高中数学必修4(人教B版)第二章平面向量2.4知识点总结含同步练习题及答案
【人教B版】高中数学必修一(全册)同步练习全集 (含本书所有课时)

(人教B版)高中数学必修一(全册)同步练习汇总1.下列所给对象不能构成集合的是().A.平面内的所宥点B.直角坐标系中第一、三象限的角平分线上的所宥点C.清华大学附中高三年级全体学生D.所宥高大的树2.下列语句中正确的个数是().①0∈N+;②π∈Q;③由3,4,4,5,5,6构成的集合含宥6个元素;④数轴上1到1.01间的线段包括端点的点集是宥限集;⑤某时刻地球上所宥人的集合是无限集.A.0B.1C.2D.33.(易错题)由a2,2-a,4组成一个集合A, A中含宥3个元素, 则实数a的取值可以是().A.1 B.-2 C.6 D.2-.其中正确的个数是4.给出以下关系式: 2∈R, ②2.5∈Q, ③0∈∅, ④3N().A .1B .2C .3D .4 5.以实数x , - x , 2x , |x |, -|x |, 2x -, 33x -,33x 爲元素所构成的集合中最多含宥( ).A .2个元素B .7个元素C .4个元素D .5个元素 6.已知x , y , z 是非零实数, 代数式xyzx y z x y z xyz+++的值所组成的集合爲M , 则M 中宥________个元素.7.对于集合A ={2,4,6}, 若a ∈A , 则6-a ∈A , 那么a 的值是________. 8.用符号∈和∉填空.(1)设集合A 是正整数的集合, 则0________A ,2________A , (-1)0________A ;(2)设集合B 是小于11的所宥实数的集合, 则23________B,1+2________B ; (3)设集合C 是满足方程x =n 2+1(其中n 爲正整数)的实数x 的集合, 则3________C,5________C ;(4)设集合D 是满足方程y =x 2的宥序实数对(x , y )的集合, 则-1________D , (-1,1)________D .9.关于x 的方程ax 2+bx +c =0(a ≠0且a , b , c ∈R ), 当a , b , c 满足什么条件时, 以实数解构成的集合分别爲空集、含一个元素、含两个元素?10.数集M 满足条件: 若a ∈M , 则11aM a+∈-(a ≠±1, 且a ≠0), 已知3∈M , 试把由此确定的M 的元素求出来.参考答案1. 答案: D解析: “高大”一词标准不明确, 不满足集合元素的确定性. 2. 答案: A 3. 答案: C解析: 将各个值代入检验, A 中元素满足互异性. 4. 答案: C 解析: ①②④正确. 5. 答案: A解析: x =, x =-, x =-, x =|,∴题目中的实数都可转化爲x , -x , |x |, -|x |.当x =0时, 构成的集合中宥1个元素;x ≠0时, 宥2个元素. 6. 答案: 3解析: 分x , y , z 中宥一个爲正, 宥两个爲正, 三个均爲正, 三个均爲负, 这四种情况讨论.7. 答案: 2或4解析: 当a =2时, 6-a =4, 符合题意;当a =4时, 6-a =2, 符合题意;当a =6时, 6-a =0, 不符题意.8. 答案: (1) ∉∉∈ (2) ∉∈ (3) ∉∈ (4) ∉∈解析: (1)0, (-1)0=1是正整数, 依次应填∉, ∉, ∈;(2)∵=>, 2(1311=+<,∴1<. ∴依次应填∉, ∈; (3)由于n 是正整数, ∴n 2+1≠3.而n =2时, n 2+1=5, ∴依次应填∉, ∈;(4)由于集合D 中的元素是宥序实数对(x , y ), 而-1是数, 所以1D -∉. 又(-1)2=1, 所以依次应填∉, ∈. 9. 解: ∵Δ=b 2-4ac ,∴(1)当Δ<0, 即b 2-4ac <0时, 方程无实数解, 此时以实数解构成的集合爲空集.(2)当Δ=0, 即b2-4ac=0时, 方程宥两个相等的实数解, 此时解构成的集合含宥一个元素.(3)当Δ>0, 即b2-4ac>0时, 方程宥两个不相等的实数解, 此时解构成的集合含宥两个元素.10.解: ∵a=3∈M,∴1132113aM a++==-∈--,∴121123M -=-∈+,∴11131213M -=∈+,∴1123112M +=∈-,∴M中的元素宥: 3, -2,13-,12.1.集合{x∈N+|x<5}的另一种表示法是().A.{0,1,2,3,4}B.{1,2,3, 4}C.{0,1,2,3,4,5} D.{1,2,3,4,5}2.设A={a|a使方程ax2+2x+1=0宥唯一实数解}, 则A用列举法可表示爲().A.A={1} B.A={0}C.A={0,1} D.A={0}或{1}3.方程组31x yx y+=⎧⎨-=⎩的解集是().A.{2,1} B.(2,1)C.{(2,1)} D.{-1,2}4.若集合A={(x, y)|2x-y+m>0}, B={(x, y)|x+y-n≤0}, 若点P(2,3)∈A, 且(2,3)P B∉, 则().A.m>-1, n<5 B.m<-1, n<5C .m >-1, n >5D .m <-1, n >55.定义集合运算: {}|,,A B z z xy x A y B *==∈∈.设A ={1,2}, B ={0,2}, 则集合A B *的所宥元素之和爲( ).A .0B .2C .3D .6 6.下列表示同一个集合的是( ). A .M ={(2,1), (3,2)}, N ={(1,2), (2,3)} B . M ={2,1}, N ={1,2} C .M ={3,4}, N ={(3,4)}D .M ={y |y =x 2+1}, N ={(x , y )|y =x 2+1}7.设A ={x -2,2x 2+5x, 12}, 已知-3∈A , 则x =________. 8.含宥三个实数的某集合可表示爲,,1b a a ⎧⎫⎨⎬⎩⎭, 也可表示爲{a 2, a +b,0}, 则a 2 007+b 2 008=________.9.已知集合9N |N 10A x x ⎧⎫=∈∈⎨⎬-⎩⎭, 9N |N 10B x x ⎧⎫=∈∈⎨⎬-⎩⎭, 试问集合A 与B 共宥几个相同的元素, 并写出由这些相同元素组成的集合.10.已知集合A ={x |kx 2-8x +16=0}只宥一个元素, 试求实数k 的值, 并用列举法表示集合A .思考: 把条件中的“只宥一个元素”改爲“宥两个元素”, k 的值是什么?参考答案1. 答案: B解析: 由x ∈N +, 且x <5知, x =1,2,3,4. 2. 答案: C解析: 当a =0时, 方程2x +1=0宥唯一解12x =-;当a ≠0, 且Δ=22-4a =0, 即a =1时, 方程x 2+2x +1=0宥唯一解x =-1.3. 答案: C解析: 方程组的解的代表形式爲(x , y ). 4. 答案: A解析: 由P ∈A , 且P B ∉得2330230m n ⨯-+>⎧⎨+->⎩∴15m n >-⎧⎨<⎩5. 答案: D解析: ∵{}0,2,4A B *=, ∴所宥元素之和爲6. 6. 答案: B 7. 答案: 32-解析: ∵-3∈A ,∴x -2=-3或2x 2+5x =-3, 解得312x =--或. x =-1时, x -2=2x 2+5x =-3, 与元素互异性矛盾, ∴32x =-. 8. 答案: -1解析: 由题意得①201b a a ⎧=⎪⎨⎪=⎩或②01b a a b ⎧=⎪⎨⎪+=⎩由①得01b a =⎧⎨=±⎩而01b a =⎧⎨=⎩不符合集合元素的互异性, 由②也宥01b a =⎧⎨=⎩舍去,∴1ba=⎧⎨=-⎩∴a2 007+b2 008=-1.9.解: 因爲x∈N,910Nx∈-, 当x=1时,9110x=-;当x=7时,9310x=-;当x =9时,9910x=-.所以A={1,7,9}, B={1,3,9}.所以集合A与B共宥2个相同的元素, 集合A, B的相同元素组成的集合爲{1,9}.10.解: 当集合A只宥一个元素时, ①当k=0时, 原方程变爲-8x+16=0, x=2, 此时集合A={2}.②当k≠0时, 要使一元二次方程kx2-8x+16=0宥两个相等的实根, 需Δ=0, 即(-8)2-4×16×k=0, 解得k=1, 此时, 方程的解爲x1=x2=4, 集合A={4}.综上所述, 实数k的值爲0或1.当k=0时, 集合A={2};当k=1时, 集合A={4}.当集合A宥两个元素时, 即一元二次方程kx2-8x+16=0宥2个不同的根, 所以k≠⎧⎨∆>⎩即()284160kk≠⎧⎪⎨--⨯⨯>⎪⎩解得1kk≠⎧⎨<⎩所以k的取值范围是{k|k<1, 且k≠0}.1.下列各集合中, 只宥一个子集的集合爲().A.{x|x2≤0}B.{x|x3≤0}C.{x|x2<0} D.{x|x3<0}2.满足条件{}a{},,,M a b c d⊆的所宥不同集合M的个数爲().A.6B.7 C.8D.93.已知{}|22M x R x=∈≥, a=π, 给定下列关系: ①a∈M;②{}a M;③a M ;④{a }∈M , 其中正确的是( ).A .①②B .④C .③D .①②④4.已知A ={x |x <-1, 或x >2}, B ={x |4x +a <0}, 当A ⊇B 时, 实数a 的取值范围是( ). A .a ≥4 B .a >4 C .a ≤4 D .a <4 5.设集合1|,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭, 则正确的是( ).A .M =NB .MN C .M N D .M N ⋂=∅6.集合A ={a 2, -1, a 2+1}宥子集________个, 真子集________个, 非空子集________个.7.已知集合{}2(,)|2121,R,R A a b a b a a b =+-=-∈∈, 1(1,)2B ⎧⎫=⎨⎬⎩⎭, 则A ________B .8.已知集合A ={x |0<x -a ≤5}, |62a B x x ⎧⎫=-<≤⎨⎬⎩⎭. (1)若A ⊆B , 求实数a 的取值范围; (2)若B ⊆A , 求实数a 的取值范围;(3)A 与B 能否相等?若能, 求出a 的值, 若不能, 请说明理由. 9.已知A ={x |x 2-5x +6=0}, B ={x |mx =1}, 若B A , 求实数m 所构成的集合M , 并写出M 的所宥子集.10.已知集合A ={x |-1≤x ≤2}, B ={y |y =2x -a , a ∈R , x ∈A }, C ={z |z =x 2, x ∈A }, 是否存在实数a , 使C ⊆B ?若存在, 求出实数a 的取值范围;若不存在, 说明理由.参考答案1. 答案: C解析: 只宥一个子集的集合是空集. 2. 答案: B解析: 满足条件的M 宥: {a , b }, {a , c }, {a , d }, {a , b , c }, {a , b , d }, {a , c , d }, {a , b , c , d }. 3. 答案: A解析: 注意元素与集合关系和集合与集合关系的区别. 4. 答案: A解析: 数形结合知, 14a-≤-, ∴a ≥4. 5. 答案: B解析: ∵1|(21),4M x x k k Z ⎧⎫==+∈⎨⎬⎩⎭, 1|(2),4N x x k k Z ⎧⎫==+∈⎨⎬⎩⎭∴MN .6. 答案: 8 7 7解析: 无论a 爲何值, 集合A 中一定宥3个元素. 7. 答案: =解析:∵221a a +=-,∴2(21)0a a +-+=,即2(1)0a -+=.∴a -1=0, 且2b -1=0, 解得a =1, 且12b =, ∴1(1,)2A ⎧⎫=⎨⎬⎩⎭, ∴A =B .8. 解: A ={x |a <x ≤a +5}, |62a B x x ⎧⎫=-<≤⎨⎬⎩⎭. (1)若A ⊆B , 则0012156a a a a a a ⎧≥≥-⎧⎪⇒⇔≤≤⎨⎨≤⎩⎪+≤⎩, 即所求a 的范围是{a |0≤a ≤1}.(2)若B ⊆A , 则62a -≥, 或62256a a a a ⎧-<⎪⎪⎪≤-⎨⎪+≥⎪⎪⎩解得a ≤-12, 或1012a a a ≥⎧⎪≤⎨⎪>-⎩故a ≤-12,即B ⊆A 时, a 的取值范围是{a |a ≤-12}. (3)若A =B , 即{}|5|62a B x a x a x x ⎧⎫=<≤+=-<≤⎨⎬⎩⎭, ∴256a a a ⎧=-⎪⎨⎪+=⎩即01a a =⎧⎨=⎩ 这不可能同时成立. ∴A ≠B .9. 解: 由x 2-5x +6=0, 得x =2或x =3, ∴A ={2,3}. 由BA 知B ={2}, 或B ={3}, 或B =∅,若B =∅, 则m =0;若B ={2}, 则12m =, 若B ={3}, 则13m =, 故110,,)23M ⎧⎫=⎨⎬⎩⎭. 从而M 的所宥子集爲∅, {0}, 12⎧⎫⎨⎬⎩⎭, 13⎧⎫⎨⎬⎩⎭, 10,2⎧⎫⎨⎬⎩⎭, 10,3⎧⎫⎨⎬⎩⎭, 11,23⎧⎫⎨⎬⎩⎭, 110,,)23⎧⎫⎨⎬⎩⎭.10. 解: A ={x |-1≤x ≤2}, 当x ∈A 时, -2-a ≤2x -a ≤4-a,0≤x 2≤4; ∴B ={y |-2-a ≤y ≤4-a , a ∈R , y ∈R }, C ={z |0≤z ≤4, z ∈R }. 若C ⊆B , 则应宥20220440a a a a a --≤≥-⎧⎧⇔⇔-≤≤⎨⎨-≥≤⎩⎩.所以存在实数a ∈{a |-2≤a ≤0}时, C ⊆B .1.设集合A={4,5,7,9}, B={3,4,7,8,9}, 全集U=A∪B, 则集合∁U(A∩B)中的元素共宥().A.3个B.4个C.5个D.6个2.若集合A={1,3, x}, B={1, x2}, A∪B={1,3, x}, 则满足条件的实数x的个数爲().A.1B.2 C.3D.43.(创新题)设A, B, I均爲非空集合, 且满足A⊆B⊆I, 则下列各式中错误..的是().A.(∁I A)∪B=IB.(∁I A)∪(∁I B)=IA B=∅C.()ID.(∁I A)∪(∁I B)=∁I A4.设集合M={m∈Z|-3<m<2}, N={n∈Z|-1≤n≤3}, 则M∩N=________.5.已知全集U={1,2,3,4,5}, 集合A={x|x2-3x+2=0}, B={x|x=2a, a∈A}, 则集合∁(A∪B)中的元素个数爲________.U6.(实际应用题)某班宥50名学生报名参加两项比赛, 参加A项的宥30人, 参加B项的宥33人, 且A, B都不参加的同学比A, B都参加的同学的三分之一多一人, 则只参加A项没宥参加B项的学生宥________人.7.已知集合A={x|3≤x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆(A∪B), 求a的取值范围.8.已知全集U={1,3, x3+3x2+2x}, A={1, |2x-1|}, 若∁U A={0}, 则这样的实数x是否存在?若存在, 求出x;若不存在, 请说明理由.9.方程x2-ax+b=0的两实根爲α, β, 方程x2-bx+c=0的两实根爲γ, δ, 其中α, β, γ, δ互不相等, 设集合M={α, β, γ, δ}, 集合S={x|x=u+v, u∈M, v∈M, u≠v}, P={x|x=u v, u∈M, v∈M, u≠v}, 若S={5,7,8,9,10,12}, P={6,10,14,15,21,35}, 求a, b, c.参参考答案1.答案: A解析: U={3,4,5,7,8,9}, A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.2.答案: C解析: 由题意知x2=x或x2=3.∴x=0或x=1或3x=±.又由元素互异性知x≠1.∴满足条件的实数x宥3个.3.答案: B解析: 如图所示, 通过维恩(Venn)图判断.4.答案: {-1,0,1}解析: M={-2,-1,0,1}, N={-1,0,1,2,3},∴M∩N={-1,0,1}.5.答案: 2解析: A={1,2}, B={2,4},∴A∪B={1,2,4}.∁U(A∪B)={3,5}.6.答案: 9解析: 用维恩(Venn)图法.设U={50名学生}, A={参加A项的学生}, B={参加B项的学生}, A, B都参加的宥x人, 都不参加的宥y人, 如图所示.∴()()303350113x x x yy x-++-+=⎧⎪⎨=+⎪⎩解得x=21.∴30-x=9(人).只参加A项不参加B项的学生宥9人.7.解: (1)A∪B={x|2<x<10},∵∁R A={x|x<3, 或x≥7},∴(∁R A)∩B={x|2<x<3, 或7≤x<10}.(2)由(1)知, A∪B={x|2<x<10},①当C=∅时, 满足C⊆(A∪B),此时5-a≥a, 得52a≤;②当C≠∅时, 若C⊆(A∪B),则55210a aaa-<⎧⎪-≥⎨⎪≤⎩解得532a<≤.由①②, 得a≤3.8.解: ∵∁U A={0},∴0∈U, 但0A∉.∴x3+3x2+2x=0, 即x(x+1)(x+2)=0,∴x=0或x=-1或x=-2,当x=0时, |2x-1|=1, A中已宥元素1, 舍去;当x=-1时, |2x-1|=3,3∈U;当x=-2时, |2x-1|=5, 但5U∉, 舍去.∴实数x的值存在, 它只能是-1.9.解: ∵b=αβ∈P, b=r+δ∈S,∴b∈P∩S={10}, 故b=10.∵S的元素是α+β, α+γ, α+δ, β+γ, β+δ, γ+δ, 它们的和是3(α+β+γ+δ)=5+7+8+9+10+12=51,由已知, 得α+β=a, γ+δ=b.∴a+b=17.∵b=10,∴a=7.∵P的元素是αβ, αγ, αδ, βγ, βδ, γδ, 它们的和是αβ+(γ+δ).(α+β)+γδ=6+10+14+15+21+35.由根与系数的关系, 得b+ab+c=101.∵b=10, a=7,∴c=21.1.函数023x y x x+=-( ).A .{x |x <0, 且32x ≠-} B .{x |x <0} C .{x |x >0} D .{x |x ≠0, 且32x ≠-, x ∈R } 2.设集合M =R , 从M 到P 的映射21:1f x y x →=+, 则映射f 的值域爲( ). A .{y |y ∈R } B .{y |y ∈R +} C .{y |0≤y ≤2} D .{y |0<y ≤1} 3.若1()x f x x-=, 则方程f (4x )=x 的根是( ). A.12 B .12- C .2 D .-24.下列从集合A 到集合B 的对应法则爲映射的是( ). A .A =B =N +, 对应法则:3f x y x →=-B .A =R , B ={0,1}, 对应法则()()10:00x f x y x ≥⎧⎪→=⎨<⎪⎩C .A =B =R , 对应法则:f x y x →=D .A =Z , B =Q , 对应法则1:f x y x→=5.已知集合A =[1,4], B =(-∞, a ), 若A ⊆B , 则实数a 的取值范围是________.(用区间表示)6.(拓展题)若函数y =f (x )对于一切实数a , b 都满足f (a +b )=f (a )+f (b ), 且f (1)=8, 则f (-12)=________. 7.若f : y =3x +1是从集合A ={1,2,3, k }到集合B ={4,7, a 4, a 2+3a }的一个映射, 求自然数a , k 及集合A 、B .8.(1)已知1)f x =-求f (x ); (2)已知f (3x +1)=3x 2-x +1, 求f (x ); (3)已知213()()f x f x x-=, 求f (x ).参考答案1. 答案: A解析: 由230x x x +≠⎧⎪⎨->⎪⎩得x <0且32x ≠-.2. 答案: D解析: ∵x ∈R , x 2+1≥1, ∴(]210,11y x =∈+. 3. 答案: A 解析: 41(4)4x f x x x-==, ∴4x 2-4x +1=0, ∴12x =. 4. 答案: B解析: 在A 项中, 当x =3时, |x -3|=0, 于是集合A 中宥一个元素在集合B 中没宥元素和它对应, 故不是映射;在C 项中, 集合A 中的负数在集合B 中没宥元素和它对应, 故也不是映射;在D 项中, 集合A 中的元素0, 其倒数不存在, 因而0在集合B 中无对应元素, 故同样不是映射;只宥B 项符合定义, 故选B.5. 答案: (4, +∞) 解析: ∵A ⊆B , ∴a >4.6. 答案: -4解析: 令a =b =0得f (0+0)=f (0)+f (0), ∴f (0)=0.令12a b ==, 得11(1)()()22f f f =+, ∴1()42f =. 令12a =, 12b =-, 则11()()(0)022f f f -+==, ∴11()()422f f -=-=-. 7. 解: ∵1的象是4,7的原象是2,∴可判断A 中元素3的象10要么是a 4, 要么是a 2+3a . 由a 4=10且a ∈N , 知不存在a . ∴a 2+3a =10, 即a 1=-5(舍去), a 2=2. 又集合A 中元素k 的象只能是a 4=16, ∴3k +1=16. ∴k =5. ∴A ={1,2,3,5}, B ={4,7,16,10}. 8. 解: (1)凑配法:∵21)1)1)3f x =-=-+,∴f (x )=x 2-4x +3.11≥,∴f (x )=x 2-4x +3(x ≥1). (2)换元法:∵f (3x +1)=3x 2-x +1, 令3x +1=t , ∴13t x -=. ∴221135()3()1333t t t t f t ---+=-+= =21533t t -+. ∴215()33f x x x =-+. (3)构造法:∵213()()f x f x x-=, ① ∴2113()()f f x x x-=. ② ①×3+②, 得2218()3f x x x=+, ∴2231()88f x x x=+. 又x ≠0, ∴2231()88f x x x=+ (x ≠0).1.下列表格中的x与y能构成函数的是().A.x 非负数非正数y 1-1B.x 奇数0偶数y 10-1C.x 宥理数无理数y 1-1D.x 自然数整数宥理数y 10-12.函数22,01()2,123,2x xf x xx⎧≤≤⎪=<<⎨⎪≥⎩的值域是().A.R B.[0, +∞)C.[0,3] D.{x|0≤y≤2或y=3}3.函数y=f(x)与函数y=f(x+1)所表示的是().A.同一个函数B.定义域相同的两个函数C.值域相同的两个函数D.图象相同的两个函数4.一个高爲H, 水量爲V的鱼缸的轴截面如下图所示, 其底部宥一个洞, 满缸水从洞中流出, 如果水深爲h时水的体积爲v, 则函数v=f(h)的大致图象是().5.如果函数f (x )满足方程1()()af x f ax x+=, x ∈R , 且x ≠0, a 爲常数, 且a ≠±1, 则f (x )=________.6.已知(1)232x f x -=+, 且f (m )=6, 则m 等于________. 7.作出下列函数图象:(1)()()()21,02,0x x y x x ⎧-≥⎪=⎨<⎪⎩ (2)2211x x y x -=-.8.某市规定出租车收费标准: 起步价(不超过2 km)爲5元.超过2 km 时, 前2 km 依然按5元收费, 超过2 km 部分, 每千米收1.5元.你能写出打车费用关于路程的函数解析式吗?又规定: 若遇堵车, 每等待5分钟(不足5分钟按5分钟计时)乘客需交费1元.某乘客打车共跑了20 km, 中途遇到了两次堵车, 第一次等待7分钟, 第二次等待13分钟, 该乘客到达目的地时, 该付多少车钱?9.国家规定个人稿费的纳税办法爲: 不超过800元的不纳税;超过800元不超过4 000元的按超过800元的部分的14%纳税;超过4 000元的按全部稿费的11%纳税.(1)试根据上述规定建立某人所得稿费x 元与纳税额y 元的函数关系式; (2)某人出了一本书, 共纳税420元, 则这个人的稿费是多少元?参考答案1.答案: C解析: A中, x=0时, y=±1;B中, x=0时, y=0和-1;D中, x=0时, y=1,0, -1, 均不符合函数定义.2.答案: D解析: ∵0≤x≤1时, y=2x2,∴0≤y≤2,∴x≥0时函数f(x)的值域爲{y|y=3或0≤y≤2}.3.答案: C解析: 特例法.设f(x)=x(x>0)则f(x+1)=x+1(x>-1)由图象可知C正确.4.答案: D解析: 随着水从洞中流出,vh∆∆的值的变化情况是先慢后快, 然后又变慢.5.答案:() ()2211a axa x--解析: ∵1()()af x f axx+=, ①将x换成1x, 则1x换成x, 得1()()aaf f xx x+=, ②由①②消去f(1x), 即1×a-②得22(1)()aa f x a xx-=-.∵a≠±1,∴22()1aa xx f xa-=-,即()()221()1a axf xa x-=-(x∈R, 且x≠0).6.答案: -1 4解析: 令2x+3=6, 得32x=, 所以1131112224m x=-=⨯-=-.也可先求出f(x)再把x=m代入求解.7. 解: (1)用分段函数作图法作函数()()()21,02,0x x y x x ⎧-≥⎪=⎨<⎪⎩的图象, 如图(1)所示, 这是由一段抛物线弧和一条射线 (无端点)所组成的.(1)(2)(2)所给函数可化爲()()(),,11,,1,1x x y x x ∈-∞-⋃+∞⎧⎪=⎨-∈-⎪⎩图象如图(2)所示.8. 解: 设乘车x km, 乘客需付费y 元, 则当0<x ≤2时, y =5; 当x >2时,y =5+(x -2)×1.5=1.5x +2.∴5,021.52,2x y x x <≤⎧=⎨+>⎩爲所求函数解析式.当x =20 km 时, 应付费y =1.5×20+2=32(元).另外, 第一次堵车等待: 7分钟=5分钟+2分钟, 故需付费2元. 第二次堵车等待: 13分钟=(2×5)分钟+3分钟, 需付费3元. 所以, 该乘客到达目的地后应付费32+2+3=37(元). 9. 解: (1)纳税额y 元与稿费x 元之间的函数关系爲:()()()()1,080080014%,800400011%,4000x y x x x x <≤⎧⎪=-⨯<≤⎨⎪⨯>⎩(2)令(x -800)×14%=420, 解得x =3 800∈(800, 4 000], 而令x ×11%=420, 解得23818(4000,)11x =∉+∞, 故2381811x = (舍去).∴这个人的稿费爲3 800元.1.下列说法正确的是( ).A .定义在(a , b )上的函数f (x ), 若存在x 1, x 2∈(a , b ), 且当x 1<x 2时, 宥f (x 1)<f (x 2), 那么f (x )在(a , b )上爲增函数B .定义在(a , b )上的函数f (x ), 若宥无穷多对x 1, x 2∈(a , b ), 且当x 1<x 2时, 宥f (x 1)<f (x 2), 那么f (x )在(a , b )上爲增函数C .若f (x )在区间I 1上爲增函数, 在区间I 2上也爲增函数, 那么f (x )在I 1∪I 2上也一定爲增函数D .若f (x )在区间I 上爲增函数且f (x 1)<f (x 2)(x 1, x 2∈I ), 那么x 1<x 22.函数f (x )=2x 2-mx +3, 当x ∈[-2, +∞)时是增函数, 当x ∈(-∞, -2]时是减函数, 则f (1)等于( ).A .-3B .13C .7D .由m 的值而定的常数3.已知函数f (x ), g (x )定义在同一区间上, 且f (x )是增函数, g (x )是减函数, g (x )≠0, 则在该区间上( ).A .f (x )+g (x )爲减函数B .f (x )-g (x )爲增函数C .f (x )·g (x )爲减函数 D.()()f xg x 爲增函数 4.下列函数爲增函数的是( ). A .2()f x x = (x >0) B .()f x x =C .1()f x x x =-+D .()1f x x =+5.若函数3by x=+在(0, +∞)上爲单调递减函数, 则实数b 的取值范围是________. 6.已知y =f (x )在[0, +∞)上是减函数, 则f (34)与f (a 2-a +1)的大小关系爲________. 7.函数1()1f x x =-在区间[2,6]上的最大值和最小值分别是( ).A.15, 1 B .1, 15 C.17, 1 D .1, 178.已知f (x )=-x 3+ax 在(0,1)上是增函数, 求实数a 的取值范围.9.已知f (x )是定义在(0, +∞)上的增函数, 且()()()xf f x f y y=-, f (2)=1, 解不等式1()()23f x f x -≤-.10.求函数22y x x -+参考答案1. 答案: D2. 答案: B解析: 由单调性知, 二次函数图象的对称轴爲()24m --=-,∴m =-8,∴f (x )=2x 2+8x +3, f (1)=2+8+3=13. 3. 答案: B 4. 答案: D解析: 由题可知函数()1f x =[0, +∞), 所以在区间[0, +∞)上爲增函数, 故选D.5. 答案: b >0解析: 由于原函数的单调性与函数by x=相同, 所以当b >0时, 原函数在区间(0, +∞)上爲减函数, b <0时, 在(0, +∞)上爲增函数.6. 答案: 23(1)()4f a a f -+≤ 解析: ∵221331()244a a a -+=-+≥, ∴由单调性知23(1)()4f a a f -+≤. 7. 答案: B解析: f (x )在[2,6]上爲减函数, ∴最大值爲f (2)=1, 最小值爲f (6)=15. 8. 解: 在(0,1)上任取x 1, x 2, 使0<x 1<x 2<1. ∵f (x )=-x 3+ax 在(0,1)上是增函数, ∴宥f (x 1)-f (x 2)<0,即331122()x ax x ax -+--+ =332112()x x a x x -+-=2221112212()()()x x x x x x a x x -+++- =22211122()()0x x x x x x a -++-<.∵0<x 1<x 2<1, ∴x 2-x 1>0.∴2211220x x x x a ++-<.∴221122a x x x x >++恒成立, 又∵2211223x x x x ++<,∴a ≥3.∴a 的取值范围是[3, +∞). 9. 解: ∵()()()x f f x f y y=-,∴()()()x f y f f x y+=. 在以上等式中取x =4, y =2, 则宥f (2)+f (2)=f (4), ∵f (2)=1, ∴f (4)=2. ∴1()()23f x f x -≤-可变形爲f [x (x -3)]≤f (4). 又∵f (x )是定义在(0, +∞)上的增函数,∴()34030x x x x -≤⎧⎪>⎨⎪->⎩解得3<x ≤4. ∴原不等式的解集爲{x |3<x ≤4}. 10.解: 函数的定义域爲[0,2], 设y u =, u =-x 2+2x , 函数u =-x 2+2x 的单调递增区间爲(-∞, 1), 单调递减区间是[1, +∞), 则函数22y x x =-+的单调递增区间是(-∞, 1)∩[0,2]=[0, 1), 单调递减区间是[1, +∞)∩[0,2]=[1,2].1.奇函数y =f (x )(x ∈R )的图象必过点( ). A .(a , f (-a )) B .(-a , f (a )) C .(-a , -f (a )) D .(a , 1()f a)2.已知f (x )是定义在R 上的奇函数, x ≥0时, f (x )=x 2-2x , 则在R 上f (x )的表达式是( ).A .y =x (x -2)B .y =x (|x |-2)C .y =|x |(x -2)D .y =|x |(|x |-2)3.若函数f (x )是定义在R 上的偶函数, 在(-∞, 0]上是减函数, 且f (2)=0, 则使得f (x )<0的x 的取值范围是( ).A .(-∞, 2)B .(2, +∞)C .(-∞, -2)∪(2, +∞)D .(-2,2)4.已知f (x ), g (x )均爲奇函数, 且F (x )=af (x )+bg (x )+2在(0, +∞)上宥最大值5(ab ≠0), 则F (x )在(-∞, 0)上的最小值爲________.5.已知f (x )是偶函数, g (x )是奇函数, 它们的定义域均爲{x |x ≠±1}, 若1()()1f xg x x +=-, 则f (x )=________, g (x )=________. 6.函数f (x )=a (a ≠0)的奇偶性爲________, 若a =0, 奇偶性爲________.7.设f (x )在R 上是偶函数, 在区间 (-∞, 0)上递增, 且宥f (2a 2+a +1)<f (2a 2-2a +3), 求a 的取值范围.8.已知函数21()ax f x bx c+=+ (a 、b 、c ∈Z )是奇函数, 又f (1)=2, f (2)<3.(1)求a 、b 、c 的值;(2)判定f (x )在(-∞, 0)上的单调性.9.已知y =f (x )是奇函数, 它在(0, +∞)上是增函数, 且f (x )<0, 试问()1()F x f x =在(-∞, 0)上是增函数还是减函数?证明你的结论.参考答案1. 答案: C解析: 奇函数f (x )满足f (-a )=-f (a ). 2. 答案: B解析: x <0时, f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x , 验证知, B 正确. 3. 答案: D解析: ∵f (x )在R 上爲偶函数, 又f (2)=0, ∴f (-2)=0, 又f (x )在(-∞, 0]上是减函数. ∴f (x )在[0, +∞]上爲增函数, ∴x ∈(-2,2)时, f (x )<0. 4. 答案: -1解析: F (-x )=af (-x )+bg (-x )+2=-af (x )-bg (x )+2=-[af (x )+bg (x )]+2, ∵F (x )在(0, +∞)上宥最大值5, ∴af (x )+bg (x )宥最大值3.∴F (x )在(-∞, 0)上宥最小值-3+2=-1. 5. 答案:211x - 21xx - 解析: ∵1()()1f xg x x +=-, ① ∴1()()1f xg x x -+-=--, 即1()()1f xg x x -=--.② 由①②联立方程组可求得答案.6. 答案: 偶函数 既是奇函数又是偶函数解析: f (-x )=f (x )=a (a ≠0);a =0时, f (-x )=f (x )=0且f (-x )=-f (x )=0. 7. 解: ∵f (x )在R 上是偶函数, 在区间(-∞, 0)上递增, ∴f (x )在(0, +∞)上递减. ∵2217212()048a a a ++=++>, 22152232()022a a a -+=-+>,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3, 即3a -2>0.解得23a >. 8. 解: (1)∵函数21()ax f x bx c+=+ (a 、b 、c ∈Z )是奇函数,∴f (-x )=-f (x ).故2211ax ax bx c bx c++=--++,即-bx +c =-bx -c . ∴c =0.∴21()ax f x bx+=.又f (1)=2, 故12a b +=.而f (2)<3, 即4132a b +<, 即4131a a +<+, ∴-1<a <2. 又由于a ∈Z , ∴a =0或a =1. 当a =0时, 12b =(舍去); 当a =1时, b =1. 综上可知, a =b =1, c =0.(2)211()x f x x x x +==+.设x 1、x 2是(-∞, 0)上的任意两个实数, 且x 1<x 2, 则 121212121212121212121211111()()()()()()x x x x f x f x x x x x x x x x x x x x x x x x ---=+-+=-+-=--=-当x 1<x 2≤-1时, x 1x 2>1, x 1x 2-1>0, 从而f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).所以函数21()x f x x+=在(-∞, -1]上爲增函数.当-1≤x 1<x 2<0时, 0<x 1x 2<1, x 1x 2-1<0, 从而f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).所以函数21()x f x x+=在[-1,0)上爲减函数.9. 解: F (x )在(-∞, 0)上是减函数, 证明如下: 任取x 1、x 2∈(-∞, 0), 且x 1<x 2, 则宥-x 1>-x 2>0. ∵y =f (x )在(0, +∞)上是增函数, 且f (x )<0,∴f (-x 2)<f (-x 1)<0, ① ∵f (x )是奇函数,∴f (-x 2)=-f (x 2), f (-x 1)=-f (x 1), ② 由①②得, f (x 2)>f (x 1)>0. 于是()()()()()()2112121211()()0f x f x F x F x f x f x f x f x --=-=>, 即F (x 1)>F (x 2). ∴()1()F x f x =在(-∞, 0)上是减函数.1.下列说法正确的是( ).①y =kx (k 爲常数)是正比例函数;②y =kx (k 爲常数)一定是奇函数;③若a 爲常数y =a -x 是一次函数;④一次函数的一般式是y =kx +bA .②③B .②④C .仅③D .①③ 2.若函数221(2)m m y m x m -+=-+爲一次函数, 则此函数爲( ).A .增函数B .减函数C .在(-∞, 0]上增, 在[0, +∞)上减D .以上都不对3.(创新题)若一元二次方程x 2-2x -m =0无实数根, 则一次函数y =(m +1)x +m -1的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限 4.若函数y =ax -2与y =bx +3的图象与x 轴交于同一点, 则ab=________. 5.某班学生委员带3元人民币帮同学买作业本, 若每本作业本0.25元, 则买作业本的本数x 与所剩人民币y (元)之间的函数关系式爲____________________.6.已知函数f (x )的图象关于y 轴对称, 当-1≤x <0时, f (x )=x +1, 求当0<x ≤1时, f (x )的表达式.7.已知不等式ax -2a +3<0的解集爲(6, +∞), 试确实实数a 的大小.8.某地的水电资源丰富, 并且得到了较好的开发, 电力充足.某供电公司爲了鼓励居民用电, 采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.(1)月用电量爲100度时, 应交电费________元;(2)当x≥100时, 求y与x之间的函数关系式;(3)月用电量爲260度时, 应交电费多少元?9.已知一次函数y=kx+b的图象与函数6yx的图象交于A、B两点, 点A的横坐标是3, 点B的纵坐标是-3.(1)求一次函数的解析式;(2)画出一次函数的图象;(3)当x爲何值时, 一次函数的值小于零?10.设f(x)=2-ax, 若在[1,2]上, f(x)>1恒成立, 求a的取值范围.参考答案1.答案: A解析: 说法①中, k≠0时y=kx是正比例函数;②中k≠0时, y=kx是奇函数;k=0时, y =kx既是奇函数, 又是偶函数;④中k≠0时, y=kx+b是一次函数.∴只宥③正确.2.答案: B解析: 由221120m mm⎧-+=⎨-≠⎩得m=0.∴y=-2x在定义域内爲减函数.3.答案: A解析: ∵方程无实数根,∴(-2)2-4(-m)=4+4m<0,∴m<-1.从而y=(m+1)x+m-1中, m+1<0, m-1<-2, ∴图象不经过第一象限.4.答案:2 3 -解析: 由23y axy bx=-⎧⎨=+⎩得532xa ba bya b⎧=⎪⎪-⎨+⎪=⎪-⎩∵交点在x轴上,∴y=0.即3a+2b=0,∴23 ab=-.5.答案: y=3-0.25x(0≤x≤12且x∈N)6.解: 当0<x≤1时, -1≤-x<0,∴f(-x)=-x+1.又∵f(x)的图象关于y轴对称,∴f(x)爲偶函数.∴f(x)=f(-x)=-x+1,即当0<x≤1时, f(x)=-x+1.7. 解: 令y =ax -2a +3, 则一次函数y =ax -2a +3与x 轴的交点爲(6,0), 如图所示, 由ax -2a +3=0得326ax a-+==, ∴34a =-. 8. 解: (1)60(2)设所求的函数关系式爲y =kx +b . ∵直线过点(100,60)和点(200,110), ∴10060200110k b k b +=⎧⎨+=⎩解得12k =, b =10.∴y 与x 的函数关系式爲1102y x =+(x ≥100). (3)∵260>100, ∴将x =260代入1102y x =+, 得y =140. ∴月用电量爲260度时, 应交电费140元. 9. 解: (1)由题意知当x =3时, y =2, ∴A (3,2), 当y =-3时, x =-2, ∴B (-2, -3), ∴2332k bk b=+⎧⎨-=-+⎩, 解得k =1, b =-1,∴y =x -1. (2)如图(3)当x <1时, 一次函数的值小于零.10. 解: 要使f (x )>1在[1,2]上恒成立, 只需f (x )的最小值大于1. ∴当a <0时, f (x )在[1,2]上单调递增.∴f (x )的最小值爲f (1)=2-a .∴2-a >1, 即a <1.∴a <0; 当a >0时, f (x )在[1,2]上单调递减, ∴f (x )的最小值爲f (2)=2-2a . ∴2-2a >1.解得12a <.∴102a <<. 当a =0时, f (x )=2>1恒成立. 综上, a 的取值范围爲{}11(,0)(0,)0(,)22-∞=-∞.1.若抛物线y =x 2+6x +c 的顶点恰好在x 轴上, 则c 的值爲( ). A .0 B .3 C .6 D .92.如图所示, 坐标系中抛物线是函数y =ax 2+bx +c 的图象, 则下列式子能成立的是( ).A .abc >0B .b <a +cC .a +b +c <0D .2c <3b3.函数f (x )=x 2+4ax +2在(-∞, 6)内是减函数, 则实数a 的取值范围是( ). A .[3, +∞) B .(-∞, 3] C .[-3, +∞) D .(-∞, -3]4.已知抛物线y =ax 2+bx +c 的对称轴爲x =2, 且经过点(1,4)和点(5,0), 则该抛物线的解析式爲________.5.二次函数y =ax 2+bx +c (x ∈R )的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y6-4-6-6-46则不等式ax 2+bx +c >0的解集是________.6.已知f (x )=ax 2+bx (ab ≠0), 若f (m )=f (n ), 且m ≠n , 则f (m +n )=________. 7.已知函数215()322f x x x =---. (1)求这个函数的顶点坐标和对称轴方程; (2)已知715()28f -=, 不计算函数值, 求5()2f -的值; (3)不直接计算函数值, 试比较1()4f -与15()4f -的大小. 8.已知函数f (x )=x 2+2(a +1)x +2, x ∈[-2,3].(1)当a=-2时, 求函数f(x)的最大值和最小值;(2)求实数a的取值范围, 使y=f(x)在区间[-2,3]上是单调函数.参考答案1. 答案: D解析: ∵y =x 2+6x +c =(x +3)2+c -9, ∴c -9=0, c =9. 2. 答案: D解析: 观察图象开口向下, ∴a <0. 又∵对称轴12bx a=-=, ∴b =-2a >0.由图象观察与y 轴交点(0, c )在x 轴上方 ∴c >0, ∴abc <0; 又∵f (1)>0, ∴a +b +c >0; 又∵f (-1)<0, ∴a -b +c <0; 又∵f (3)<0, ∴9a +3b +c <0. 又∵12b a -=, ∴2ba =-代入9a +3b +c <0, ∴302b c -+<, ∴32c b <.即2c <3b . 3. 答案: D解析: f (x )=x 2+4ax +2=(x +2a )2+2-4a 2, ∵f (x )在(-∞, 6)内是减函数, ∴-2a ≥6, ∴a ≤-3. 4. 答案: 215222y x x =-++ 解析: 由题意知: 2242550b a a b c a b c ⎧-=⎪⎪++=⎨⎪++=⎪⎩解得12252a b c ⎧=-⎪⎪=⎨⎪⎪=⎩∴抛物线的解析式爲215222y x x =-++. 5. 答案: {x |x <-2或x >3}解析: 由表中的二次函数对应值可得, 二次方程ax 2+bx +c =0的两根爲-2和3, 又根据f (0)<f (-2)且f (0)<f (3)可知a >0.∴不等式ax 2+bx +c >0的解集爲{x |x <-2或x >3}. 6. 答案: 0解析: f (m )-f (n )=am 2+bm -an 2-bn =a (m +n )(m -n )+b (m -n )=(m -n )[a (m +n )+b ]=0.由于m ≠n , 所以a (m +n )+b =0.从而f (m +n )=(m +n )[a (m +n )+b ]=0. 7. 解: 22151()3(3)2222f x x x x =---=-++. (1)这个二次函数的顶点坐标和对称轴方程分别爲(-3,2)和x =-3. (2)∵7115()(3)(3)()2222f f f f -=--=-+=-, ∴515()28f -=. (3)∵15339()(3)(3)()4444f f f f -=--=-+=-. 又∵14-, 94-∈[-3, +∞), ∵102a =-<, ∴y =f (x )在[-3, +∞)上是单调递减的. ∵1944->-, ∴19()()44f f -<-.即115()()44f f -<-. 8. 解: (1)当a =-2时, f (x )=x 2-2x -2=(x -1)2+1, ∴f (x )的图象的对称轴是x =1.∴f (x )在[-2,1]上递减, 在(1,3]上递增. ∴当x =1时, y min =1. ∵f (-2)=10, f (3)=5, ∴f (-2)>f (3)>f (1). ∴当x =-2时, y m ax =10.(2)∵f (x )=[x +(a +1)]2+2-(a +1)2, ∴函数f (x )的图象对称轴爲x =-(a +1).当f (x )在[-2,3]上单调递减时, 宥-(a +1)≥3, 即a ≤-4; 当f (x )在[-2,3]上单调递增时, 宥-(a +1)≤-2, 即a ≥1.综上所述, 当a ≤-4或a ≥1时, 函数f (x )在[-2,3]上是单调函数.1.已知二次函数顶点爲(0,4), 且过点(1,5), 则解析式爲( ).A .2114y x =+ B .2144y x =+ C .y =4x 2+1 D .y =x 2+42.已知x 3+2x 2-5x -6=(x +a )(x +b )(x +c ), 则a , b , c 的值分别爲( ). A .1,2,3 B .1, -2, -3 C .1, -2,3 D .1,2, -33.已知抛物线经过(-1,0), (2,7), (1,4)三点, 则其解析式爲( ). A .215233y x x =-+ B .215233y x x =++ C .215233y x x =+- D .215233y x x =--4.下图爲二次函数y =ax 2+bx +c 的图象, 则该函数的解析式爲________.5.若二次函数f 1(x )=a 1x 2+b 1x +c 1和f 2(x )=a 2x 2+b 2x +c 2, 若F (x )=f 1(x )+f 2(x ), 则F (x )在(-∞, +∞)上单调递增的条件是________.6.已知f (x )=ax 2+bx +c , 若f (0)=0且f (x +1)=f (x )+x +1, 则f (x )=________. 7.如图所示爲某桥桥洞的横断面, 桥下水面宽16米, 当水面上涨2米后达到警戒水位, 水面宽变爲12米, 此时桥洞顶部距水面高度爲________米.(精确到0.1米)8.已知二次函数y =x 2-2(m -1)x +m 2-2m -3, 其中m 爲实数. (1)求证: 不论m 取何实数, 这个二次函数的图象与x 轴必宥两个交点; (2)设这个二次函数的图象与x 轴交于点A (x 1,0)、B (x 2,0), 且x 1、x 2的倒数和爲23, 求这个函数的解析式.9.已知函数f(x)=|x-a|, g(x)=x2+2ax+1(a爲正常数), 且函数f(x)与g(x)的图象在y 轴上的交点的纵坐标相等.(1)求a的值;(2)求函数f(x)+g(x)的单调递增区间.参考答案1. 答案: D解析: 设二次函数爲y =ax 2+4, x =1时, y =a +4=5, ∴a =1. 2. 答案: C解析: (x +a )(x +b )(x +c )=x 3+ (a +b +c )x 2+(ab +bc +ca )x +abc , ∵(x +a )(x +b )(x +c )=x 3+2x 2-5x -6,∴256a b c ab bc ca abc ++=⎧⎪++=-⎨⎪=-⎩解得a =1, b =-2, c =3. 3. 答案: B解析: 设二次函数y =ax 2+bx +c (a ≠0), 则宥07424a b c a b c a b c =-+⎧⎪=++⎨⎪=++⎩∴13253a b c ⎧=⎪⎪=⎨⎪⎪=⎩4. 答案: 224233y x x =-- 解析: 设二次函数爲y =a (x +1)(x -3),∵点(0, -2)在图象上, ∴-2=a (0+1)(0-3).解得23a = ∴2224(1)(3)2333y x x x x =++=--. 5. 答案: a 1+a 2=0, b 1+b 2>0解析: ∵F (x )=f 1(x )+f 2(x )=(a 1+a 2)x 2+(b 1+b 2)x +c 1+c 2在(-∞, +∞)上单调递增, ∴F (x )一定不是二次函数, 只可能是一次函数, ∴a 1+a 2=0, b 1+b 2>0. 6. 答案:21122x x +解析: 由题意得220(1)(1)()1c a x b x c ax bx c x =⎧⎪++++-++⎨⎪=+⎩即021c ax b x a =⎧⎨+=+-⎩∴0211c a b a=⎧⎪=⎨⎪=-⎩解得12a =, 12b =, c =0.∴211()22f x x x =+. 7. 答案: 2.6解析: 设抛物线解析式爲y =ax 2(a <0), 设点(8, y )(y <0), (6, y +2)在抛物线上,∴64236y a y a =⎧⎨+=⎩∴114118236()147a y ⎧=-⎪⎪⎨⎪+=⨯-=-⎪⎩由题意知, 桥洞顶部距达到警戒水位时高度爲182 2.6()7y +=-≈米. 8. 解: (1)证明: 和这个二次函数对应的一元二次方程是x 2-2(m -1)x +m 2-2m -3=0. ∵Δ=4(m -1)2-4(m 2-2m -3)=4m 2-8m +4-4m 2+8m +12=16>0, ∴方程x 2-2(m -1)x +m 2-2m -3=0必宥两个不相等的实数根. ∴不论m 取何值, 这个二次函数的图象与x 轴必宥两个交点.(2)由题意, 可知x 1、x 2是方程x 2-2(m -1)x +m 2-2m -3=0的两个实数根, ∴x 1+x 2=2(m -1), x 1·x 2=m 2-2m -3. ∵121123x x +=, 即121223x x x x +=⋅, ∴22(1)2233m m m -=--. 解得m =0, 或m =5.经检验, m =0, m =5都是方程的解.∴所求二次函数的解析式是y =x 2+2x -3, 或y =x 2-8x +12. 9. 解: (1)由题意, f (0)=g (0), 即|a |=1, 又a >0, 所以a =1. (2)f (x )+g (x )=|x -1|+x 2+2x +1.当x ≥1时, f (x )+g (x )=x 2+3x , 它在[1, +∞)上单调递增; 当x <1时, f (x )+g (x )=x 2+x +2, 它在[-12, 1)上单调递增; 综上, 结合f (x )+g (x )的图象知f (x )+g (x )的单调递增区间是[-12, +∞).1.已知直角梯形OABC中, AB∥OC, BC⊥OC, AB=1, OC=BC=2, 直线x=t截这个梯形位于此直线左方的图形的面积(如图中阴影部分)爲y, 则函数y=f(t)的大致图象爲().2.一个人以6 m/s的速度去追停在交通灯前的汽车, 当他距汽车25 m时, 交通灯由红变绿, 汽车以1 m/s2的加速度匀加速开走, 则().A.人可在7 s内追上汽车B.人可在10 s内追上汽车C.人追不上汽车, 其间最近距离爲10 mD.人追不上汽车, 其间最近距离爲7 m3.爲了稳定市场, 确保农民增收, 某农产品的市场收购价格a与其前三个月的市场收购价格宥关, 且使a与其前三个月的市场收购价格之差的平方和最小.若下表列出的是该产品前6个月的市场收购价格:月份1234567价格(元/担)687867717270则7月份该产品的市场收购价格应爲().A.69元B.70元C.71元D.72元4.北京电视台每星期六播出《东芝动物乐园》, 在这个节目中曾经宥这样一个抢答题: 小蜥蜴体长15 c m, 体重15 g, 问: 当小蜥蜴长到体长爲20 c m时, 它的体重大约是().A.20 g B.25 gC.35 g D.40 g5.某商人购货, 进价已按原价a扣去25%, 他希望对货物订一新价, 以便按新价让利20%销售后仍可获得售价25%的纯利, 则此商人经营这种货物的件数x与按新价让利总额y 之间的函数关系是________.6.如图, 大海中的两艘船, 甲船在A处, 乙船在A处正东50 km的B处, 现在甲船从A。
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案

tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
人教A版高中数学二同步学习讲义:第二章 点、直线、平面之间的位置关系2.1.3~2.1.4 含答案

2。
1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3。
掌握空间中平面与平面的位置关系.知识点一直线和平面的位置关系思考如图所示,在长方体ABCD—A1B1C1D1中线段BC1所在的直线与长方体的六个面所在的平面有几种位置关系?答案三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行.梳理直线l与平面α的位置关系(1)直线l在平面α内(l⊂α).(2)直线l在平面α外l⊄α错误!知识点二两个平面的位置关系思考观察前面问题中的长方体,平面A1C1与长方体的其余各个面,两两之间有几种位置关系?答案两种位置关系:两个平面相交或两个平面平行.梳理平面α与平面β的位置关系位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l无数个点(共线)类型一直线与平面的位置关系例1下列四个命题中正确命题的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α;④如果a与平面α上的无数条直线平行,那么直线a必平行于平面α.A.0 B.1 C.2 D.3答案B解析如图,在正方体ABCD-A′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;③中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即③正确;④显然不正确,故答案为B。
反思与感悟空间中直线与平面只有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.本题借助几何模型判断,通过特例排除错误命题.对于正确命题,根据线、面位置关系的定义或反证法进行判断,要注意多种可能情形.跟踪训练1下列命题(其中a,b表示直线,α表示平面):①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A解析如图所示,在长方体ABCD—A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.类型二平面与平面之间的位置关系错误!例2α、β是两个不重合的平面,下面说法中,正确的是() A.平面α内有两条直线a、b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β答案D解析A、B都不能保证α、β无公共点,如图1所示;C中当a∥α,a∥β时,α与β可能相交,如图2所示;只有D说明α、β一定无公共点.反思与感悟判断线线、线面、面面的位置关系,要牢牢地抓住其特征与定义、要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.跟踪训练2已知两平面α、β平行,且a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β无公共点.其中正确命题的个数是()A.1 B.2 C.3 D.4答案B解析①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面;②正确;③中直线a与β内的无数条直线垂直;④根据定义a与β无公共点,正确.命题角度2两平面位置关系的作图例3(1)画出两平行平面;(2)画出两相交平面.解两个平行平面的画法:画两个平行平面时,要注意把表示平面的平行四边形画成对应边平行,如图a所示.两个相交平面的画法:第一步,先画表示平面的平行四边形的相交两边,如图b所示;第二步,再画出表示两个平面交线的线段,如图c所示;第三步,过b中线段的端点分别引线段,使它们平行且等于图c中表示交线的线段,如图d所示;第四步,画出表示平面的平行四边形的第四边(被遮住部分线段可画成虚线,也可不画),如图e 所示.引申探究在图中画出一个平面与两个平行平面相交.解跟踪训练3试画出相交于一点的三个平面.解如图所示(不唯一).1.下列图形所表示的直线与平面的位置关系,分别用符号表示正确的一组是()A.a⊄α,a∩α=A,a∥αB.a∉α,a∩α=A,a∥αC.a⊂α,a∩α=A,a∥αD.a∈α,a∩α=A,a∥α答案C解析直线在平面内用“⊂”,故选C.2.如图所示,用符号语言可表示为()A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α答案D3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.4.经过平面外两点可作该平面的平行平面的个数是________.答案0或1解析若平面外两点所在直线与平面相交时,经过这两点与已知平面平行的平面不存在.若平面外两点所在直线与已知平面平行时,此时,经过这两点有且只有一个平面与已知平面平行.5.如图,在正方体ABCD-A1B1C1D1中,分别指出直线B1C,D1B 与正方体六个面所在平面的关系.解根据图形,直线B1C⊂平面B1C,直线B1C∥平面A1D,与其余四个面相交,直线D1B与正方体六个面均相交.1.弄清直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.2.长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱"之称.课时作业一、选择题1.已知直线a在平面α外,则()A.a∥αB.直线a与平面α至少有一个公共点C.a∩α=AD.直线a与平面α至多有一个公共点答案D解析因已知直线a在平面α外,所以a与平面α的位置关系为平行或相交,因此断定a∥α或断定a与α相交都是错误的,但无论是平行还是相交,直线a与平面α至多有一个公共点是正确的,故选D。
最新人教B版高中数学选修1-1同步练习题及答案全册汇编(可编辑)优秀名师资料

人教B版高中数学选修1-1同步练习题及答案全册汇编(可编辑)人B版高中数学选修1-1同步习题目录第1章1.1.1~1.1.2同步练习第1章1.2.1同步练习第1章1.2.2同步练习第1章1.3.1同步练习第1章1.3.2同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1同步练习第2章2.2.2同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章章末综合检测第3章3.1.1~3.1.2同步练习第3章3.1.3同步练习第3章3.2.1~3.2.2同步练习第3章3.2.3同步练习第3章3.3.1同步练习第3章3.3.2第1课时同步练习第3章3.3.2第2课时同步练习第3章3.3.3同步练习第3章章末综合检测人教B版选修1-1同步练习1.下列是全称命题且是真命题的是A.?x?R,x20B.?x?Q,x2?QC.?x0?Z,x1D.?x,y?R,x2+y20答案:B2.下列命题是真命题的为A.若=,则x=yB.若x2=1,则x=1C.若x=y,则=D.若xy,则x2y2解析:选A.由=,得x=y,A正确,B、C、D错误.3.判断下列命题的真假:?3?3:________;?100或50是10的倍数:________.答案:?真命题 ?真命题4.1用符号“?”表示命题“不论m取什么实数,方程x2+x-m=0 必有实根”;2用符号“?”表示命题“存在实数x,使sinxtanx”.解:1?m?R,x2+x-m=0有实根.2?x0?R,sinx0tanx0.一、选择题1.下列命题为存在性命题的是A.偶函数的图象关于y轴对称B.正四棱柱都是平行四面体C.不相交的两条直线是平行直线D.存在实数大于等于3答案:D2.下列命题是真命题的是A.?是空集B.是无限集C.π是有理数D.x2-5x=0的根是自然数解析:选D.x2-5x=0的根为x1=0,x2=5,均为自然数.3.2010年高考湖南卷下列命题中的假命题是A.?x?R,lgx=0B.?x?R,tanx=1C.?x?R,x30D.?x?R,2x0解析:选C.对于A,当x=1时,lgx=0,正确;对于B,当x=时,tanx=1,正确;对于C,当x0时,x30,错误;对于D,?x?R,2x0,正确.4.下列命题中,是正确的全称命题的是A.对任意的a,b?R,都有a2+b2-2a-2b+20B.菱形的两条对角线相等C.?x0?R,=x0D.对数函数在定义域上是单调函数解析:选D.A中含有全称量词“任意”,a2+b2-2a-2b+2=a-12+b-12?0,是假命题.B、D在叙述上没有全称量词,实际上是指“所有的”.菱形的对角线不一定相等;C是特称命题.所以选D.5.下列存在性命题不正确的是A.有些不相似的三角形面积相等B.存在一个实数x,使x2+x+1?0C.存在实数a,使函数y=ax+b的值随x的增大而增大D.有一个实数的倒数是它本身解析:选B.B中因为x2+x+1=x+2+?,所以不存在x使x2+x+1?0;A中等底等高的三角形面积相等但不一定相似;C中a0时,成立;D中1的倒数是它本身.6.下列命题中真命题的个数为?面积相等的两个三角形是全等三角形;?若xy=0,则|x|+|y|=0;?若ab,则a+cb+c;?矩形的对角线互相垂直.A.1B.2C.3D.4解析:选A.?错;?错,若xy=0,则x,y至少有一个为0,而未必|x|+|y|=0;?对,不等式两边同时加上同一个常数,不等号开口方向不变;?错.二、填空题7.填上适当的量词符号“?”“?”,使下列命题为真命题.1________x?R,使x2+2x+1?0;2________α,β?R,使cosα-β=cosα-cosβ.解析:1中x+12?0所以对?x?R恒成立;2为存在性命题.答案:1?;2?8.下列语句中是命题的有________,其中是假命题的有________.只填序号?垂直于同一条直线的两条直线必平行吗??一个数不是正数就是负数;?大角所对的边大于小角所对的边.解析:根据命题的概念,判断是否是命题;若是,再判断其真假.?是疑问句,没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题; ?是假命题,因为0既不是正数也不是负数;?是假命题,没有考虑到“在两个三角形中”的情况.答案:?? ??9.给出下列几个命题:?若x,y互为相反数,则x+y=0;?若ab,则a2b2;?若x-3,则x2+x-6?0;?若a,b是无理数,则ab也是无理数.其中的真命题有________个.解析:?是真命题.?设a=1b=-2,但a2b2,假命题.?设x=4-3,但x2+x-6=410,假命题.?设a=,b=,则ab=2=2是有理数,假命题.答案:1三、解答题10.用量词符号“?”或“?”表示下列命题.1一定有整数x,y,使得3x+2y=10成立;2对所有的实数x,都能使x2+2x+2?0成立.解:1?x,y?Z,使3x+2y=10;2?x?R,有x2+2x+2?0.11.判断下列语句是不是全称命题或存在性命题,如果是,找出命题中的量词.1中国的所有党派都由中国共产党统一领导;20不能作除数;3存在一个x?R,使2x+1=3;4至少有一个x?Z,使x能被2和3整除.解:1全称命题,命题中的量词是“所有”;2是命题,但不是全称命题或者存在性命题;3存在性命题,命题中的量词是“存在一个”;4存在性命题,命题中的量词是“至少有一个”.12.已知p:x2+mx+1=0有两个不等的负根,q:方程4x2+4m-2x+1=0m?R无实根,求使p正确且q正确的m的取值范围. 解:若p为真,则解得m2.若q为真,则Δ=16m-22-160,解得1m3.p真,q真,即故m的取值范围是2,3.人教B版选修1-1同步练习1.如果命题“p?q”是真命题,那么A.命题p与命题q都是真命题B.命题p与命题q同为真命题或同为假命题C.命题p与命题q只有一个是真命题D.命题p与命题q至少有一个是真命题答案:D2.由下列各组命题构成的新命题“p或q”“p且q”,都为真命题的是A.p:4+4=9,q:7>4B.p:a?a,b,c;q:aa,b,cC.p:15是质数;q:8是12的约数D.p:2是偶数;q:2不是质数答案:B3.判断下列命题的形式从“p?q”、“p?q”中选填一种:16?8:________;2集合中的元素是确定的且是无序的:________.答案:p?q p?q4.分别指出下列各命题的形式及构成它的简单命题,并判断其真假.18或6是30的约数;2矩形的对角线垂直平分.解:1p或q,p:8是30的约数假,q:6是30的约数真.“p或q”为真.2p且q,p:矩形的对角线互相垂直假,q:矩形的对角线互相平分真.“p且q”为假.一、选择题1.下列命题是真命题的是A.5>2且7>8B.3>4或3<4C.7-1?7D.方程x2-3x+4=0有实根解析:选B.虽然p:3>4假,但q:3<4真,所以p?q为真命题.2.如果命题p?q为真命题,p?q为假命题,那么A.命题p,q都是真命题B.命题p,q都是假命题C.命题p,q只有一个是真命题D.命题p,q至少有一个是真命题解析:选C.p?q为真命题,则p,q中至少有一个是真命题;p?q为假命题,则p,q中至少有一个是假命题,因此,p,q中必有一个真命题,一个假命题.因此选C.3.命题p:x=π是y=|sinx|的对称轴.命题q:2π是y=|sinx|的最小正周期.下列命题中,是真命题的个数是?p?q ?p?q ?p ?qA.0B.1C.2D.3答案:C4.“xy?0”指的是A.x?0且y?0B.x?0或y?0C.x,y至少有一个不为0D.不都是0解析:选A.x、y都不为0,即x?0且y?0.5.已知集合A=x|px=x|x是等腰三角形,B=x|qx=x|x是直角三角形,用特征性质描述法表示A?B是A.x|p且q=x|x是等腰直角三角形B.x|p或q=x|x是等腰三角形或直角三角形C.x|p且q=x|x是等腰三角形D.x|p或q=x|x是直角三角形答案:A6.若命题p:圆x-12+y-22=1被直线x=1平分;q:在?ABC中,若sin2A=sin2B,则A=B,则下列结论中正确的是A.“p?q”为假B.“p?q”为真C.“p?q”为真D.以上都不对答案:B二、填空题7.“10既是自然数又是偶数”为________形式.解析:注意逻辑联结词“且”的含义.答案:p?q8.用“或”、“且”填空,使命题成为真命题:1若x?A?B,则x?A________x?B;2若x?A?B,则x?A________x?B;3若ab=0,则a=0________b=0;4a,b?R,若a>0________b>0,则ab>0.答案:1或 2且 3或 4且9.设命题p:2x+y=3;q:x-y=6.若p?q为真命题,则x=________,y=________. 解析:若p?q为真命题,则p,q均为真命题,所以有解得答案:3 -3三、解答题10.判断下列命题的真假:1等腰三角形顶角的平分线平分底边并且垂直于底边;2-1是偶数或奇数.解:1这个命题是p?q的形式,其中p:等腰三角形顶角的平分线平分底边,q:等腰三角形顶角的平分线垂直于底边.因为p真、q真,则p?q真,所以该命题是真命题.2此命题是p?q的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真命题,所以p?q为真命题,故原命题为真命题.11.分别指出由下列各组命题构成的“p?q”、“p?q”形式的命题的真假.1p:正多边形有一个内切圆;q:正多边形有一个外接圆.2p;角平分线上的点到角的两边的距离不相等;q:线段垂直平分线上的点到线段的两端点的距离相等.3p:2?2,3,4;q:矩形?菱形=正方形.4p:正六边形的对角线都相等;q:凡是偶数都是4的倍数.解:1因为p真q真,所以“p?q”真,“p?q”真.2因为p假q真,所以“p?q”假,“p?q”真.3因为p真q真,所以“p?q”真,“p?q”真.4因为p假q假,所以“p?q”假,“p?q”假.12.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式ax2-ax+1>0对?x?R恒成立.若p?q为假,p?q为真,求a的取值范围.解:?y=ax在R上单调递增,?p:a>1;又不等式ax2-ax+1>0对?x?R恒成立,?Δ<0,即a2-4a<0,?0<a<4,?q:0<a<4.而命题p?q为假,p?q为真,那么p、q中有且只有一个为真,一个为假.1若p真,q假,则a?4;2若p假,q真,则0<a?1,?a的取值范围为0,1]?[4,+?.人教B版选修1-1同步练习1.2011年高考辽宁卷已知命题p:?n?N,2n>1000,则?p为A.?n?N,2n?1000B.?n?N,2n>1000C.?n?N,2n?1000D.?n?N,2n<1000答案:A2.命题“一次函数都是单调函数”的否定是A.一次函数都不是单调函数B.非一次函数都不是单调函数C.有些一次函数是单调函数D.有些一次函数不是单调函数解析:选D.命题的否定只对结论进行否定,“都是”的否定是“不都是”,即“有些”.3.A?A?B是________形式;该命题是________填“真”“假”命题.答案:“?p” 假4.写出下列命题的否定,并判断真假1所有的矩形都是平行四边形;2有些实数的绝对值是正数.解:1存在一个矩形不是平行四边形;假命题;2所有的实数的绝对值都不是正数;假命题.一、选择题1.如果命题“p?q”与命题“?p”都是真命题,那么A.命题p不一定是假命题B.命题q一定为真命题C.命题q不一定是真命题D.命题p与命题q的真假相同解析:选B.“p?q”为真,则p、q至少有一个为真.?p为真,则p为假,?q是真命题.2.命题“对任意的x?R,x3-x2+1?0”的否定是A.不存在x?R,使得x3-x2+1?0B.存在x?R,使得x3-x2+1?0C.存在x?R,使得x3-x2+1>0D.对任意的x?R,x3-x2+1>0解析:选C.全称命题的否定为存在性命题.3.若p、q是两个简单命题,且“p?q”的否定是真命题,则必有A.p真q真B.p假q假C.p真q假D.p假q真解析:选B.?“p?q”的否定为真,则p?q为假,即p、q均为假.故选B.4.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题为真命题的是A.?p?qB.p?qC.?p??qD.?p??q解析:选D.p为真,q为假,所以?q为真,?p??q为真.5.下列命题的否定是假命题的是A.p:能被3整除的整数是奇数;?p:存在一个能被3整除的整数不是奇数B.p:每一个四边形的四个顶点共圆;?p:存在一个四边形的四个顶点不共圆C.p:有些三角形为正三角形;?p:所有的三角形都不是正三角形D.p:?x0?R,x+2x0+2?0;?p:?x?R,都有x2+2x+20解析:选C.p为真命题,则?p为假命题.6.给出两个命题:p:函数y=x2-x-1有两个不同的零点;q:若1,则x1,那么在下列四个命题中,真命题是A.?p?qB.p?qC.?p??qD.?p??q解析:选D.对于p,函数对应的方程x2-x-1=0的判别式Δ=-12-4×-1=50.可知函数有两个不同的零点,故p为真.当x0时,不等式1恒成立;当x0时,不等式的解为x1.故不等式1的解为x0或x1.故命题q为假命题.所以只有?p??q为真.故选D.二、填空题7.写出命题“每个函数都有奇偶性”的否定:________.解析:命题的量词是“每个”,即为全称命题,因此否定是特称命题,用量词“有些、有的、存在一个、至少有一个”等,再否定结论.答案:有些函数没有奇偶性8.命题“存在实数x,y,使得x+y1”,用符号表示为________;此命题的否定是________用符号表示,是________命题填“真”或“假”.解析:原命题为真,所以它的否定为假.也可以用线性规划的知识判断.答案:?x0,y0?R,x0+y01 ?x,y?R,x+y?1 假9.命题“方程x2=4的解是x=2或x=-2”的否定是____________________________.解析:x2=4的解是x=2或x=-2,则它的否定:解不是2也不是-2.答案:方程x2=4的解不是2也不是-2.三、解答题10.写出下列各命题的否定:1x=?3;2圆既是轴对称图形又是中心对称图形;3a,b,c都相等.解:1x?3,且x?-3;2圆不是轴对称图形或不是中心对称图形;3a,b,c不都相等,即a?b或b?c或c?a,即a,b,c中至少有两个不相等.11.用“?”“?”写出下列命题的否定,并判断真假:1二次函数的图象是抛物线;2直角坐标系中,直线是一次函数的图象;3?a,b?R,方程ax+b=0恰有一解.解:1?p:?x0?二次函数,x0的图象不是抛物线.假命题.2?p:在直角坐标系中,?x0?直线,x0不是一次函数的图象.真命题.3?p:?a0,b0?R,方程a0x+b0=0无解或至少有两解.真命题.12.设p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足若?p则?q成立,求实数a的取值范围.解:由x2-4ax+3a2<0得x-3ax-a<0,又a>0,所以a<x<3a,由,得2<x?3,若?p则?q成立,设A=x|?p,B=x|?q,则A?B,又A=x|?p=x|x?a或x?3a,B=x|?q=x?2或x>3,则0<a?2,且3a>3,所以实数a的取值范围是a|1<a?2.人教B版选修1-1同步练习1.2011年高考福建卷若a?R,则“a=1”是“|a|=1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件解析:选A.若a=1,则有|a|=1是真命题,即a=1?|a|=1,由|a|=1可得a=?1,所以若|a|=1,则有a=1是假命题,即|a|=1?a=1不成立, 所以a=1是|a|=1的充分而不必要条件,故选A.2.“θ=0”是“sinθ=0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由于“θ=0”时,一定有“sinθ=0”成立,反之不成立,所以“θ=0”是“sinθ=0”的充分不必要条件.3.用符号“?”或“ ”填空:1整数a能被4整除________a的个位数为偶数;2ab________ac2bc2.答案:1? 24.“a=2”是“直线ax+2y=0平行于直线x+y=1”的什么条件?解:当a=2时,直线ax+2y=0,即2x+2y=0与直线x+y=1平行, 因为直线ax+2y=0平行于直线x+y=1,所以=1,a=2,综上,“a=2”是“直线ax+2y=0平行于直线x+y=1”的充要条件.一、选择题1.设集合M=x|0x?3,N=x|0x?2,那么“a?M”是“a?N”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.M=x|0x?3,N=x|0x?2,所以NM,故a?M是a?N的必要不充分条件.2.2010年高考福建卷若向量a=x,3x?R,则“x=4是|a|=5”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件解析:选A.由x=4知|a|==5;反之,由|a|==5,得x=4或x=-4. 故“x=4”是“|a|=5”的充分而不必要条件,故选A.3.“b=c=0”是“二次函数y=ax2+bx+ca?0经过原点”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.b=c=0?y=ax2,二次函数一定经过原点;二次函数y=ax2+bx+c经过原点?c=0,b不一定等于0,故选A.4.已知p,q,r是三个命题,若p是r的充要条件且q是r的必要条件,那么q是p的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:选B.p是r的充要条件且q是r的必要条件,故有p ?r ?q,即p?q,q p,所以q是p的必要条件.5.已知条件p:y=lgx2+2x-3的定义域,条件q:5x-6x2,则q是p的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.p:x2+2x-30,则x1或x-3;q:5x-6x2,即x2-5x+60,则2<x<3.由小集合?大集合,?q?p,但p q.故选A.6.下列所给的p、q中,p是q的充分条件的个数是?p:x1,q:-3x-3;?p:x1,q:2-2x2;?p:x=3,q:sinxcosx;?p:直线a,b不相交,q:a‖b.A.1B.2C.3D.4解析:选C.?由于p:x1?q:-3x-3,所以p是q的充分条件;?由于p:x1?q:2-2x2即x0,所以p是q的充分条件;?由于p:x=3?q:sinxcosx,所以p是q的充分条件;?由于p:直线a,b不相交q:a‖b,所以p不是q的充分条件.二、填空题7.不等式x2-3x+20成立的充要条件是________.解析:x2-3x+20?x-1x-20?1x2.答案:1x28.在?ABC中,“sinA=sinB”是“a=b”的________条件.解析:在?ABC中,由正弦定理及sinA=sinB可得2RsinA=2RsinB,即a=b;反之也成立.答案:充要9.下列不等式:?x1;?0x1;?-1x0;?-1x1.其中,可以是x21的一个充分条件的所有序号为________.解析:由于x21即-1x1,?显然不能使-1x1一定成立,???满足题意.答案:???三、解答题10.下列命题中,判断条件p是条件q的什么条件:1p:|x|=|y|,q:x=y;2p:?ABC是直角三角形,q:?ABC是等腰三角形;3p:四边形的对角线互相平分,q:四边形是矩形.解:1?|x|=|y| x=y,但x=y?|x|=|y|,?p是q的必要条件,但不是充分条件.2?ABC是直角三角形 ?ABC是等腰三角形.?ABC是等腰三角形 ?ABC是直角三角形.?p既不是q的充分条件,也不是q的必要条件.3四边形的对角线互相平分四边形是矩形.四边形是矩形?四边形的对角线互相平分.?p是q的必要条件,但不是充分条件.11.命题p:x0,y0,命题q:xy,,则p是q的什么条件? 解:p:x0,y0,则q:xy,成立;反之,由xy,?0,因y-x0,得xy0,即x、y异号,又xy,得x0,y0.所以“x0,y0”是“xy,”的充要条件.12.已知条件p:A=x|x2-a+1x+a?0,条件q:B=x|x2-3x+2?0, 当a为何值时1p是q的充分不必要条件;2p是q的必要不充分条件;3p是q的充要条件?解:由p:A=x|x-1x-a?0,由q:B=[1,2].1?p是q的充分不必要条件,?A?B且A?B,故A=[1,a]?1?a<2.2?p是q的必要不充分条件,?B?A且A?B,故A=[1,a]且a>2?a>2.3?p是q的充要条件,?A=B?a=2 人教B版选修1-1同步练习1.命题“若a0,则=”的逆命题为A.若a?0,则?B.若?,则a0C.若?,则a?0D.若=,则a0解析:选D.逆命题为把原命题的条件和结论对调.2.2011年高考山东卷已知a,b,c?R,命题“若a+b+c=3,则a2+b2+c2?3”的否命题是A.若a+b+c?3,则a2+b2+c23B.若a+b+c=3,则a2+b2+c23C.若a+b+c?3,则a2+b2+c2?3D.若a2+b2+c2?3,则a+b+c=3解析:选A.a+b+c=3的否定是a+b+c?3,a2+b2+c2?3的否定是a2+b2+c2<3.3.命题“若A?B=B,则A?B”的否命题是________.答案:若A?B?B,则A?B4.已知命题p:“若ac?0,则二次方程ax2+bx+c=0没有实根”.1写出命题p的否命题;2判断命题p的否命题的真假.解:1命题p的否命题为:“若ac0,则二次方程ax2+bx+c=0有实根”;2命题p的否命题是真命题.证明如下:?ac0,?-ac0?Δ=b2-4ac0?二次方程ax2+bx+c=0有实根.?该命题是真命题.一、选择题1.若“xy,则x2y2”的逆否命题是A.若x?y,则x2?y2B.若xy,则x2y2C.若x2?y2,则x?yD.若xy,则x2y2解析:选C.由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.2.命题“若?ABC有一内角为,则?ABC的三内角成等差数列”的逆命题A.与原命题同为假命题B.与原命题的否命题同为假命题C.与原命题的逆否命题同为假命题D.与原命题同为真命题解析:选D.原命题显然为真,原命题的逆命题为“若?ABC的三内角成等差数列,则?ABC有一内角为”,它是真命题.故选D.3.已知原命题“菱形的对角线互相垂直”,则它的逆命题、否命题、逆否命题的真假判断正确的是A.逆命题、否命题、逆否命题都为真B.逆命题为真,否命题、逆否命题为假C.逆命题为假,否命题、逆否命题为真D.逆命题、否命题为假,逆否命题为真解析:选D.因为原命题“菱形的对角线互相垂直”是真命题,所以它的逆否命题为真;其逆命题:“对角线互相垂直的四边形是菱形”显然是假命题,所以原命题的否命题也是假命题.4.若命题p的逆命题是q,命题q的否命题是r,则p是r的A.逆命题B.逆否命题C.否命题D.以上判断都不对解析:选B.命题p:若x,则y,其逆命题q:若y,则x,那么命题q的否命题r:若?y,则?x,所以p是r的逆否命题.所以选B.5.与命题“能被6整除的整数,一定能被3整除”等价的命题是A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:选B.一个命题与它的逆否命题是等价命题,选项B中的命题恰为已知命题的逆否命题.6.存在下列三个命题:?“等边三角形的三个内角都是60?”的逆命题;?“若k0,则一元二次方程x2+2x-k=0有实根”的逆否命题;?“全等三角形的面积相等”的否命题.其中真命题的个数是A.0B.1C.2D.3解析:选C.??正确.二、填空题7.命题“若a1,则a0”的逆命题是________,逆否命题是________.答案:若a0,则a1 若a?0,则a?18.有下列几个命题:?“若ab,则a2b2”的否命题;?“若a+b是无理数,则a,b都是无理数”的逆命题;?“若x24,则-2x2”的逆否命题.其中真命题的序号是________.答案:?9.在空间中,?若四点不共面,则这四点中任意三点都不共线;?若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________.解析:?中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC1做模型来观察:上底面A1B1C1D1中任意三点都不共线,但A1,B1,C1,D1四点共面,所以?中的逆命题不是真命题.?中的逆命题是:若两条直线是异面直线,则两条直线没有公共点.由异面直线的定义可知,成异面直线的两条直线不会有公共点.所以?中的逆命题是真命题.答案:?三、解答题10.写出下列原命题的其他三种命题,并分别判断真假.1在?ABC中,若ab,则?A?B;2正偶数不是质数.解:1逆命题:在?ABC中,若?A?B,则ab,真命题;否命题:在?ABC中,若a?b,则?A??B,真命题;逆否命题:在?ABC中,若?A??B,则a?b,真命题.2逆命题:若一个数不是质数,则它一定是正偶数,假命题;否命题:若一个数不是正偶数,则它一定是质数,假命题;逆否命题:若一个数是质数,则它一定不是正偶数,假命题.11.判断下列命题的真假:1“若x?A?B,则x?B”的逆命题与逆否命题;2“若自然数能被6整除,则自然数能被2整除”的逆命题.解:1逆命题:若x?B,则x?A?B.根据集合“并”的定义,逆命题为真.逆否命题:若x?B,则x?A?B.逆否命题为假.如2?1,5=B,A=2,3,但2?A?B.2逆命题:若自然数能被2整除,则自然数能被6整除.逆命题为假.反例:2,4,14,22等都不能被6整除.12.判断命题“若m0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解:?m0,?12m0,?12m+40.?方程x2+2x-3m=0的判别式Δ=12m+40.?原命题“若m0,则方程x2+2x-3m=0有实数根”为真命题.又因原命题与它的逆否命题等价,所以“若m0,则方程x2+2x-3m=0有实数根”的逆否命题也为真命题.人教B版选修1-1第1章章末综合检测时间:120分钟;满分:150分一、选择题本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的1.命题“若A?B,则A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是A.0B.2C.3D.4解析:选B.原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真.故共有2个真命题.2.若命题p:x=2且y=3,则?p为A.x?2或y?3B.x?2且y?3C.x=2或y?3D.x?2或y=3解析:选A.由于“且”的否定为“或”,所以?p:x?2或y?3.故选A.3.命题“若ab,则a-b-”的逆否命题是A.若ab,则a-b-B.若a-b-,则abC.若a?b,则a-?b-D.若a-?b-,则a?b解析:选D.逆否命题是把原命题条件的否定作为结论,把原命题结论的否定作为条件而构成的.4.下列语句中,命题和真命题的个数分别是?垂直于同一条直线的两条直线平行吗??一个数不是奇数就是偶数;?x+y是有理数,则x、y也都是有理数;?求证:x?R,方程x2+x+1=0无实数根.A.3,1B.2,2C.2,0D.2,1解析:选C.命题是?、?,它们都是假命题,所以选C.5.下列全称命题中假命题的个数是?2x+1是整数x?R ?对所有的x?R,x3 ?对任意一个x?Z,2x2+1为奇数A.0B.1C.2D.3解析:选C.对于?,当x=时,2x+1=不是整数,假命题.对于?,当x=0时,03,假命题.对于?,当x?Z时,2x2是偶数,进而2x2+1是奇数,所以??是假命题,故选C.6.“x0”是“0”成立的A.充分非必要条件B.必要非充分条件C.非充分非必要条件D.充要条件解析:选A.因为当x0时,一定有0,但当0时,x0也成立,因此,x0是0成立的充分非必要条件.7.下列命题中的假命题是A.?x?R,2x-10B.?x?N*,x-120C.?x?R,lgx1D.?x?R,tanx=2解析:选B.对于A,正确;对于B,当x=1时,x-12=0,错误;对于C,当x?0,1时,lgx01,正确;对于D,正确.8.2011年高考大纲全国卷下面四个条件中,使ab成立的充分而不必要的条件是A.ab+1B.ab-1C.a2b2D.a3b3解析:选A.由a>b+1得a>b+1>b,即a>b;且由a>b不能得出a>b+1.因此,使a>b成立的充分不必要条件是a>b+1,故选A.9.fx、gx是定义在R上的函数,hx=fx+gx,则“fx、gx均为偶函数”是“hx为偶函数”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选B.若fx、gx均为偶函数,则hx一定是偶函数,但hx是偶函数,并不能保证fx、gx均为偶函数,例如:fx=x,gx=-x,fx+gx=0是偶函数,但fx与gx均为奇函数.10.已知p:x=1,?q:x2+8x-9=0,则下列为真命题的是A.若p,则qB.若?q,则pC.若q,则?pD.若?p,则q解析:选C.p:x=1,q:x?1且x?-9,易判断A、B为假命题,?x2+8x-9?0?x?1,?选项C正确.11.下列说法错误的是A.命题“若m0,则方程x2+3x-m=0有实根”的逆否命题为“若方程x2+3x-m=0无实根,则m?0”B.“x=2”是“x2-5x+6=0”的充分不必要条件C.若p?q为假命题,则p、q均为假命题D.若命题p:?x0?R,使得x+x0+10,则?p:?x?R,均有x2+x+1?0解析:选C.C项p?q为假命题,则只要p、q中至少有一个为假即可.12.已知命题p:存在x?R,使tanx=,命题q:x2-3x+20的解集是x|1x2,则下列结论:?命题“p且q”是真命题;?命题“p且?q”是假命题;?命题“?p或q”是真命题;?命题“?p或?q”是假命题.其中正确的是A.??B.???C.???D.????解析:选D.?p、q都是真命题,?????均正确.二、填空题本大题共4小题.把答案填在题中横线上13.命题p:内接于圆的四边形的对角互补,则p的否命题是________,非p是________.答案:不内接于圆的四边形的对角不互补内接于圆的四边形的对角不互补14.用量词符号“?”或“?”表示下列命题:1凸n边形的外角和等于2π:________;2存在一个有理数x0,使得x=8:________.答案:1?x?凸n边形,x的外角和等于2π2?x0?Q,x=815.a=3是“直线l1:ax+2y+3a=0和直线l2:3x+a-1y=a-7平行且不重合”的________条件.解析:当a=3时,l1:3x+2y+9=0,l2:3x+2y+4=0,?l1‖l2.反之,若l1‖l2,则aa-1=6,即a=3或a=-2,但a=-2时,l1与l2重合.答案:充要16.给出下列命题:?已知a=3,4,b=0,-1,则a在b方向上的投影为-4;?函数y=tanx+的图象关于点,0成中心对称;?若a?0,则a?b=a?c是b=c成立的必要不充分条件.其中正确命题的序号是________.将所有正确命题的序号都填上解析:??|a|=5,|b|=1,a?b=-4,?cos〈a,b〉=-,?a在b方向上的投影为|a|?cos〈a,b〉=-4,?正确.?当x=时,tanx+无意义,由正切函数y=tanx的图象的性质知,?正确.?当a?0,b=c时,a?b=a?c成立.当a?0,a?b=a?c时不一定有b=c.??正确.答案:???三、解答题本大题共6小题.解答时应写出必要的文字说明、证明过程或演算步骤17.已知命题p:?非零向量a、b、c,若a?b-c=0,则b=c.写出其否定和否命题,并说明真假.解:?p:?非零向量a、b、c,若a?b-c=0,则b?c.?p为真命题.否命题:?非零向量a、b、c,若a?b-c?0,则b?c.否命题为真命题.18.指出下列命题中,p是q的什么条件:1p:x|x-2或x3;q:x|x2-x-60;2p:a与b都是奇数;q:a+b是偶数.解:1?x|x-2或x3=R,x|x2-x-60=x|-2x3,?x|x-2或x3x|-2x3,而x|-2x3?x|x-2或x3.?p是q的必要不充分条件.2?a、b都是奇数?a+b为偶数,而a+b为偶数a、b都是奇数,?p是q的充分不必要条件.19.根据条件,判断“p?q”,“p?q”,“?p”的真假:1p:9是144的约数,q:9是225的约数;2p:不等式x2-2x+10的解集为R,q:不等式x2-2x+1?0的解集为解:1p?q:9是144或225的约数.p?q:9是144与225的公约数.?p:9不是144的约数.?p真,q真,?p?q为真,p?q为真,而?p为假.2p?q:不等式x2-2x+10的解集为R或不等式x2-2x+1?0的解集为 p?q:不等式x2-2x+10的解集为R且不等式x2-2x+1?0的解集为 ?p:不等式x2-2x+10的解集不为R.?p假,q假,?p?q为假,p?q为假,而?p为真.20.已知p:A=x|a-4xa+4,q:B=x|x2-4x+30,且x?A是x?B的必要条件,求实数a 的取值范围.解:因为p:A=x|a-4xa+4,q:B=x|1x3.又因为x?A是x?B的必要条件,所以q?p,即B?A.所以?即-1?a?5.?实数a的取值范围是a|-1?a?5.21.已知p:x2-x?6,q:x?Z.若p?q和?q都是假命题,求x的值.解:?p?q为假命题,?p、q至少有一个为假.??q为假,?q为真,即p假q真,?x2-x6且x?Z,?-2x3且x?Z,即x=-1,0,1,2.22.π是圆周率,a、b、c、d?Q,已知命题p:若aπ+b=cπ+d,则a=c且b=d.1写出p的逆命题、否命题及逆否命题并判断真假;2判断“a=c且b=d”是“aπ+b=cπ+d”的什么条件?解:1逆命题:若a=c且b=d,则aπ+b=cπ+d,真命题.逆否命题:若a?c或b?d,则aπ+b?cπ+d,真命题.否命题:若aπ+b?cπ+d,则a?c或b?d,真命题.2“a=c且b=d”是“aπ+b=cπ+d”的充要条件.充分性:?aπ+b=cπ+d;必要性:aπ+b=cπ+d?a-cπ=d-b,?d-b?Q,?a-c=0,d-b=0,即a=c且b=d 人教B版选修1-1同步练习1.设P是椭圆+=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于A.4B.5C.8D.10答案:D2.椭圆+=1的焦点坐标是A.?4,0B.0,?4C.?3,0D.0,?3答案:D3.已知椭圆的两个焦点为F1-1,0,F21,0,且2a=6,则椭圆的标准方程为________.答案:+=14.已知B、C是两定点,|BC|=8,且?ABC的周长等于18,求这个三角形顶点A的轨迹方程.。
人教版数学高一第二章点,直线,平面之间的位置关系单元测试精选(含答案)2

【答案】A
15.如图,在三棱柱 ABC-A′B′C′中,点 E、F、H、K 分别为 AC′、CB′、A′B、B′C′
的中点,G 为△ABC 的重心,从 K、H、G、B′中取一点作为 P,使得该三棱柱恰有 2
条棱与平面 PEF 平行,则点 P 为 ( )
A.K
B.H
C.G
D.B′
【来源】人教 A 版高中数学必修二第 2 章 章末综合测评 3
A.30°
B.60°
C.90°
D.120°
【来源】人教 A 版高中数学必修二第二章 章末检测卷
【答案】C
19.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B 到 l 的距离分别是 a 和 b,AB 与α、β
试卷第 5页,总 17页
所成的角分别是θ和φ,AB 在α、β内的射影长分别是 m 和 n,若 a>b,则 ( )
【来源】2013-2014 学年福建省清流一中高一下学期第二次阶段考数学试卷(带解析) 【答案】①②
30.如图所示,在正方体 ABCD A1B1C1D1 中, M,N 分别是棱 AA1 和 AB 上的点, 若 B1MN 是直角,则 C1MN ________.
试卷第 8页,总 17页
【来源】人教 A 版 2017-2018 学年必修二第 2 章 章末综合测评 1 数学试题 【答案】90°
29.如图,将边长为1的正方形 ABCD 沿对角线 AC 折起,使得平面 ADC 平面 ABC , 在折起后形成的三棱锥 D ABC 中,给出下列三个命题: ① DBC 是等边三角形; ② AC BD ; ③三棱锥 D ABC 的体积是 2 .
6
其中正确命题的序号是* * * .(写出所有正确命题的序号)
试卷第 1页,总 17页
高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。
2020-2021高中人教A版必修4《平面向量的数量积》同步练习(B)含答案
r2 r2 r r a b 2a b 3
uuur
设 AO
ar ,
uuur AB
r
b ,建立平面直角坐标系,如图所示:
则 A 1,0 , B 0, 3
∴ ar
1,0 ,
r b
1, 3
∴
rr
r
r a
tb a tb
2
2
1t
2
3t
2
1 t
2
2
2
2
1
3
3t 2( t
0
4
4
2
1 t
8
2
3 0
8
它表示点 P t,0 与点 M 1 , 3 、 N 1, 3 的距离之和的 2 倍
( 1)求
r a
r b
与
r a
r b
的夹角;
( 2)若
r a
r a
r b
,求实数
的值.
【答案】( 1) 3 ;(2) 1.
4
【解析】
r
r
rr
( 1)因为 a 1,2 , b 3,4 ,所以 a b
rr
2,6 , a b 4, 2
所以
cos
r a
r rr r a b,a b
r
( 2)当 a
rr r b,a b
uuur CP
uuur AB
uuur PA
uuur PB
,求实数
的取值范围.
【答案】( 1) 2 7 ;( 2) 2 2 1 .
2
【解析】
( I )当
1 时,
uuur AP
1
uuur AB
,
3
3
新课标数学必修4第2章平面向量同步练习(含答案)
第1课时 平面向量的实际背景及基础概念一、选择题1.下列各量中不是向量的是(A.浮力 B .风速 C.位移 D.2.下列命题正确的是(A.向量AB 与BA 是两平行向量B.若a 、b 都是单位向量,则a=bC.若=,则A 、B 、C 、D四点构成平行四D.3. 在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则(A. 与AC 共线B. 与CB 共线C. 与相等D. 与相等 4.在下列结论中,正确的结论为((1)|a |=|b |⇒a =b ; (2) a ∥b 且|a |=|b | ⇒ a =b ; (3) a =b ⇒a ∥b 且|a |=|b |(4) a ≠b ⇒ a 与b 方向相反 A. (3) B.(2)(3) C.(2)(4) D.(1)(3)(4) 二、填空题:5.物理学中的作用力和反作用力是模 且方向 的共线向量.6.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 .7.已知||=1,| AC |=2,若∠BAC=60°,则|BC |= .8.在四边形ABCD 中, =,且||=||,则四边形ABCD 是 .三、解答题:9. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C点,最后又改变方向,向东走了200m 到达D 点. (1)作出向量、、 (1 cm 表示200 m).(2)求的模.10.如图,已知四边形ABCD 是矩形,设点集M ={A ,B ,C ,D },求集合T ={、P 、Q ∈M ,且P 、Q 不重合}.第10题图A B一、选择题1.下列等式: a +0=a , b +a =a +b ,AB +AC =BC , AB +BC =BC 正确的个数是( ) A.2 B .3 C.4 D.52.化简++的结果等于( ) A. B . C. SPD.3.若C 是线段AB 的中点,则 AC +为A. B . C. 0D. 以上都错4.O 为平行四边形ABCD 平面上的点,设=a ,=b ,=c ,=d ,则( )A.a +b =c +d B .a +c =b +d C.a +d =b +c D.a +b +c +d =0 二、填空题:5.化简:(OM BO MB AB +++)= ; 6.如图,在四边形ABCD 中,根据图示填空:b +e = , f +d = ,a +b +c = .7.已知向量a 、b 分别表示“向北走5km ”和“向西走5公里”,则a +b 表示 ; 8、一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 . 三、解答题:9.一架飞机向北飞行300公里,然后改变方向向东飞行400公里,求飞机飞行的路程和位移.10.如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =,并画出a +d.Dd e c A f Ca bBC一、选择题1.下列等式:①AB -= ②AB -= ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b( )A.2 B .3 C.4D.52. 在△ABC 中, =a , =b ,则AB 等于( ) A.a +bB .-a +(-b ) C.a -bD.b -a3.在下列各题中,正确的命题个数为( )(1)若向量a 与b 方向相反,且|a |>|b |,则a +b 与a (2)若向量a 与b 方向相反,且|a |>|b |,则a -b 与a +b(3)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a (4)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a +b A.1 B.2 C.3 D.44.若a 、b 是非零向量,且|a -b |=|a |=|b ,则a 和a +b 的夹角是( ) A.090 B . 600 C.300 D.045二、填空题5. 在正六边形ABCDEF 中, AE =m , AD =n ,则BA = .6. 已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件. 7. 如图,在四边形ABCD 中,根据图示填空: c -d = ,a +b +c -d= .8.已知=a , =b ,若||=12,||=5,且∠AOB =90°,则|a -b |= . 三、解答题9. 试用向量方法证明:对角线互相平分的四边形是平行四边形.10. 已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若=a , BC =b ,=c ,试证明:c +a -b =.Dd e c A fa b C B第4、5课时 向量的数乘运算及其几何意义一、选择题 1.设e 1、e2A.e 1、e2 B .e 1、e2C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -yA.3B .-3C.0D.24. 下面向量a 、b 共线的有( )(1)a =2e 1,b =-2e 2 (2)a =e 1-e 2,b =-2e 1+2e2(3)a =4e 1-52e 2,b =e 1-101e 2 (4)a =e 1+e 2,b =2e 1-2e 2.(e 1、e 2不共线)A.(2)(3) B .(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 二、填空题5.若a 、b 不共线,且λa +μb =0(λ,μ∈R )则λ= ,μ= .6.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .7.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).8. 如图,在△ABC 中,=a, =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= 三、解答题:9. 如图,平行四边形ABCD 中,=a,=b,N 、M 是AD 、DC 之中点,F 使BF =31BC ,以a、b为基底分解向量与.DABCa bB FC MA N D10.如图,O 是三角形ABC 内一点,PQ ∥BC ,且BCPQ=t,=a,=b,=с,求OP 与.第6课时 平面向量基本定理一、选择题1.设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B. e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.2 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 二、填空题5.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .6. 已知λ1>0,λ2>0,e 1、e 2是一组基底,且 a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).7. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .8. 已知矩形ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 三、解答题9. 已知梯形ABCD 中,AB ∥CD 且AB=2CD ,M , N 分别是DC , AB 中点,设AD =a , AB =b ,试以a, b 为基底表示DC , BC , MN .10. 化简++++.第7课时 平面向量的正交分解和坐标表示及运算一、选择题 1.设a =(23,sin α),b=(cosα,31),且a ∥b ,则锐角α为( ) A.30° B .60° C.45° D.75°2.设k ∈R,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A.(k ,k ) B .(-k ,-k )C.(k 2+1,k2+1)D.(k2-1,k2-1)3.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-36 4.已知|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 二、填空题5.已知a =(3,2),b =(2,-1),若λa +b 与a +λb (λ∈R )平行,则λ= . 6.若a=(-1,x)与b=(-x ,2)共线且方向相同,则x= . 7.若A(0, 1), B(1, 2), C(3, 4) 则-2=8.在△ABC 中,AB =a, BC =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= .三、解答题9.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标.10.在中,设对角线AC =a ,BD =b 试用a, b 表示AB ,BC .11.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形.12.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e ,=21e -2e , 若三点A , B , D 共线,求k 的值.第8课时 平面向量共线的坐标表示一、选择题1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( ) A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.若a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则坐标满足的条件为( ) A.x 1x 2-y1y2=0 B .x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 二、填空题5.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .6已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .7.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 8.若A (-1,-1),B (1,3),C (x ,5)三点共线,则x = . 三、解答题9.已知a =(1,2),b =(-3,2),当k 为何值时k a +b 与a -3b 平行?10.已知A 、B 、C 、D 四点坐标分别为A (1,0),B (4,3),C (2,4),D (0,2),试证明:四边形ABCD 是梯形.11.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),AE =AC 3131=, 求证:∥.12.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ,∠BAC 平分线交BC 边于D , 求D 点坐标第9课时 平面向量的数量积的物理背景及其含义一、选择题1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23材 C.6 D.123.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( )A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件4.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A.λ>310 B .λ≥310 C.λ<310 D.λ≤310 二、填空题5.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 6.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 7.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .8.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 三、解答题9.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.10.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.11.对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角.12.已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.第10课时 平面向量数量积的运算律一、选择题1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 4.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( ) A.23 B .223 C. 323 D. 423 二、填空题5.已知a =(1,2),b (1,1),c=b -k a ,若c ⊥a ,则c = .6.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 7.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 8.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 三、解答题5. 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.7. 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x .12.如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒, 求点B 和向量的坐标.第11课时 平面向量数量积的坐标表示、模、夹角一、选择题1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(--C.)54,53(-或)53,54(-D.)54,53(-或)54,53(-4.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ) A.13 B .513 C.565D.65 二、填空题5.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .6.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 7.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 8.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .三、解答题9.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .10.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ACB=90°,若不能,说明理由;若能,求C 点坐标.11.四边形ABCD 中=AB (6,1), BC =(x ,y ),CD =(-2,-3), (1)若BC ∥DA ,求x 与y 间的关系式;(2)满足(1)问的同时又有⊥,求x ,y 的值及四边形ABCD 的面积.12.在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角, 求k 值..第12课时 平面向量的应用举例一选择题1.在四边形ABCD 中,若则,AD AB AC += ( ) A .ABCD 是矩形 B.ABCD 是菱形C ABCD 是正方形 D.ABCD 是平行四边形 2已知:在是则中,ABC ABC ∆<∙∆,0( )A 钝角三角形B 直角三角形C 锐角三角形D 任意三角形二.解答题3.设M 、N 分别是四边形ABCD 的对边AB 、CD 的中点,求证:)(21MN +=4.求证:对角线相等的四边形是矩形.5.求证:圆的直径所对的圆周角为直角.6.求证:直角三角形斜边上的中线等于斜边的一半.7.证明:三角形的三条高交于一点.8..AC AB CE BD CE BD ABC ==∆,求证:为中线,且,中,第13课时 向量在物理中的应用一选择题1某人以时速为a km 向东行走,此时正刮着时速为a km 的南风,则此人感到的风向及风速分别为( )A .东北, 2akm/h B.东南, akm/hC .西南, 2akm/h D.东南, 2akm/h2.一船以4km/h 的速度沿与水流方向成1200的方向航行,已知河水流速为2km/h ,则ABCDA E3h 后船的实际航程为( )A .63km B.6km C .53km D.5km二、填空题3.力F 1,F 2共同作用在某质点上,已知F 1=5N, F 2=12N,且F 1与F 2互相垂直,则质点所受合力的大小为_______________4.在200米山顶上.测得山下一塔顶与塔底的俯角分别为 60,30则塔高为__________米 5.某人向正东方向走x 千米后,他向右转150,然后朝新方向走3千米.结果他离开出发点恰好3千米,则 x=_________________.6.若用两根完全相同的绳子向两侧呈“V ”挂重物,每根绳子最大拉力为100N ,两根绳子间的夹角为600,则能挂重物的最大重量是 . 三、解答题7.一个质量为100g 的球从1.8m 的. 高处落到水平板上又弹回到1.25m 的高度,求在整个过程中重力对球所做的功。
高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案
→
→
∣→∣ ∣ ∣ →
∣→∣ ∣ ∣
→
→
④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )
→
→ →
→
→
中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2
(新教材)2021版高中数学人教B版必修第二册同步练习:6.3 平面向量线性运算的应用 (含解析)
第六章 6.3请同学们认真完成 [练案31]A 级 基础巩固一、选择题1.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( C ) A .平行四边形 B .矩形 C .菱形D .等腰梯形[解析] 由BA →=CD →可知,四边形ABCD 为平行四边形,又因为|AB →|=|AD →|,所以四边形ABCD 为菱形.2.一条渔船距对岸4 km ,以2 km/h 的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8 km ,则河水的流速为( A )A .2 3 km/hB .2 km/hC . 3 km/hD .3 km/h[解析] 如图,船在A 处,AB =4,实际航程为AC =8,则∠BCA =30°,|v AB |=2,|v AC |=4,所以|v BC |=23,故选A .3.在矩形ABCD 中,|AB →|=4,|AD →|=2,则|BA →+BD →+BC →|=( C ) A .2 B .4 C .4 5D .2 5[解析] 由平行四边形法则可知BA →+BC →=BD →,原式即为2|BD →|,而BD 为矩形对角线,所以|BD →|=42+22=2 5.原式=2|BD →|=2×25=4 5.故选C .4.如图,在△ABO 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( A )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14[解析] 由题可知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13,故选A .5.(多选题)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( BD )A .|b |=1B .|a |=1C .a ∥bD .(4a +b )⊥BC →[解析] 如图,由题意,BC →=AC →-AB →=(2a +b )-2a =b ,则|b |=2,故A 错误;|2a |=2|a |=2,所以|a |=1,故B 正确;因为AB →=2a ,BC →=b ,故a ,b 不平行,故C 错误;设B ,C 中点为D ,则AB →+AC →=2AD →,且AD →⊥BC →,而2AD →=2a +(2a +b )=4a +b ,所以(4a +b )⊥BC →,故D 正确.二、填空题6.已知三个力F 1=(3,4),F 2=(2,-5),F 3=(x ,y )和合力F 1+F 2+F 3=0,则F 3的坐标为__(-5,1)__.[解析] 因为F 1=(3,4),F 2=(2,-5),F 3=(x ,y ),所以F 1+F 2+F 3=(3,4)+(2,-5)+(x ,y )=0,所以(3+2+x,4-5+y )=0,所以⎩⎪⎨⎪⎧x +5=0,y -1=0,解得x =-5,y =1.所以F 3的坐标为(-5,1).7.河水从东向西流,流速为2 km/h ,一艘船以2 3 km/h 垂直于水流方向向北横渡,则船实际航行的速度的大小是__4__km/h .[解析] 由题意,如图,OA →表示水流速度,OB →表示船在静水中的速度,则OC →表示船的实际速度,则|OA →|=2,|OB →|=23,∠AOB =90°, ∴|OC →|=4.8.△ABC 所在平面上一点P 满足P A →+PC →=mAB →(m >0,m 为常数),若△ABP 的面积为6,则△ABC 的面积为__12__.[解析] 取AC 的中点O ,∵P A →+PC →=mAB →(m >0,m 为常数), ∴mAB →=2PO →,∴C 到直线AB 的距离等于P 到直线AB 的距离的2倍,故S △ABC =2S △ABP =12.三、解答题9.如图,用两根绳子把重10 N 的物体W 吊在水平杆AB 上,∠ACW =150°,∠BCW =120°.求A 和B 处所受力的大小.(忽略绳子重量)[解析] 设A ,B 处所受力分别为f 1,f 2,10N 的重力用f 表示,则f 1+f 2+f =0.以重力作用点C 为f 1,f 2的始点,作平行四边形CFWE ,使CW 为对角线,则CF →=-f 2,CE →=-f 1,CW →=f .∠ECW =180°-150°=30°,∠FCW =180°-120°=60°,∠FCE =90°, ∴四边形CEWF 为矩形,∴|CE →|=|CW →|cos30°=53, |CF →|=|CW →|cos60°=5.即A 处所受力的大小为53N ,B 处所受力的大小为5N .10.如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F 在同一直线上. [解析] 设AB →=m ,AD →=n , 由CE ED =AF FB =12知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上.B 级 素养提升一、选择题1.已知△ABC 的三个顶点的坐标分别为A (3,4),B (5,2),C (-1,-4),则该三角形为( B ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰直角三角形[解析] AB →=(2,-2),AC →=(-4,-8),BC →=(-6,-6), 所以|AB →|=22+(-2)2=22,|AC →|=16+64=45, |BC →|=36+36=62,所以|AB →|2+|BC →|2=|AC →|2,所以△ABC 为直角三角形.2.在△ABC 中,D 为BC 边的中点,已知AB →=a ,AC →=b ,则下列向量中与AD →同方向的是( A )A .a +b |a +b |B .a |a |+b |b |C .a -b |a -b |D .a |a |-b |b |[解析] 因为D 为BC 边的中点,则有AB →+AC →=2AD →,所以a +b 与AD →共线,又因为a +b |a +b |与a +b 共线,所以选项A 正确.3.两个大小相等的共点力F 1,F 2,当它们的夹角为90°时,合力的大小为20 N ,则当它们的夹角为120°时,合力的大小为( B )A .40 NB .10 2 NC .20 2 ND .10 N[解析] 对于两个大小相等的共点力F 1,F 2,当它们的夹角为90°,合力的大小为20 N 时,由三角形法则可知,这两个力的大小都是10 2 N ;当它们的夹角为120°时,由三角形法则可知力的合成构成一个等边三角形,因此合力的大小为10 2 N .4.已知点A (2,0),B (-4,4),C (1,-1),D 是线段AB 的中点,延长CD 到点E 使|DC →|=2|DE →|,则点E 的坐标为( A )A .(-2,72)B .(2,72)C .(2,-72)D .(-2,-72)[解析] 由已知得D (-1,2),因为|DC →|=2|DE →|,所以CD →=2DE →,设E (x ,y ),则有(-2,3)=2(x +1,y -2),所以⎩⎪⎨⎪⎧-2=2x +2,3=2y -4.所以⎩⎪⎨⎪⎧x =-2,y =72.二、填空题5.已知△ABC 的三个顶点A (0,-4),B (4,0),C (-6,2),点D ,E ,F 分别为边BC ,CA ,AB 的中点.则直线DE 的方程为__x -y +2=0__,直线EF 的方程为__x +5y +8=0__ .[解析] 由已知得点D (-1,1),E (-3,-1), 设M (x ,y )是直线DE 上任意一点,则DM →∥DE →. 又DM →=(x +1,y -1),DE →=(-2,-2),所以(-2)×(x +1)-(-2)×(y -1)=0, 即x -y +2=0为直线DE 的方程.同理可求,直线EF 的方程为x +5y +8=0.6.设O 是△ABC 内部一点,且OA →+OC →=-2OB →,则△AOB 与△AOC 的面积之比为__1∶2__.[解析] 设D 为AC 的中点, 如图所示,连接OD ,则OA →+OC →=2OD →. 又OA →+OC →=-2OB →,所以OD →=-OB →,即O 为BD 的中点, 从而容易得△AOB 与△AOC 的面积之比为1∶2. 三、解答题7.如图,已知河水自西向东流速为|v 0|=1 m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|= 3 m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|= 3 m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.[解析] 如图,设OA →=v 0,OB →=v 1,OC →=v 2, 则由题意知v 2=v 0+v 1,|OA →|=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB →|=AC =3,如图所示,则在直角△OAC 中,|v 2|=OC =OA 2+AC 2=2,tan ∠AOC =31=3, 又α=∠AOC ∈(0,π2),所以α=π3.(2)由题意知α=∠OCB =π2,且|v 2|=|OC →|=3,BC =1,如图所示,则在直角△OBC 中,|v 1|=OB =OC 2+BC 2=2,tan ∠BOC =13=33, 又∠BOC ∈(0,π2),所以∠BOC =π6,则β=π2+π6=2π3.答:(1)他实际前进方向与水流方向的夹角α为π3,v 2的大小为2 m/s ;(2)他游泳的方向与水流方向的夹角β为2π3,v 1的大小为2 m/s .8.如图,在△ABC 中,M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .[解析] 设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. ∵A ,P ,M 和B ,P ,N 分别共线,∴存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2.故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35.∴AP →=45AM →,BP →=35BN →.故AP ∶PM =4∶1,BP ∶PN =3∶2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.
11 π 12
y = 3 sin (x − θ) 的图象的一条对称轴为 x = π − θ) = 1 或 −1. 12
sin (−
π π π ,从而 − =− 4 3 12
2. 点 P 在平面上作匀速直线运动,速度向量 v = (4, 3) (即点 P 的运动方向与 v 相同,且每秒移动的 距离 |v| 个单位).设开始时点 P 的坐标为 (−10, 10) ,则 5 秒后点 P 的坐标为 ( A.(−2, 4)
−→ −
−→ −
高考不提分,赔付1万元,关注快乐学了解详情。
4. 设 P 为 △ABC 内一点,D 为 △ABC 的边 AB 上一点,且满足 AD =
−→ − −→ − − 1 −→ S AP = AD + BC 则 △APD = ( 4 S △ABC 2 1 A. B. 9 6
答案: B 解析:
)
C.
7 54
D.
因为 AP = AD +
− − −→ − − −→ − 1 −→ 1 −→ 2 −→ BC ,所以 DP = BC ,又 AD = AB .所以 4 4 3 三角形ADP 的高 AD 2 2 1 1 S △APD = = ,所以 = × = . 3 3 4 6 AB S △ABC 三角形ABC 的高
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 将函数 y = 3 sin (x − θ) 的图象 F 按向量 (
π ,则 θ 的一个可能取值是 ( 4 5 5 A. B.− π π 12 12 x=
答案: A 解析: 函数
)
π , 3) 平移得到图象 F ′ ,若 F ′ 的一条对称轴是直线 3 11 π 12
→
→
−→ −
→
− − − − − − − − − − −− − −− − 2 −→ − −→ − → → 2 √→2 → √ OC 即为小船的实际速度.所以 |OC | = ( a + b ) = a + b = 20(km/h),
tan ∠AOC = √3,所以 ∠AOC = 60∘ .所以小船的实际航行速度为 20 km/h ,按北偏东 30∘ 方向航行.
高中数学必修4(人教B版)知识点总结含同步练习题及答案
第二章 平面向量 2.4 向量的应用
一、学习任务 了解向量是一种处理几何、物理等问题的工具. 二、知识清单
平面向量的应用
三、知识讲解
1.平面向量的应用 描述: 向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中 具有广泛的应用. 例题: 已知点 A(−2, 1) .
−→ − →
−→ −
−→ −
→
→ −→ − −→ −→ − −→ − −→ − − → → OB = b ,以 OA ,OB 为邻边作矩形 OACB.连接 OC ,如图,则 OC = a + b ,并且 − − − − − − − − √
设 a , b 分别表示水流的速度和小船在静水中的速度,过平面内一点 O 作 OA = a ,
答案: C
)
B.(−30, 25)
C.(10, −5)
D.(5, −10)
3. 平面直角坐标系中,O 为坐标原点,已知两点 A (3, 1),B (−1, 3) ,若点 C 满足
−→ − −→ − −→ − OC = αOA + βOB ,若中 α , β ∈ R,且 α + β = 1 ,则点 C 的轨迹方程为 (
(1)求过点 A 与向量 a = (3, 1) 平行的直线方程; (2)求过点 A 与向量 b = (−1, 2) 垂直的直线方程.
→ →
解:设所求直线上任取一点 P (x, y) ,则 AP = (x + 2, y − 1).
(1)由 AP ∥ a ,所以 (x + 2) × 1 − 3(y − 1) = 0,即 x − 3y + 5 = 0,所以所求直线方程为 x − 3y + 5 = 0. (2)由题意知 AP ⊥ b ,所以 (x + 2) × (−1) + (y − 1) × 2 = 0,即 x − 2y + 4 = 0,所以 所求直线方程为 x − 2y + 4 = 0. 河水自西向东的速度为 10 km/h,小船自南岸沿正北方向航行,静水速度为 10√3 km/h,求小 船的实际航行速度. 解:
A.(x − 1)2 + (y − 2)2 = 5 C.2x − y = 0
答案: D 解析: 设 点
)
B.3x + 2y − 11 = 0 D.x + 2y − 5 = 0
−→ − −→ − −→ − C 坐标为 (x , y) ,∵ OC = αOA + βOB ,∴ (x , y) = (3α − β, α + 3β),又 α + β = 1 .则 { x = 3α − β = 4α − 1 ,消去 α 即可. y = α + 3β = 3 − 2α −→ − − 2 −→ AB , 3 4 27