具体情景中,了解单项式和多项式相乘的意义。

2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

3、培养学生有条理的思考和表达能力。

学习重点:单项式乘以多项式的法则学习难点:对法则的理解学习过程一、复习提问:1. 请说出单项式与单项式相乘的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

2. 什么叫多项式?几个单项式的和叫做多项式。

3. 什么叫多项式的项?在多项式中,每个单项式叫做多项式的项。

说出多项式 2x2+3x-1的项和各项的系数4.怎样算简便?1116()⨯+-236二、合作探究(一)独立思考,解决问题1、问题:某街道为美化环境,对街道进行了大整治.其中一项就是把一块矩形的空地补上了彩色地砖(如下图),成为市民休闲健身的场所.你能够表示出这块矩形空地的面积吗算法一:矩形的空地总长为(a+b+c)m,因为矩形的空地的宽为bm,所以矩形的空地的面积为 m2.算法二:先分别计算每个小矩形的面积,然后相加,则矩形的空地的面积为m2.因此,有 = 。

1、你能用字母表示乘法分配律吗?2、你能尝试总结单项式乘以多项式的法则吗?(二)师生探究,合作交流例1计算:解:(-3x2)·(3x+1)=(-3x2)·(3x )+(-3x2)·1=-9x3-3x2注意:多项式中”1”这项不要漏乘.例2 计算:-2a2·(ab+b2)-5a(a2b-ab2)解: -2a2·(ab+b2)-5a(a2b-ab2)=-2a3b-2a2b2-5a3b+5a2b2=(-2a3b-5a3b)+(-2a2b2+5a2b2)=-7a3b+3a2b2注意:1.将2a2与5a 前面的“-”看成性质符号2.单项式与多项式相乘的结果,应将同类项合并。

几点注意:1.单项式乘多项式的结果仍是多项式,积的项数与原多项式的项数相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《单项式与多项式相乘》
教学目标
掌握单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.
重、难点与关键
1.重点:单项式与多项式相乘的法则.
2.难点:整式乘法法则的推导与应用.
3.关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移. 教学过程
一、回顾交流,课堂演练
1.口述单项式乘以单项式法则.
2.口述乘法分配律.
3.课堂演练,计算:
(1)(-5x )·(3x )2 (2)(-3x )·(-x ) (3)
31xy ·32xy 2 (4)-5m 2·(-31mn ) (5)-51x 2y 4-2x 2y ·(-2
1x 2y 2) 二、创设情境,引入新课 小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了
61a 米的空白,请同学们列出这幅画的画面面积是多少?
【学生活动】小组合作,讨论.
【情境问题】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A 牌空调,他们在一年内的销售量(单位:台)分别是x ,y ,z ,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.
【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.
方法一:首先计算出这三家超市销售A 牌空调的总量(单位:台),再计算出总的收入(单位:元). 即:n (x +y +z ).
方法二:采用分别计算出三家超市销售A 牌空调的收入,然后再计算出他们的总收入(单位:元). 总结规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.
三、范例学习,应用所学
【例1】计算:(-2a2)·(3ab2-5ab3).
解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3
【例2】化简:-3x2·(1
3
xy-y2)-10x·(x2y-xy2)
解:原式=-x3y+3x2y2-10x3y+10x2y2
=-11x3y+13x2y2
【例3】解方程:8x(5-x)=19-2x(4x-3)40x-8x2=19-8x2+6x
40x-6x=19
34x=19
x=19 34
四、随堂练习,巩固深化
计算:(1)5x2·(2x2-3x3+8)(2)-16x·(x2-3y)
(3)-2a2·(1
2
ab3+b3)(4)(
2
3
x2y3-16xy)·
1
2
xy2
五、课堂总结,发展潜能
1.单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.。

相关文档
最新文档