相似三角形复习专题相似与一次函数,动点问题

合集下载

北师大版九年级下册 第四章 相似三角形动点问题解答题专题(含解析)

北师大版九年级下册  第四章 相似三角形动点问题解答题专题(含解析)

2019-2020相似三角形动点问题解答题专题(含解析)一、解答题1.(2018·江苏初三月考)如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC 向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)当t 为何值时,△CPQ 与△ABC 相似?(3)是否存在某一时刻,使得PQ 分△ACD 的面积为2:3?若存在,求出t 的值,若不存在,请说明理由.2.如图1,已知在Rt ACB ∆中,90C ∠=︒,4AC cm =,3BC cm =,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1/cm s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2/cm s ;连结PQ .若设运动的时间为()()02t s t <<,解答下列问题:(1)当t 为何值时,PQ BC ?(2)设AQP ∆的面积为()2y cm ,求y 与t 之间的函数关系式.(3)是否存在某一时刻t ,使线段PQ 恰好把Rt ACB ∆的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由.(4)如图2,连结PC ,并把PQC ∆沿QC 翻折,得到四边形'PQP C ,那么是否存在某一时刻t ,使四边形'PQP C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.3.(2018·江苏初三期末)如图,直线AB 分别与两坐标轴交于点A (6,0),B (0,12),点C 的坐标为(3,0)(1)求直线AB 的解析式;(2)在线段AB 上有一动点P .①过点P 分别作x ,y 轴的垂线,垂足分别为点E ,F ,若矩形OEPF 的面积为16,求点P 的坐标. ②连结CP ,是否存在点P ,使△ACP 与△AOB 相似?若存在,求出点P 的坐标;若不存在,请说明理由.4.(2018·江西初二期末)如图,在平面直角坐标系可中,直线y=x+1与y=﹣34x+3交于点A,分别交x轴于点B和点C,点D是直线AC上的一个动点.(1)求点A,B,C的坐标;(2)在直线AB上是否存在点E使得四边形EODA为平行四边形?存在的话直接写出BEAE的值,不存在请说明理由;(3)当△CBD为等腰三角形时直接写出D坐标.5.(2018·山东初三期末)如图,已知Rt△ABC中,∠C=90°,AC=8cm,AB=12cm,点P由B 出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,速度均为1cm/s.以AQ、PQ为边作▱AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤6).解答下列问题:(1)当t 为何值时,▱AQPD 为矩形.(2)当t 为何值时,▱AQPD 为菱形.(3)是否存在某一时刻t ,使四边形AQPD 的面积等于四边形PQCB 的面积,若存在,请求出t 值,若不存在,请说明理由.6.(2019·广东初三期末)如图,在平面直角坐标系中,A 、B 两点的坐标分别为(20,0)和(0,15),动点P 从点A 出发在线段AO 上以每秒2cm 的速度向原点O 运动,动直线EF 从x 轴开始以每秒lcm 的速度向上平行移动(即EF ∥x 轴),分别与y 轴、线段AB 交于点E 、F ,连接EP 、FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒.(1)求t=9时,△PEF 的面积;(2)直线EF 、点P 在运动过程中,是否存在这样的t 使得△PEF 的面积等于40cm 2?若存在,请求出此时t 的值;若不存在,请说明理由;(3)当t 为何值时,△EOP 与△BOA 相似.7.(2018·全国初三期中)如图,已知在矩形ABCD 中,2AB =,3BC =,P 是线段AD 边上的任意一点(不含端点A 、D ),连接PC ,过点P 作PE PC ⊥交AB 于E .()1在线段AD 上是否存在不同于P 的点Q ,使得QC QE ⊥?若存在,求线段AP 与AQ 之间的数量关系;若不存在,请说明理由;()2当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围.8.(2019·福建初三期中)如图,在平面直角坐标系中,直线l :142y x =-+ 与x 轴.y 轴交于B ,A 两点,点D ,C 分别为线段AB ,OB 的中点,连结CD ,如图,将△DCB 绕点B 按顺时针方向旋转角α,如图.(1)连结OC ,AD ,求证OBC V ∽ABD △;(2)当0°<α<180°时,若△DCB 旋转至A ,C ,D 三点共线时,求线段OD 的长;(3)试探索:180°<α<360°时,是否还有可能存在A ,C ,D 三点共线的情况,若存在,求出此直线的表达式;若不存在,请说明理由.9.(2019·四川初三月考)如图,在ABC ∆中,20BA BC cm ==,30AC cm =,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当x 为何值时,//PQ BC ;(2)是否存在某一时刻,使APQ CQB ∆∆?若存在,求出此时AP 的长;若不存在,请说理由; (3)当10CQ =时,求APQABQ S S ∆∆的值.10.(2018·浙江初三期中)如图,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,设运动时间为x 秒.(1)当CQ =10时,求 △△ 的值.(2)当x 为何值时,PQ ∥BC ;(3)是否存在某一时刻,使△APQ ∽△CQB ?若存在,求出此时AP 的长,若不存在,请说明理由.11.(2018·河南初三期末)如图,已知矩形OABC ,以点O 为坐标原点建立平面直角坐标系,其中A (2,0),C (0,3),点P 以每秒1个单位的速度从点C 出发在射线CO 上运动,连接BP ,作BE ⊥PB 交x 轴于点E ,连接PE 交AB 于点F ,设运动时间为t 秒.(1)当t=2时,求点E 的坐标;(2)若AB 平分∠EBP 时,求t 的值.(3)在运动的过程中,是否存在以P 、O 、E 为顶点的三角形与△ABE 相似.若存在,请求出点P 的坐标;若不存在,请说明理由.12.(2019·四川初三期中)已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,点A 、C 的坐标分别为A (﹣3,0),C (1,0),34BC AC =. (1)求过点A 、B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P 、Q 分别是AB 和AD 上的动点,连接PQ ,设AP=DQ=m ,问是否存在这样的m 使得以点A 、P 、Q 为顶点的三角形与△ADB 相似?如存在,请求出m 的值;如不存在,请说明理由.13.如图,在矩形ABCD 中,4AB CD cm ==,6AD BC cm ==,3AE DE cm ==,点P 从点E 出发,沿EB 方向匀速运动,速度为1cm/s ;同时,点Q 从点C 出发,沿CD 方向匀速运动,速度为2cm/s ,连接PQ ,设运动时间为t (s )(02t <<),解答下列问题:PQ BC?(1)当t为何值时,//(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使四边形PBCQ的面积是四边形PQDE的面积的4倍?若存在,求出t 的值;若不存在,说明理由.(4)连接BD,点O是BD的中点,是否存在某一时刻t,使P,O,Q在同一直线上?若存在,求出t的值;若不存在,说明理由.14.(2019·河南初二期末)如图,正方形ABCD 的边长为8,E 是BC 边的中点,点P 在射线AD 上,过P 作PF⊥AE 于F.(1)请判断△PFA 与△ABE 是否相似,并说明理由;(2)当点P 在射线AD 上运动时,设PA=x,是否存在实数x,使以P,F,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,说明理由.15.(2018·江苏初三期末)如图,在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C 是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右作正方形CDEF,连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.(1)求FEOE的值;(2)用含t的代数式表示△OAB的面积S;(3)是否存在点B,使以B,E,F为顶点的三角形与△OEF相似?若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.16.如图,AB⊥DB于点B,CD⊥DB于点D,AB=6,CD=4,BD=14.则在DB上是否存在点P,使得以C、D、P为顶点的三角形与P、B、A为顶点的三角形相似,如果存在求出DP的长,如果不存在,说明理由.17.(2018·重庆初三期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿着CA以每秒3cm的速度向A点运动,设运动时间为x秒.(1)x为何值时,PQ∥BC;(2)是否存在某一时刻,使△APQ∽△CQB?若存在,求出此时AP的长;若不存在,请说明理由;18.(2019·陕西省宝鸡市第一中学初三期中)如图:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;(3)试问:在AB上是否存在一点M,使得△PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.19.(2018·山东初三期末)已知:如图,在矩形ABCD中,AC是对角线,AB=8cm,BC=6cm.点P从点A出发,沿AC方向匀速运动,速度为2cm/s,同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s.过点P作PM⊥AD于点M,连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)当t为何值时,点Q在线段AC的中垂线上;(2)写出四边形PQAM的面积为S(cm2)与时间t的函数关系式;(3)是否存在某一时刻t,使S四边形PQAM:S矩形ABCD=9:50?若存在,求出t的值;若不存在,请说明理由;(4)当t为何值时,△APQ与△ADC相似.20.(2019·西安交通大学附属中学初三月考)已知:如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,点A ,C 的坐标分别为A (﹣3,0),C (1,0),BC =34AC (1)求过点A ,B 的直线的函数表达式;(2)在x 轴上找一点D ,连接DB ,使得△ADB 与△ABC 相似(不包括全等),并求点D 的坐标; (3)在(2)的条件下,如P ,Q 分别是AB 和AD 上的动点,连接PQ ,设AP =DQ =m ,问是否存在这样的m ,使得△APQ 与△ADB 相似?如存在,请求出m 的值;如不存在,请说明理由.21.(2019·重庆初三期末)已知,把Rt ABC 和Rt DEF 按图1摆放,点C 与E 点重合,点B 、C 、E 、F 始终在同一条直线上,ACB EDF 90∠∠==,DEF 45∠=,AC 8=,BC 6=,EF 10=,如图2,DEF 从图1的位置出发,以每秒1个单位的速度沿CB 方向匀速移动,同时,点P 从A 出发,沿AB 以每秒1个单位向点B 匀速移动,AC 与DEF 的直角边相交于Q ,当P 到达终点B 时,DEF 同时停止运动连接PQ ,设移动的时间为()s 解答下列问题:()1DEF 在平移的过程中,当点D 在Rt ABC 的AC 边上时,求AB 和t 的值;()2在移动的过程中,是否存在APQ 为等腰三角形?若存在,求出t 的值;若不存在,说明理由.22.(2019·山东中考模拟)如图,四边形ABCD 为矩形,AB =4cm ,AD =3cm ,动点M 、N 分别从D 、B 同时出发,都以1cm/秒的速度运动,点M 沿DA 向点终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于点P ,连接MP ,已知运动的时间为t 秒(0<t <3).(1)当t =1秒时,求出PN 的长;(2)若四边形CDMP 的面积为s ,试求s 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t 使四边形CDMP 的面积与四边形ABCD 的面积比为3:8,若存在,请求出t 的值;若不存在,请说明理由.(4)在点M 、N 运动过程中,△MPA 能否成为一个等腰三角形?若能,试求出所有t 的可能值;若不能,试说明理由.23.(2018·山东初三期中)如图,已知Rt ABC 中,C 90∠=,AB 10cm =,AC 8cm =.如果点P 由B 出发沿BA 方向点A 匀速运动,同时点Q 由A 出发沿AC 方向向点C 匀速运动,它们的速度均为2cm /s .连接PQ ,设运动的时间为t (单位:s )(0t 4)<≤.解答下列问题:()1当t为何值时PQ平行于BC;()2当t为何值时,APQ与ABC相似?()3是否存在某时刻t,使线段PQ恰好把ABC的周长平分?若存在,求出此时t的值;若不存在,请说明理由.()4是否存在某时刻t,使线段PQ恰好把ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.24.(2019·江苏初三期中)如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点D从点C出发,以2 cm/s的速度沿折线C→A→B向点B运动,同时点E从点B出发,以1 cm/s的速度沿BC边向点C运动,设点E运动的时间为t(单位:s)(0<t<8).(1) 当△BDE是直角三角形时,求t的值;(2)若四边形CDEF是以CD、DE为一组邻边的平行四边形,①设它的面积为S,求S关于t的函数关系式;②是否存在某个时刻t,使平行四边形CDEF为菱形?若存在,求出t的值;若不存在,请说明理由.25.(2019·山东中考模拟)如图,在菱形ABCD中,AB=5cm,BD=8cm,动点P从点B开始沿BC 边匀速运动,动点Q从点D开始沿对角线DB匀速运动,它们的运动速度均为1cm/s,过点Q作QE⊥CD,与CD交于点E,连接PQ,点P和点Q同时出发,设运动时间为t(s),0<t≤5.(1)当PQ ∥CD 时,求t 的值;(2)设四边形PQEC 的面积为S (cm 2),求S 与t 之间的函数关系式;(3)当P ,Q 两点运动到使∠PQE =60°时,求四边形PQEC 的面积;(4)是否存在某一时刻t ,使PQ +QE 的值最小?若存在,请求t 的值,并求出此时PQ +QE 的值;若不存在,请说明理由.26.(2019·昆山市第二中学初二期末)如图,已知Rt ABC ∆中,90,6,8C AC BC ∠=︒==,点P 以每秒1个单位的速度从A 向C 运动,同时点Q 以每秒2个单位的速度从B 向A 方向运动,Q 到达A 点后,P 点也停止运动,设点,P Q 运动的时间为t 秒. (1)求P 点停止运动时,BP 的长;(2) ,P Q 两点在运动过程中,点E 是Q 点关于直线AC 的对称点,是否存在时间t ,使四边形PQCE 为菱形?若存在,求出此时t 的值;若不存在,请说明理由.(3) ,P Q 两点在运动过程中,求使APQ ∆与ABC ∆相似的时间t 的值.27.(2018·福建初三期中)已知:如图,在Rt△ACB中,∠C=90°,BC=3cm,AC=33cm,点P 由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为3cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.28.(2018·榆树市第四小学校初三期末)在△ABC中,∠ACB=90°,AB=25,BC=15.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若S△ABC=9S△DHQ,则HQ=____.(2)如图2,折叠△ABC 使点A 落在BC 边上的点M 处,折痕交AC 、AB 分别于E 、F .若FM ∥AC ,求证:四边形AEMF 是菱形;(3)在(1)(2)的条件下,线段CQ 上是否存在点P ,使得△CMP 和△HQP 相似?若存在,求出PQ 的长;若不存在,请说明理由.29.(2018·全国初三期中)如图,Rt ABC 中,90BAC ∠=,2AB AC ==,点D 为BC 边上的动点(D 不与B 、C 重合),AD ∠45E =,DE 交AC 于点E .(1)BAD ∠与CDE ∠的大小关系为________.请证明你的结论;(2)设BD x =,AE y =,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当ADE 是等腰三角形时,求AE 的长;(4)是否存在x ,使DCE 的面积是ABD 面积的2倍?若存在,求出x 的值,若不存在,请说明理由.30.(2018·山东初三期中)如图,菱形ABCD 的边长为5 厘米,对角线BD 长8厘米.点P 从点A 出发沿AB 方向匀速运动,速度为1厘米秒;点Q 从点D 出发沿DB 方向匀速运动,速度为2 厘米/秒:P、Q 同时出发,当点Q与点B重合时,P、Q停止运动,设运动时间为t秒,解答下列问题:(1)当t为何值时,△PBQ为等腰三角形?(2)当t为何值时,△PBQ的面积等于菱形ABCD面积的3 10?(3)连接AQ,在运动过程中,是否存在某一时刻t,使∠PQA=∠ABD?若存在,请求出t值;若不存在,请说明理虫:(4)直线PQ 交线段BC于点M,在运动过程中,是否存在某一时刻t,使BM:CM=2:3?若存在,请求出t值;若不存在,请说明理由.31.(2019·广东初三期末)已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t<2.5),解答下列问题:(1)①BQ=,BP=;(用含t的代数式表示)②设△PBQ的面积为y(cm2),试确定y与t的函数关系式;(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.32.(2018·四川初三期中)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、点B,直线CD与x轴、y轴分别交于点C、点D,AB与CD相交于点E,线段OA、OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,OB=43 OA.(1)求点A、点C的坐标;(2)求直线CD的解析式;(3)在x轴上是否存在点P,使点C、点E、点P为顶点的三角形与△DCO相似?若存在,请求出点P的坐标;如不存在,请说明理由.33.(2018·四川初三期末)如图,在平面直角坐标系xOy中,已知点A(4,0),点B(0,3),点P 从点B出发沿BA方向向点A匀速运动,速度为每秒1个单位长度,点Q从点A出发沿AO方向向点O匀速运动,速度为每秒2个单位长度,连接PQ.若设运动的时间为t秒(0<t<2).(1)求直线AB的解析式;(2)设△AQP的面积为y,求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把△AOB的周长和面积同时平分?若存在,请求出此时t的值;若不存在,请说明理由;(4)连接PO,并把△PQO沿QO翻折,得到四边形PQP′O,那么是否存在某一时刻t,使四边形PQP′O为菱形?若存在,请求出此时点Q的坐标和菱形的边长;若不存在,请说明理由.参考答案1.(1)CD=245;(2)t为3秒或95秒时,△CPQ与△ABC相似;(3)不存在,见解析.【解析】【分析】(1)先利用勾股定理求出AB=10,进利用面积法求出CD;(2)先表示出CP,再判断出∠ACD=∠B,进而分两种情况,利用相似三角形得出比例式建立方程求解,即可得出结论;(3)先判断出△CEQ∽△CDA,得出QE CQAD AC=,进而表示出QE=45t,再分当S△CPQ=25S△ACD时,和当S△CPD=35S△ACD时,利用面积建立方程求解即可得出结论.【详解】解:(1)在Rt△ABC中,根据勾股定理得,AB =22AC BC+=2286+=10,∵S△ABC=12AC•BC=12AB•CD,∴CD=AC BCAB⋅=8610⨯=245,(2)由(1)知,CD=245,由运动知,CQ=t,DP=t,∴CP=CD﹣DP=245﹣t,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,1∴∠ACD=∠B,∵△CPQ与△ABC相似,∴①△CPQ∽△BCA,∴CP CQ BC AB=,∴245610t t-=,∴t=3②△CPQ∽△BAC,∴CP CQ AB BC=,∴245106t t-=∴t=95,即:t为3秒或95秒时,△CPQ与△ABC相似;(3)假设存在,如图,在Rt△ACD中,根据勾股定理得,AD =22AC CD-=222485⎛⎫- ⎪⎝⎭=325,过点Q作CE⊥CD于E,∴QE∥AD,∴△CEQ∽△CDA,∴QE CQ AD AC=,∴3258QEt , ∴QE =45t , ∵S △CPQ =12CP•QE =12(245﹣t )•45t ,∴S △ACD =12AD•CD =12×325×245, ∵PQ 分△ACD 的面积为2:3,∴①当S △CPQ =25S △ACD 时, ∴12(245﹣t )•45t =25×12×325×245,∴25t 2﹣120t+384=0,而△=1202﹣4×25×384=14400﹣38400<0, 此方程无解,即:此种情况不存在,②当S △CPD =35S △ACD 时,12(245﹣t )•45t =35×12×325×245, ∴25t 2﹣120t+576=0,而△=1202﹣4×25×576=14400﹣57600<0, 此方程无解,即:此种情况不存在,即:不存在某时刻,使得PQ 分△ACD 的面积为2:3.【点睛】此题是相似形综合题,主要考查了勾股定理,三角形的面积公式,相似三角形的判定和性质,用方程的思想解决问题是解本题的关键.2.(1)107t =;(2)2335y t t =-+;(3)不存在,见解析;(4)存在,边长为5059. 【解析】 【分析】(1)当PQ ∥BC 时,我们可得出三角形APQ 和三角形ABC 相似,那么可得出关于AP ,AB ,AQ ,AC 的比例关系,我们观察这四条线段,已知的有AC ,根据P ,Q 的速度,可以用时间t 表示出AQ ,BP 的长,而AB 可以用勾股定理求出,这样也就可以表示出AP ,那么将这些数值代入比例关系式中,即可得出t 的值.(2)求三角形APQ 的面积就要先确定底边和高的值,底边AQ 可以根据Q 的速度和时间t 表示出来.关键是高,可以用AP 和∠A 的正弦值来求.AP 的长可以用AB-BP 求得,而sinA 就是BC :AB 的值,因此表示出AQ 和AQ 边上的高后,就可以得出y 与t 的函数关系式.(3)如果将三角形ABC 的周长和面积平分,那么AP+AQ=BP+BC+CQ ,那么可以用t 表示出CQ ,AQ ,AP ,BP 的长,那么可以求出此时t 的值,我们可将t 的值代入(2)的面积与t 的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC 面积的一半,从而判断出是否存在这一时刻. (4)我们可通过构建相似三角形来求解.过点P 作PM ⊥AC 于M ,PN ⊥BC 于N ,那么PNCM 就是个矩形,解题思路:通过三角形BPN 和三角形ABC 相似,得出关于BP ,PN ,AB ,AC 的比例关系,即可用t 表示出PN 的长,也就表示出了MC 的长,要想使四边形PQP′C 是菱形,PQ=PC ,根据等腰三角形三线合一的特点,QM=MC ,这样有用t 表示出的AQ ,QM ,MC 三条线段和AC 的长,就可以根据AC=AQ+QM+MC 来求出t 的值.求出了t 就可以得出QM ,CM 和PM 的长,也就能求出菱形的边长了. 【详解】解:(1)在Rt ABC ∆中,先求得5AB =.由题意知:5AP t =-,2AQ t =,若PQBC ,则APQ ABC ∆∆,由AQ AP AC AB =,可求得107t =.(2)如图3,过点P 作PH AC ⊥于H ,由APH ABC ∆∆,得PH AP BC AB =,可求得335PH t =-, ∴11323225y AQ PH t t ⎛⎫=⨯⨯=⨯⨯- ⎪⎝⎭2335t t =-+.(3)若PQ 把ABC ∆的周长平分,则AP AQ BP BC CQ +=++.∴()()52342t t t t -+=++-,解得:1t =.若PQ 把ABC ∆的面积平分,则12APQ ABC S S ∆∆=,即23335t t -+=.把1t =代入上面的方程不成立,∴不存在这一时刻t ,使线段PQ 把Rt ACB ∆的周长和面积同时平分.(4)如图4,过点P 作PM AC ⊥于M ,PN BC ⊥于N ,若四边形'PQP C 是菱形,则PQ PC =. ∵PM AC ⊥于M , ∴QM CM =.∵PN BC ⊥于N ,易知PBN ABC ∆∆.∴PN BPAC AB=, ∴45PN t=, ∴45tPN =, ∴45t QM CM ==, ∴442455t t t ++=,解得:109t =. ∴当109t =时,四边形'PQP C 是菱形.此时37353PM t =-=,4859CM t ==,在Rt PMC ∆中,2249645059819PC PM CM =+=+=, ∴菱形'PQP C 的边长为5059.【点睛】本题考查相似形,解题关键在于熟练掌握计算法则.3.(1)y=﹣2x+12;(2)①点P (2,8)或(4,4);②存在,点P 的坐标为(3,6)或点P (275,65) 【解析】试题分析:(1)由于A (6,0),B (0,12),利用待定系数法即可求出直线AB 的解析式; (2)①可以设动点P (x ,﹣2x +12),由此得到PE =x ,PF =﹣2x +12,再利用矩形OEPF 的面积为16即可求出点P 的坐标;②存在,分两种情况:第一种由CP ∥OB 得△ACP ∽△AOB ,由此即可求出P 的坐标;第二种CP ⊥AB ,根据已知条件可以证明APC ∽△AOB ,然后利用相似三角形的对应边成比例即可求出P A ,再过点P 作PH ⊥x 轴,垂足为H ,由此得到PH ∥OB ,进一步得到△APH ∽△ABO ,然后利用相似三角形的对应边成比例就可以求出点P 的坐标.解:(1)设直线AB 的解析式为y=kx+b ,如图1:依题意,,∴,∴y=﹣2x+12;(2)①设动点P (x,﹣2x+12),则PE=x,PF=﹣2x+12,∴S▭OEPF=PE•PF=x(﹣2x+12)=16,∴x1=2,x2=4;经检验x1=2,x2=4都符合题意,∴点P(2,8)或(4,4);②存在,分两种情况∵A(6,0),B(0,12),∴OA=6,OB=12,AB=6第一种:CP∥OB,∴△ACP∽△AOB,而点C的坐标为(3,0),∴点P(3,6);第二种CP⊥AB,∵∠APC=∠AOB=90°,∠PAC=∠BAO,∴△APC∽△AOB,∴,∴,∴AP=,如图2,过点P作PH⊥x轴,垂足为H,∴PH∥OB,∴△APH∽△ABO,∴,∴,∴PH=,AH=,∴OH=OA﹣AH=6﹣=,∴点P(,).∴点P的坐标为(3,6)或点P(,).点睛:本题综合考查了一次函数与几何知识的应用,熟练运用相似三角形的性质与判定以及直角三角形等知识求出线段的长是解题的关键.4.(1)A(87,157),B(﹣1,0),C(4,0);(2)存在,BEAE=14;(3)点D的坐标为(﹣125,245)或(8,﹣3)或(0,3)或(32,158).【解析】【分析】(1)将y=x+1与y=﹣34x+3联立求得方程组的解可得到点A的坐标,然后将y=0代入函数解析式求得对应的x的值可得到点B、C的横坐标;(2)当OE∥AD时,存在四边形EODA为平行四边形,然后依据平行线分线段成比例定理可得到BE AE=OB OC;(3)当DB=DC时,点D在BC的垂直平分线上可先求得点D的横坐标;即AC与y轴的交点为F,可求得CF=BC=F,当点D与点F重合或点D与点F关于点C对称时,三角形BCD为等腰三角形,当BD=BC时,设点D的坐标为(x,﹣34x+3),依据两点间的距离公式可知:(x+1)2+(﹣34x+3)2=25,从而可求得点D的横坐标.【详解】(1)将y=x+1与y=﹣34x+3联立得:1334y xy x=+⎧⎪⎨=+⎪⎩,解得:x=87,y=157,∴A(87,157).把y=0代入y=x+1得:x+1=0,解得x=﹣1,∴B(﹣1,0).把y=0代入y=﹣34x+3得:﹣34x+3=0,解得:x=4,∴C(4,0).(2)如图,存在点E使EODA为平行四边形.∵EO∥AC,∴BEAE=OBOC=14.(3)当点BD=DC时,点D在BC的垂直平分线上,则点D的横坐标为32,将x=32代入直线AC的解析式得:y=158,∴此时点D的坐标为(32,158).如图所示:FC=22OF OC=5,∴BC=CF,∴当点D与点F重合时,△BCD为等腰三角形,∴此时点D的坐标为(0,3);当点D与点F关于点C对称时,CD=CB,∴此时点D的坐标为(8,﹣3),当BD=DC时,设点D的坐标为(x,﹣34x+3),依据两点间的距离公式可知:(x+1)2+(﹣34x+3)2=25,解得x=4(舍去)或x=﹣125,将x=﹣125代入y=﹣34x+3得y=245,∴此时点D的坐标为(﹣125,245).综上所述点D的坐标为(﹣125,245)或(8,﹣3)或(0,3)或(32,158).【点睛】本题主要考查的是一次函数的综合应用,利用平行线分线段成比例定理求解是解答问题(2)的关键;分类讨论是解答问题(3)的关键.5.(1) 当t=时,▱AQPD是矩形;(2) 当t=时,□AQPD是菱形;(3)【解析】【分析】(1)利用矩形的性质得到△APQ∽△ABC,利用相似三角形对应边的比相等列出比例式即可求得t值;(2)利用菱形的对角线相互垂直平分解答;(3)过点P作PM⊥AC于M.先表示出△APQ的面积和S四边形PQCB=S△ABC﹣S△APQ,进而建立方程即可得出结论.【详解】解:(1)如图2,当▱AQPD是矩形时,PQ⊥AC,∴PQ∥BC,∴△APQ∽△ABC∴=,由运动知,QA=t,BP=t,∴AP=AB﹣BP=12﹣t,=,即,t-t解之t=,∴当t=时,▱AQPD是矩形;(2)当▱AQPD是菱形时,DQ⊥AP,AE=AP则cos∠BAC==,由运动知,QA=t,BP=t,∴AP=AB﹣BP=12﹣t,AE=6﹣t,∴t=t解之t=,所以当t=时,□AQPD是菱形;(3)存在时间t,使四边形AQPD的面积等于四边形PQCB的面积.在Rt△ABC中,根据勾股定理得,BC=4,如图3,过点P作PM⊥AC于M.则=,=,即t故PM=(12﹣t).∴S△APQ=AQ×PM=×t×(12﹣t),∴S=S△ABC﹣S△APQ=×4×8﹣×t×(12﹣t),四边形PQCB∵四边形AQPD的面积等于四边形PQCB的面积,∴2××t×(12﹣t)=×4×8﹣×t×(12﹣t),∴t=(舍)或t=.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,矩形的性质,菱形的性质,三角形的面积公式,相似三角形的判定和性质,解本题的关键是用方程的思想解决问题.6.(1)36cm2;(2)不存在;(3)t=6或t=80 11.【解析】【分析】(1)由于EF∥x轴,则S△PEF=•EF•OE.t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则EF OA =BEBO,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【详解】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴EFOA=BEBO,当t=9时,OE=9,OA=20,OB=15,∴EF=20615=8,∴S△PEF=12EF•OE=12×8×9=36(cm2);(2)∵△BEF∽△BOA,∴EF=BE OABO⋅=()15t2015-⋅=43(15-t),∴12×43(15-t)×t=40,整理,得t2-15t+60=0,∵△=152-4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴OPOA=OEOB,即202t20-=t15,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴OPOB=OEOA,即202t15-=t20,解得t=80 11.∴当t=6或t=8011时,△EOP与△BOA相似.【点睛】本题主要考查了相似三角形的判定和性质,一元二次方程根的判别式等知识点,要注意最后一问中,要分对应角的不同来得出不同的对应线段成比例,从而得出运动时间的值.不要忽略掉任何一种情况.7.(1)当P 是AD 的中点时,满足条件的Q 点不存在.当P 不是AD 的中点时,总存在这样的点Q 满足条件,此时3AP AQ +=;(2)BE 的取值范围是728BE ≤<. 【解析】 【分析】(1)假设存在符合条件的Q 点,由于PE ⊥PC ,且四边形ABCD 是矩形,易证得△APE ∽△DCP ,可得AP•PD=AE•CD ,同理可通过△AQE ∽△DCQ 得到AQ•QD=AE•DC ,则AP•PD=AQ•QD ,分别用PD 、QD 表示出AP 、AQ ,将所得等式进行适当变形即可求得AP 、AQ 的数量关系.(2)由于BE 的最大值为AB 的长即2,因此只需求得BE 的最小值即可;设AP=x ,AE=y ,在(1)题中已经证得AP•PD=AE•CD ,用x 、y 表示出其中的线段,即可得到关于x 、y 的函数关系式,根据函数的性质即可求得y 的最大值,由此可求得BE 的最小值,即可得到BE 的取值范围. 【详解】()1假设存在这样的点Q ;∵PE PC ⊥,∴90APE DPC ∠+∠=,∵90D ∠=,∴90DPC DCP ∠+∠=, ∴APE DCP ∠=∠, 又∵90A D ∠=∠=, ∴APE DCP ∽, ∴AP AEDC DP=, ∴AP DP AE DC ⋅=⋅;同理可得AQ DQ AE DC ⋅=⋅;∴AQ DQ AP DP ⋅=⋅,即()()33AQ AQ AP AP ⋅-=⋅-,∴2233AQ AQ AP AP -=-,∴2233AP AQ AP AQ -=-,∴()()()3AP AQ AP AQ AP AQ +-=-;∵AP AQ ≠,∴3AP AQ +=∵AP AQ ≠,∴32AP ≠,即P 不能是AD 的中点, ∴当P 是AD 的中点时,满足条件的Q 点不存在.当P 不是AD 的中点时,总存在这样的点Q 满足条件,此时3AP AQ +=.()2设AP x =,AE y =,由AP DP AE DC ⋅=⋅可得()32x x y -=,∴()221131393()222228y x x x x x =-=-+=--+, ∴当32x =(在03x <<范围内)时,98y =最大值; 而此时BE 最小为78,又∵E在AB上运动,且2AB=,∴BE的取值范围是72 8BE≤<.【点睛】本题考查了矩形的性质、相似三角形的判定和性质以及二次函数最值的应用;(1)题中,通过两步相似得到与所求相关的乘积式,并能正确地进行化简变形是解决此题的关键.8.(1)详见解析;(2)229.(3)存在,44.3y x=-+【解析】【分析】(1)先确定出点A,B坐标,进而求出BC,CD,即可判断出△OBC∽△ABD;(2)先确定出△ACB≌△BOA,进而判断出平行四边形AOBC是矩形,利用勾股定理即可得出结论;(3)先求出1255OC=,进而利用勾股定理求出点C的坐标(245,125-),最后用待定系数法即可得出结论.【详解】解:(1)由142y x=-+得A(0,4),B(8,0),则OA=4,OB=8,∵AD=BD,OC=BC∴122CD OA==,BC=4,1.2BD AB=∵∠ABO=∠DBC,∴∠ABO+∠ABC=∠DBC+∠ABC. ∴∠OBC=∠ABD,。

最新相似三角形复习专题相似与一次函数-动点问题

最新相似三角形复习专题相似与一次函数-动点问题

相似三角形复习专题一——相似形三角形与一次函数一、例题讲解二、练习巩固1.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。

试求:(1)AN ∶AM 的值;(2)一次函数y kx b =+的图象表达式。

四边形OABC 是放在直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将BC 边折叠,使点B 落在边OA 的点D 处,已知 43DA AE ,55CE == 是否相似?说明理由与判断DAE COD 1.∆∆2、根据相似和已知条件你能求解出那些结论?3、求直线CE 与x 轴的交点P 的坐标4、是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,试写出其解析式并画出相应的直线;如果不存在,试说明理由。

三、自我提高.如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的正半轴上,且满10OA -=.(1)求点A ,点B 的坐标.(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P设一次函数y=12x+2的图象为直线l ,直线l 与x 轴、y 轴分别交于点A 、B ,如图:(1)求点A 和点B 的坐标;(2)直线m 过点P (-3,0),若直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似,求直线m 与y 的交点N 的坐标.相似三角形复习专题二动态型问题(一)动点题例题讲解:1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解x析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为524个平方单位?3、如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。

相似三角形中的动点问题—2023-2024学年九年级数学下册(苏科版)(解析版)

相似三角形中的动点问题—2023-2024学年九年级数学下册(苏科版)(解析版)

相似三角形中的动点问题【典例1】如图,在矩形ABCD中,AB=4,AD=2,动点P从点A开始以每秒2个单位长度沿AB向终点B运动,同时,动点Q从点C开始沿C−D−A以每秒3个单位长度向终点A运动,它们同时到达终点.连接PQ交AC于点E.过点E作EF⊥PQ,交直线CD于点F.(1)当点Q在线段CD上时,求证:CEAE =32.(2)当DQ=1时,求△APE的面积.(3)在P,Q的运动过程中,是否存在某一位置,使得以点E,F,Q为顶点的三角形与△ABC相似?若存在,求BP的长;若不存在,请说明理由.(1)证明△CQE∽△APE(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ,再利用相似三角形的性质求解三角形的高,再利用面积公式计算即可;(3)分三种情况讨论:①当点Q在CD上时,设CQ=3t,则AP=2t,若点F在Q的右侧,如图3,当△FEQ∽△ABC,则∠1=∠2,作PH⊥CD于点H,而∠B=∠PHQ=90°,∴△ABC∽△PHQ,则PHQH =ABBC=2,从而可得答案;若点F在Q的左侧,如图4,△FEQ∽△ABC,点F与点C重合,从而可得答案;②当点Q在AD上时,如图5,△FEQ∽△ABC,EFEQ =BABC=2,∠FEG=∠B=90°,作EN⊥CD于点N,EG⊥AD于点G.,则∠NEQ=90°,再结合相似三角形的性质建立方程可得答案.(1)当点Q在线段CD上时,由题意可得:AB∥CD,CQ=3t,AP=2t,∴△CQE∽△APE,∴CE AE =CQAP=32.(2)①当点Q在CD上时,如图1,CQ=CD−DQ=3.过点E作AB的垂线交AB于点M,交CD于点N.由CQAP =V点QV点P=32,得AP=2.由△CQE∽△APE,得ENEM =CEAE=32,∴EM=25MN=45,∴S△APE=12AP⋅EM=12×2×45=45.②当点Q在AD上时,如图2,作EM⊥AB于点M,设EM=ℎ.AQ=AD−DQ=1,AP=23(CD+DQ)=103.同理:△AME∽△ABC,∴EM AM =BCAB=12,∴AM=2EM=2ℎ.同理:△PME∽△PAQ,得EMPM =AQPA=1103=310,∴PM=103EM=103ℎ.∴AP=PM+AM=103ℎ+2ℎ=103,解得ℎ=58,∴S△APE=12AP⋅EM=12×103×58=2524.∴△APE 的面积为45或2524.(3)①当点Q 在CD 上时,设CQ =3t ,则AP =2t .若点F 在Q 的右侧,如图3,当△FEQ∽△ABC ,则∠1=∠2.作PH ⊥CD 于点H ,而∠B =∠PHQ =90°, ∴△ABC ∽△PHQ ,则PHQH =ABBC =2, ∴QH =12PH =1.∵HD =AP =2t ,∴CD =CQ +QH +HD =3t +1+2t =4, 解得t =35.∴BP =4−2t =4−65=145.若点F 在Q 的左侧,如图4,△△ABC ,点F 与点C 重合.∵AC =√AB 2+BC 2=√42+22=2√5, 又∵CEAE =32 ∴AE =25AC =4√55. ∵由△FEQ∽△ABC 结合对顶角可得:∠AEP =∠B =90°,而∠PAE =∠BAC , ∴△AEP∽△ABC ,∴AE AB =APAC ,即4√554=2√5,则AP =2,∴BP =AB −AP =2.②当点Q 在AD 上时,如图5,△FEQ∽△ABC ,EFEQ =BABC =2,∠FEG =∠B =90°, 作EN ⊥CD 于点N ,EG ⊥AD 于点G .,则∠NEQ =90°,由∠FEQ =∠NEG =90°,得∠FEN =∠QEG , ∴Rt △FEN∽Rt △QEG , ∴ENEG =EFEQ =2. 同理可得:AGEG =BCAB=12, 设AG =k ,则EG =2AG =2k ,EN =2EG =4k . ∴DG =EN =4k ,AD =AG +DG =5k , 由AD =2,得5k =2,k =25, ∴AG =25,EG =45. 由题意,AQ BP =V 点Q V 点P=6−3t 4−2t=32,设AQ =3x ,则BP =2x ,AP =4−2x ,QG =AQ −AG =3x −25, 由△QGE∽△QAP ,得EGAP =QGQA ,即454−2x =3x−253x,化简,得15x 2−26x +4=0, 解得x 1=13+√10915(舍去),x 2=13−√10915.∴BP =2x =26−2√10915. 综上所述,BP 的长为145或2或26−2√10915.1.(2023秋·江苏常州·九年级常州市第二十四中学校考阶段练习)如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒1cm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.【思路点拨】(1)由于EF//x轴,则S△PEF=12⋅EF⋅OE,t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则EFOA=BEBO,从而求出EF的长度,得出△PEF(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.即可得解.【解题过程】(1)∵EF//OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴EFOA =BEBO,当t=9时,OE=9,OA=20,OB=15,BE=OB−OE=15−9=6,∴EF=20×615=8,∴S△PEF=12EF⋅OE=12×8×9=36(cm2);(2)不存在.理由:∵△BEF∽△BOA,∴EF=BE⋅OABO =(15−t)⋅2015=43(15−t),∴12×43(15−t)×t=40,整理,得t2−15t+60=0,∵△=152−4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴OPOA =OEOB,即20−2t20=t15,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴OPOB =OEOA,即20−2t15=t20,解得t=8011.∴当t=6s或t=8011s时,△EOP与△BOA相似.2.(2022·四川·九年级专题练习)如图1,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从点A出发,沿AB以1cm/s的速度向点B匀速运动:同时点N从点D出发,沿DA方向以2cm/s的速度向点A匀速运动,点N运动到点A时停止运动,运动时间为t.(1)若△AMN是等腰直角三角形,则t=___________(直接写出结果).(2)是否存在时刻t,使以A、M、N为顶点的三角形与△ACD相似?若存在,求t的值,若不存在,请说明理由.(3)如图2,连接CN 、CM ,试求CN +2CM 的最小值. 【思路点拨】(1)根据题意可知只有AM =AN 时,△AMN 是等腰直角三角形,再根据题意可用t 表示出AM =t ,AN =6−2t ,列出等式,解出t 即可;(2)分类讨论①当△ACD ∼△NMA 时和②当△CAD ∼△NMA 时,列出比例式,代入数据,即可求解; (3)取CN 中点E ,作E 点关于CD 的对称点E ′,连接CE ′.作M 点关于BC 的对称点M ′,连接CM ′,E ′M ′.根据作图可知CE ′=CE ,CM ′=CM ,即可知当CE ′+CM ′最小时CN +2CM 最小,即最小值为E ′M ′的长.连接E ′E 并延长,交CD 于点F ,AB 于点G .由作图结合题意易求出E ′G =E ′F +AD =t +6,BG =12AB =32,BM ′=BM =AB −AM =3−t ,从而可求出GM ′=BG +BM ′=92−t .在Rt △E ′GM ′中,利用勾股定理可求出E ′M ′=√E ′G 2+GM ′2=√2(t +34)2+4418,最后根据二次函数的性质,即得出t =0时,√2(t +34)2+4418最小,即此时E ′M ′=152,故可求出CN +2CM 的最小值为15.【解题过程】(1)∵∠MAN =90°,∴若△AMN 是等腰直角三角形时,只有AM =AN .根据题意可知AM =t ,DN =2t AN =AD −DN =6−2t , ∴t =6−2t , 解得t =2, 故答案为:2.(2)∵∠MAN =∠ADC =90°,∴以A 、M 、N 为顶点的三角形与△ACD 相似分为两种情况, ①当△ACD ∼△NMA 时,有ADAN =CDAM ,即66−2t =3t , 解得:t =32;②当△CAD ∼△NMA 时,有ADAM =CDAN ,即6t =36−2t , 解得:t =125.当t =32或t =125时,以A 、M 、N 为顶点的三角形与△ACD 相似;(3)如图,取CN中点E,作E点关于CD的对称点E′,连接CE′.作M点关于BC的对称点M′,连接CM′,E′M′.根据作图可知CE′=CE,CM′=CM,∴CN+2CM=2(CE+CM)=2(CE′+CM′),∴当CE′+CM′最小时CN+2CM最小,∵CE′+CM′≥E′M′,∴CE′+CM′的最小值为E′M′的长,即CN+2CM的最小值为2E′M′的长.如图,连接E′E并延长,交CD于点F,AB于点G.∵作E点关于CD的对称点E′,∴E′F//AD,E′F=EF.又∵E为中点,∴E′F=EF=12DN=t,G为AB中点,∴E′G=E′F+AD=t+6,BG=12AB=32.∵作M点关于BC的对称点M′,∴BM′=BM=AB−AM=3−t,∴GM′=BG+BM′=32+3−t=92−t.在Rt△E′GM′中,E′M′=√E′G2+GM′2=√(6+t)2+(92−t)2=√2(t+34)2+4418,∵t≥0,2>0∴t=0时,√2(t+34)2+4418最小,即E′M′=√2×(34)2+4418=152.∴CN+2CM=2E′M′=15.3.(2022秋·江苏泰州·九年级校联考阶段练习)如图1,四边形ABCD是矩形,点P是对角线AC上的一个动点(不与A、C重合),过点P作PE⊥CD于点E,连接PB,已知AD=3,AB=4,设AP=m.(1)当m=1时,求PE的长;(2)连接BE,试问点P在运动的过程中,能否使得△P AB≌△PEB?请说明理由;(3)如图2,过点P作PF⊥PB交CD边于点F,设CF=n,试判断5m+4n的值是否发生变化,若不变,请求出它的值;若变化,请说明理由.【思路点拨】(1)根据勾股定理得出AC,进而利用相似三角形的判定和性质解答即可;(2)根据全等三角形的性质和勾股定理解答即可;(3)根据相似三角形的判定和性质以及勾股定理解答即可.【解题过程】解:(1)连接BE,由已知:在Rt△ADC中,AC=√AD2+DC2=√32+42=5,当AP=m=1时,PC=AC﹣AP=5﹣1=4,∵PE⊥CD,∴∠PEC=∠ADC=90°,∵∠ACD=∠PCE,∴△ACD∽△PCE,∴AD PE =ACPC,即3PE=54,∴PE=125;(2)如图1,当△P AB≌△PEB时,∴P A =PE ,∵AP =m ,则PC =5﹣m , 由(1)得:△ACD ∽△PCE , ∴3PE =55−m, ∴PE =3(5−m)5,由P A =PE ,即3(5−m)5=m ,解得:m =158, ∴EC =√PC 2−PE 2=√(5−158)2−(158)2=52,∴BE =√EC 2+BC 2=√(52)2+32=√312≠AB ,∴△P AB 与△PEB 不全等, ∴不能使得△P AB ≌△PEB ;(3)如图2,延长EP 交AB 于G ,∵BP ⊥PF , ∴∠BPF =90°, ∴∠EPF +∠BPG =90°, ∵EG ⊥AB , ∴∠PGB =90°, ∴∠BPG +∠PBG =90°, ∴∠PBG =∠EPF , ∵∠PEF =∠PGB =90°, ∴△BPG ∽△PFE ,∴BG PE =PGEF,由(1)得:△PCE∽△ACD,PE=3(5−m)5,∴EC DC =PCAC,即EC4=5−m5,∴EC=4(5−m)5,∴BG=EC=4(5−m)5,∴3−3(5−m)54(5−m)5−n=4(5−m)3(5−m)=43,∴5m+4n=16.4.(2023秋·河北保定·九年级统考期末)如图(1),在矩形ABCD中,AB=6cm,tan∠ABD=43,E、F 分别是AB、BD中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D 出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ,设运动时间为ts(0<t<4),解答下列问题:∴t=1(1)当0<t<2.5时,FQ=______.(用含有t的式子表示)(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为______时,△PQF为等腰三角形?(直接写出结果).【思路点拨】(1)先由题目条件求出AD,再利用勾股定理求出DF,当0<t<2.5时,接着判断出点Q的位置,即可求解.(2)先判断出△QMF∽△BEF,进而得出,再利用面积公式建立方程求解即可.(3)分点Q在DF和BF上,利用相似三角形的性质建立方程求解即可得出结论.【解题过程】(1)在矩形ABCD中,∠A=90°∴在直角三角形DBA中tan∠ABD=ADAB =AD6=43∴AD=8∵E、F分别是AB、BD中点,∴EF=12AD=4∵BD=√AB2+AD2=10∴DF=12BD=5∴Q从D到F的时间为52=2.5当0<t<2.5时,Q在线段DF上,∴FQ=DF−DQ=5−2t.故答案为:5−2t.(2)过点Q作QM⊥EF交EF延长线于点M,可知:QM∥BE,∴△QMF∽△BEF,∴QM BE =QFBF,∴QM3=5−2t5,可得QM=35(5−2t),∴S△PFQ=12×PF⋅QM=12×(4−t)×35(5−2t)=0.6=35,解得:t=92(舍去)或t=2,∴当t=2时,△PQF的面积为0.6cm2;故答案为:t=2.(3)当点Q在DF上时,如图PF=QF∴4−t=5−2t∴t=1当点Q在BF上时,如图PF=QF∴4−t=2t−5∴t=3当PQ=FQ时,如图∴12(4−t)2t−5=45∴t=207当PF=PQ时,如图∴12(2t−5)4−t=45∴t=19 6所以t=1或3或207或196时,△PQF为等腰三角形.故答案为:t=1或3或207或196.5.(2023秋·山东青岛·九年级山东省青岛第五十九中学校考阶段练习)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止运动.设运动时间为t秒.(1)用含t的代数式分别表示线段CP=_______________、CQ=_______________.(2)在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使得△CPQ为直角三角形?若存在,求出所有满足条件的t的值;若不存在,请说明理由.【思路点拨】(1)利用勾股定理可求出AB长,再用等积法就可求出线段CD的长,据此求解即可;(2)过点P作PH⊥AC,垂足为H,通过三角形相似即可用t的代数式表示PH,从而可以求出S与t之间的函数关系式;利用S△CPQ:S△ABC=9:100建立t的方程,解方程即可解决问题;(3)分两种情况,利用相似三角形得出比例式建立方程求解,即可得出结论.【解题过程】(1)解:如图1,∵∠ACB=90°,AC=8,BC=6,∴AB =√62+82=10,∵CD ⊥AB ,∴S △ABC =12BC ⋅AC =12AB ⋅CD , ∴CD =BC·AC AB =6×810=245,由题意得CQ =PD =t ,∴CP =245−t故答案为:t ,245−t ;(2)解:过点P 作PH ⊥AC ,垂足为H ,如图2所示.由题可知CQ =PD =t ,CP =245−t ,∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B ,∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA ,∴ PH AC =PC AB , ∴ PH 8=4.8−t 10,∴PH =9625−45t ,∴S △CPQ =12CQ ⋅PH =12t (9625−45t)=−25t 2+4825t ;存在某一时刻t ,使得S ΔCPQ :S ΔABC =9:100,∵S ΔABC =12×6×8=24,且S △CPQ :S △ABC =9:100,∴(−25t 2+4825t):24=9:100,整理得:5t 2−24t +27=0,即(5t −9)(t −3)=0,解得:t =95或t =3,∵0≤t ≤245, ∴当t =95秒或t =3秒时,S ΔCPQ :S ΔABC =9:100; (3)解:由(2)知∠ACD =∠B ①当∠CPQ =∠BCA =90°时,∴△CPQ ∽△BCA ,∴CP BC =CQ AB ,∴245−t 6=t 10, ∴t =3;②当∠CQP =∠BCA =90°时,∴△CQP ∽△BCA ,∴CP AB =CQ BC ,∴245−t 10=t 6∴t=95,即:t为3秒或95秒时,△CPQ为直角三角形.6.(2022·山东青岛·统考一模)如图,在矩形ABCD中,BD是对角线,AB=6cm,BC=8cm.点E从点D 出发,沿DA方向匀速运动,速度是2cm/s;点F从点B出发,沿BD方向匀速运动,速度是1cm/s,MN 是过点F的直线,分别交AB、BC于点M、N,且在运动过程中始终保持MN⊥BD.连接EM、EN、EF,两点同时出发,设运动时间为t(s)(0<t<3.6),请回答下列问题:(1)求当t为何值时,△EFD~△ABD?(2)设四边形BMEN的面积为S(cm2),求S关于t之间的函数关系式;(3)求当t为何值时,△EFD为等腰三角形;(4)将△EMN沿直线MN t的值;若不存在,请说明理由;【思路点拨】(1)由题意得,DE=2t,BF=t,在Rt△ABD中,BD=10,DF=BD=BF=10-t,当△ABD∼△EFD,利用对应边成比例,即可求出t值;(2)证得△BFM∼△BAD,可求出BM=53t,BN=54t,AM=AB-BM=6-53t,代入面积表达式,即可求出关系式;(3)分种情况进行讨论即可,注意结果是否符合;(4)假设t值存在,则四边形EKCD为矩形,利用勾股定理表示出EN2=EK2+NK2=16916t2−52t+100,EM2=AM2+AE2=616t2−52t+100,可知t=0,不符合题意,可知不存在符合的t值.【解题过程】(1)解:由题意得,DE=2t,BF=t,∵四边形ABCD为矩形,∴∠BAD=90°,在Rt△ABD中,BD=√AB2+AD2=√62+82=10,∴DF=BD=BF=10-t,当△ABD∼△EFD时,则EDAD =DFDB,即2t8=10−t10,解得:t=207.即当t为207时,△EFD~△ABD;(2)∵MN⊥BD,∴∠MFB=90°,∵∠MBF=∠MBF,∴△BFM∼△BAD,∴BF AB =BMBD,即t6=BM10,∴BM=53t,同理BN=54t,∴AM=AB-BM=6-53t,S=S梯形ABNE −S△AME=(8−2t+54t)×62−(8−2t)×(6−53t)2=−53t2+12512t,即S关于t之间的函数关系式为:S=−53t2+12512t;(3)ED=DF时,则2t=10-t,解得:t=103;ED=EF时,过点E作EG⊥BF于G,∵ED=EF,∴△EFD为等腰三角形,又∵EG⊥DF,∴DG=12DF=10−t2,∵∠EDG=∠BDA,∠EGD=∠BAD=90°,∴△EGD∼△BAD,∴DG AD =EDBD,即10−t28=2t10,∴t=5021;EF=FD时,过点F作FH⊥AD,∵EF=FD,∴△EFD为等腰三角形,又∵FH⊥ED,∴HD=12ED=t,∵∠ADB=∠HDF,∠BAD=∠FHD,∴△DHF∼△DAB,即t8=10−t10,∴t=409>3.6(舍去);综上所述,当t=103或5021时,△EFD为等腰三角形;(4)假设存在符合题意的t,则EM=EN,过点E作EK⊥BC交BC于K,则四边形EKCD为矩形,∴ED=CK=2t,EK=CD=6,NK=BC-BN-CK=8−54t−2t=8−134t,∴EN2=EK2+NK2=62+(842=16916t2−52t+100,EM2=AM2+AE2=(6−53t)2+(8−2t)2=616t2−52t+100,∴169 16t2−52t+100=619t2−52t+100,即t1=t2=0,∵t=0不符合题意,∴不存在符合题意的t.7.(2023春·山东青岛·九年级专题练习)已知,在菱形ABCD中,对角线AC,BD相交于点O,AC=6cm,BD=8cm.延长BC至点E,使CE=BC,连接ED,点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,过点F作FG⊥ED垂足为点F交CE于点G;点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,过点H作HP∥AB,交BD于点P,当F点停止运动时,点H也停止运动.设运动时间为t(0<t≤3),解答下列问题:(1)求证:∠BDE=90°;(2)是否存在某一时刻t,使G点在ED的垂直平分线上?若存在,求出t值;若不存在,请说明理由.(3)设六边形PCGFDH的面积为S(cm2),求S与t的函数关系式;(4)连接HG,是否存在某一时刻t,使HG∥AC?若存在,求出t值;若不存在,请说明理由.【思路点拨】(1)根据菱形和等腰三角形的性质,得四边形ACED为平行四边形、∠E=∠CDE,从而完成证明;(2)根据平行四边形和垂直平分线的性质分析,即可得到答案;(3)根据菱形和勾股定理的性质,得CE;延长CP,交AD于点M,根据相似三角形的性质,得MD;设AD和BC的距离为ℎ,根据三角形面积的性质,得ℎ=245cm,根据相似三角形的性质得S△GFES△BDE=t6,通过计算即可得到答案;(4)根据相似三角形的性质,得GE=5t3cm,根据平行四边形和一元一次方程的性质计算,即可得到答案.【解题过程】(1)∵菱形ABCD,∴AC⊥BD,AD=BC,AD//BC,AO=CO=12AC,BO=DO=12BD,∴∠CBD+∠ACB=90°,∠CBD=∠CDB,∵CE=BC,∴AD=CE,CD=CE,∴四边形ACED为平行四边形,∠E=∠CDE,∴AC//DE,∴∠ACB=∠E,∴∠CDB+∠CDE=90°,即∠BDE=90°;(2)∵四边形ACED为平行四边形,∴DE=AC=6cm,∵FG⊥ED,∴当EF=DF=12DE时,使G点在ED的垂直平分线上,∴t=12DE1cm s⁄=3s;(3)∵点F从点E出发,沿ED方向向点D运动,速度为1cm s⁄,点H从点A出发,沿AD方向向点D运动,速度为1cm s⁄,∴AH=EF=t(cm),∵AC⊥BD,AC=6cm,BD=8cm,AO=CO=12AC,BO=DO=12BD,∴CE=BC=CD=AD=√(12AC)2+(12BD)2=5cm,∴DH=AD−AH=5−t(cm),∵菱形ABCD,∴∠ADP=∠CDP,∵HP,∴∠HPD=∠CDP,∴∠ADP=∠HPD,∴PH=DH,如图,延长CP,交AD于点M,∵HP,∴∠MHP=∠MDC,∵∠PMH=∠CMD,∴△MPH∽△MCD,∴S△MPH S△MCD =PHCD=DHCD=5−t5,MHMD=MHMH+DH=PHCD=5−t5,∴MH MH+5−t =5−t5,∴MH=(5−t)2t,∴MD=MH+DH=(5−t)2t +5−t=5(5−t)t,设AD和BC的距离为ℎ,∴S△ACD=12AC×OD=12AD×ℎ,∴ℎ=245cm,∵∠BDE=90°,FG⊥ED,∴△GFE∽△BDE,∴S△GFE S△BDE =EFDE=t6,∴六边形PCGFDH的面积,=S△MCD−S△MPH+S△CDE−S△GFE=S△MCD−5−t5×S△MCD+S△CDE−t6×S△BDE=t5×S△MCD+S△CDE−t6×S△BDE=t5×12×MD×ℎ+12×CE×ℎ−t6×12×(BC+CE)×ℎ=t5×12×5(5−t)t×245+12×5×245−t6×12×10×245=12−12t5+12−4t=24−32t5cm,∴S=24−32t5(0<t≤3);(4)∵△GFE∽△BDE,∴GE BE =EFDES,∴GE=EF×BEDE =t×(BC+CE)6=t×106=5t3cm,∵DH=AD−AH=5−t(cm),当GE=DH时,得5t3=5−t,∴t=158,∵AD//BE,GE=DH,∴四边形HGED为平行四边形,∴HG//DE,∵AC//DE,∴HG//AC,∴当t=158时,HG//AC.8.(2022秋·山西运城·九年级校考阶段练习)如图,已知梯形ABCD中,AD∥BC,AD=1,AB=BC=4,CD=5.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B→A→D→C方向,向点C运动:动点Q从点C出发,以1cm/s 的速度,沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①在运动过程中,是否存在这样的t P、D、Q为顶点的三角形恰好是以DP为底的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△COE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.【思路点拨】(1)作DF∥AB交BC于F,即易证四边形ABFD是平行四边形,从而可求出DF=AB=3,BF=AD=1,CF=3.再利用勾股定理逆定理即可证∠ABC=∠DFC=90°,最后利用梯形的面积公式计算即可;(2)①在图1的基础上作QG⊥AB于G,易证四边形BEQG是矩形,即得出BG=EQ,QG=BE.又易证△CEQ∽△CFD,得出EQDF =CECF=CQCD,从而可用t表示出CE=35t,EQ=45t,BG=45t,QG=BE=4−35t.PG=t5,即可利用勾股定理得出PQ2=(15t)2+(4−35t)2,最后根据等腰三角形的定义列出等式,解出t即可;②分类讨论当△PAD∽△QEC时和当△PAD∽△CEQ时,根据对应边成比例计算即可.【解题过程】(1)如图1,作DF∥AB交BC于F,∵AD∥BC,∴四边形ABFD是平行四边形,∴DF=AB=3,BF=AD=1,∴CF=BC−BF=3.∵32+42=52,即CF2+DF2=CD2,∴∠DFF=90°,∴∠ABC=∠DFC=90°,∴S梯形ABCD =12(1+4)×4=10;(2)①如图2,在图1的基础上作QG⊥AB于G,由题意可知t≤6.∵∠B=∠QEB=90°,∴四边形BEQG是矩形,∴BG=EQ,QG=BE.∵EQ∥DF,∴△CEQ∽△CFD,∴EQ DF =CECF=CQCD,∴EQ 4=CE 3=t 5, ∴CE =35t ,EQ =45t ,∴BG =45t ,QG =BE =BC −CE =4−35t .在Rt △PQG 中,PG =BP −BG =t −45t =t 5, ∴PQ 2=PG 2+QG 2=(15t)2+(4−35t)2,由PQ 2=DQ 2得,(15t)2+(4−35t)2=(5−t)2, 解得:t 1=13−√1092,t 2=13+√1092(舍去), ∴当t =13−√1092时,使得以P 、D 、Q 为顶点的三角形恰好是以DP 为底的等腰三角形;②如图3,当△PAD∽△QEC 时,∵∠A =∠QEC =90°,∴PA AD =QE CE,即AP 1=43, ∴AP =43,∴t =4−43=83; 当△PAD∽△CEQ 时,∴PA AD =CE QE ,即PA 1=34,∴PA =34,∴t =4−34=134.综上所述:t =83或134.9.(2022秋·陕西咸阳·九年级期末)在平面直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连接OB,点D为OB的中点,点E是线段AB上的动点,连接DE,作DF⊥DE,交OA于点F,连接EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1)如图①,当t=3时,求DF的长;(2)如图②,当点E在线段AB上移动的过程中,DFDE的大小是否发生变化?若变化,请说明理由;若不变,请求出DFDE的值;(3)连接AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t<3时的值.【思路点拨】(1)当t=3时,可知DE//OA,DE=12OA=4,则四边形DFAE是矩形,得DF=AE=3;(2)作DM⊥OA于点M,DN⊥AB N,根据两个角相等,可证明ΔDMF∽ΔDNE,得DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,则点G为EF的三等分点,利用(2)同理可得E、F的坐标,从而得出点G的坐标,代入直线AD的解析式即可解决问题.【解题过程】(1)当t=3时,E为AB的中点,∵A(8,0),C(0,6),∴OA=8,OC=6,∵点D为OB的中点,∴DE//OA,DE=12OA=4,∵四边形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴四边形DFAE是矩形,∴DF=AE=3;(2)DFDE的大小不变,理由如下:如图,作DM⊥OA于点M,DN⊥AB于点N,∵四边形OABC是矩形,∴OA⊥AB,∴四边形DMAN是矩形,∴∠MDN=90°,DM//AB,DN//OA,∴BDDO =BNNA,DOBD=OMMA,∵点D是OB的中点,∴M,N分别是OA,OB的中点,∴DM=12AB=3,DN=12OA=4,∵∠EDF=90°,∴∠FDM=∠EDN,又∵∠DMF=∠DNE=90°,∴ΔDMF∽ΔDNE,∴DFDE =DMDN=34;(3)作DM⊥OA于点M,DN⊥AB于点N,若AD将ΔDEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点,如图,NE=3−t,由ΔDMF∽ΔDNE得,MF=34(3−t),∴AF=4+MF=−34t+254,∵点G为EF的三等分点,∴G(3t+7112,23 t),设直线AD的表达式为y=kx+b,将A(8,0),D(4,3)代入得{8k+b=04k+b3,解得{k=−34b=6,∴直线AD的表达式为y=−34x+6,将G(3t+7112,23t)代入得:t=7541,∴当t<3时的值为t=7541.10.(2022秋·河北邯郸·九年级邯郸市第二十三中学校考期末)如图(1),在四边形ABCD中,AB∥DC,CB⊥AB,AB=14cm,BC=CD=6cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为1cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<10.(1)用含t的代数式表示AP;(2)当以点A、P、Q为顶点的三角形与△ABD相似时,求t的值;(3)如图(2),延长QP、BD,两延长线相交于点M,当ΔQMB为直角三角形时,直接写出....t的值.【思路点拨】(1)作DH⊥AB于H,得矩形DHBC,则CD=BH=6cm,DH=BC=6cm,AH=8cm,由勾股定理可求得AD的长,从而可得AP;(2)分两种相似情况加以考虑,根据对应边成比例即可完成;(3)分∠QMB=90°和∠MQB=90°两种情况考虑即可,再由相似三角形的性质即可求得t的值.【解题过程】(1)如图,作DH⊥AB于H则四边形DHBC是矩形∴CD=BH=6cm,DH=BC=6cm∴AH=8cm在RtΔADH中,由勾股定理得AD=√DH2+AH2=√62+82=10(cm)∵DP=tcm∴AP=AD−DP=(10−t)cm(2)①当ΔAPQ∽ΔADB时则有APAQ =ADAB∴10−tt =1014解得:t=356②当ΔAPQ∽ΔABD时则有APAQ =ABAD∴10−tt =1410解得:t=256综上所述,当t=356或256时,以点A、P、Q为顶点的三角形与△ABD相似;(3)①当∠QMB=90°时,ΔQMB为直角三角形如图,过点P作PN⊥AB于N,DH⊥AB于H∴∠PNQ=∠BHD∵∠QMB=90°∴∠PQN+∠DBH=90°∵∠PQN+∠QPN=90°∴∠QPN=∠DBH∴ΔPNQ∽ΔBHD∴QN PN =DHBH=66=1即QN=PN∵PN∥DH∴ΔAPN∽ΔADH∴PN AP =DHAD=610=35,ANAP=AHAD=810=45∴PN=35AP=35(10−t),AN=45AP=45(10−t)∴QN=AN−AQ=45(10−t)−t=8−95t由QN=PN得:8−95t=35(10−t)解得:t=53②当∠MQB=90°时,ΔQMB为直角三角形,如图则PQ∥DH∴ΔAPQ∽ΔADH∴AQ AP =AHAD=45∴AQ=45AP即t=45(10−t)解得:t=409综上所述,当t=53或409时,ΔQMB是直角三角形.11.(2022秋·山东青岛·九年级统考期中)如图1,在RtΔABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB 于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)当ΔPQC 是等腰三角形时,请直接写出t 值为 .(2)如图2,在运动过程中是否存在某一时刻t ,使得沿PC 翻折ΔCPQ 所得到的四边形CQPM 是菱形?若存在,求出t 的值;若不存在,请说明理由;(3)如图3,连接BP ,设四边形BPQC 的面积为S .求S 与t 之间的函数关系式;(4)是否存在某一时刻t ,使得P 、Q 、B 三点共线?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)根据勾股定理及等面积法可求CD ,由等腰三角形的性质分PC =QC 、PC =QP 、PQ =CQ 三种情况讨论即可求解;(2)根据菱形的性质可知,当PQ =CQ 时复合题意,过点Q 作QF ⊥CD ,证ΔABC ∼ΔQCF ,得CF =35t ,由PC =2×35t =245−t ,即可求解;(3)过点Q 作QH ⊥CD ,证ΔABC ∼ΔQCH ,得10t=8QH,即QH =45t ,证ΔABC ∼ΔBCD ,得BD =185,由S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD 即可求解; (4)过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,得245−t 10=CG8,即CG =45(245−t),BG =6−45(245−t),由S ΔPBC =12PC ⋅BD =12BC ⋅PG 可得PG =35(245−t),由CQPG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线,得t35(245−t)=66−45(245−t),即可求解;【解题过程】(1)解:∵∠ACB =90°,AC =8,BC =6, ∴AB =√AC 2+BC 2=√82+62=10, ∵CD ⊥AB , ∴CD =AC⋅BC AB=6×810=245,∵ΔPQC 是等腰三角形,①当PC =QC 时,即245−t =t ,解得:t =125;②当PC =QP 时,如图,过点P 作PE ⊥AC ,∵PC =QP ,PE ⊥AC , ∴QE =CE ,∵PE ⊥AC ,CD ⊥AB ,∠ACB =90°, ∴∠A =∠ACD , ∴ΔABC ∼ΔPCE , ∴AB PC=BC EC, 即,10245−t=612t,解得:t =14455.③当PQ =CQ 时,过点Q 作QF ⊥CD ,∵∠A =∠ACD , ∴ΔABC ∼ΔQCF , ∴ABQC =BCCF,即10t =6CF , ∴CF =35t ,∵PQ =CQ ,QF ⊥CD , ∴CF =PF =35t , ∴PC =2×35t =245−t ,解得:t=2411,故当ΔPQC是等腰三角形时,t值为125或14455或2411.(2)当PQ=CQ时,四边形CQPM是菱形,过点Q作QF⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCF,∴AB QC =BCCF,即10t=6CF,∴CF=35t,∵PQ=CQ,QF⊥CD,∴CF=PF=35t,∴PC=2×35t=245−t,解得:t=2411,(3)如图,过点Q作QH⊥CD,∵∠A=∠ACD,∴ΔABC∼ΔQCH,∴AB QC =ACQH,即10t=8QH,∴QH =45t ,易证ΔABC ∼ΔBCD ,AB BC=BC BD ,即106=6BD ,解得:BD =185.S =S Δ⬚PCQ +S ΔBPC =12PC ⋅QH +12PC ⋅BD =12×(245−t)(45t +185)=−25t 2+325t +21625;(4)如图过点P 作PG ⊥BC ,可得,ΔABC ∼ΔCPG ,∴CPAB =CGAC ,即245−t 10=CG 8,∴CG =45(245−t), ∴BG =6−45(245−t),∵S ΔPBC =12PC ⋅BD =12BC ⋅PG , ∴PG =PC⋅BD BC =(245−t)×1856=35(245−t),∴CQPG =t 35(245−t),BCBG =66−45(245−t),当ΔBCQ ∼ΔBGP 时,B 、P 、Q 三点共线, 所有t35(245−t)=66−45(245−t),解得:t 1=12√6−185,t 2=−12√6−185(舍去), ∴当t =12√6−185时,P 、Q 、B 三点共线.12.(2023秋·浙江金华·九年级统考期末)如图1,在矩形ABCD 中,AB =6,BC =3,动点P 从点A 出发,沿AB 边以每秒2个单位的速度向点B 运动,同时,动点Q 从点B 出发,沿BC −CD 匀速向终点D 运动,点P 、Q 同时到达终点,BD 与PQ 交于点E .过点B 作BF ⊥PQ 于点F .设点P 、Q 的运动时间为t 秒.(1)求点Q的运动速度.(2)如图2,当点Q与点C重合时,求BE的长.(3)在点P、Q的运动过程中,是否存在某一时刻,使得以B、E、F为顶点的三角形与△BCD相似?若存在,求运动时间t的值;若不存在,请说明理由.【思路点拨】(1)求出点P运动的时间即Q运动的时间计算解题即可;(2)当点Q与点C重合时,求出BD长,利用△EPB∽△ECD解题即可;(3)分①点Q在BC边上,②点Q在DC边上,点Q在P的右侧时,③点Q在DC边上,点Q在P的左侧时三种情况利用三角形相似解题即可.【解题过程】(1)解:由题可知点P运动的时间为62=3s,点Q运动的速度为:3+63=3,(2)如图,当点Q与点C重合时,∴t=33=1∴BP=AB−AP=6−2×1=4,在Rt△BDC中,BD=√BC2+CD2=√32+62=3√5,∵AB∥CD∴△EPB∽△ECD∴BE ED =BPCD即3√5−BE=46解得:BE =65√5(3)解:∵BF ⊥PQ ∴∠BFE =∠C =90°,当△BEF ∽△BDC 时,则∠BEF =∠BDC ∴PQ ∥CD 不符合题意, 当△BEF ∽△DBC 时, ∴∠BEF =∠DBC , 当点Q 在BC 边上∴BQ =EQ =3t ,EP =PQ −3t 过点Q 作QH ∥CD 交BD 于点H , 则AB ∥CD ∥QH ,∴HQBP =EQ EP ,HQCD=BQ BC∴HQ =EQ×BP EP =3t(6−2t)PQ−3t,∴3t(6−2t)PQ−3t6=3t 3,解得:PQ =2t +3,在Rt △PQB 中,PB 2+BQ 2=PQ 2 即(2t +3)2=(6−2t)2+(3t)2, 解得:t =1或t =3(舍去)当点Q 在DC 边上,点Q 在P 的右侧时, 如图,过Q 作QH ∥BC 交AB 、BD 于点H 、M ,则HB=QC=3t−3,DQ=9−3t ∵QH∥BC,BC∥AD∴QH∥BC∥AD,∴△BMH∽△BDA∴HM AD =HBAB即3t−36=HM3解得HM=32t−32,∴QE=MQ=3−(32t−32)=92−32t,PH=6−2t−(3t−3)=9−5t∵AB∥CD∴△BPE∽△DQE∴PB DQ =PEEQ即6−2t9−3t =PE92−32t,解得PE=3−t∴PQ=PE+EQ=3−t+92−32t=152−52t在Rt△PQH中,PH2+HQ2=PQ2即(152−52t)2=(9−5t)2+32解得t=95或t=1(舍去);如图,当点Q在P的左侧时,过Q作QH∥BC交AB、BD于点H、M,则∠PEB=∠EDQ=∠DEQ=∠PBE∴PE=PB=6−2t,EQ=QD=9−3t,∴PQ=6−2t+9−3t=15−5t在Rt △PQH 中,PH 2+HQ 2=PQ 2 即(15−5t)2=(9−5t)2+32 解得t =94综上所述,当t =1或t =95或t =94时,以B 、E 、F 为顶点的三角形与△BCD 相似13.(2023秋·江苏无锡·九年级无锡市南长实验中学校考阶段练习)如图,在平面直角坐标系中,点B (6,5),过点B 作x 轴的垂线,垂足为A ,作y 轴的垂线,垂足为C .点D 从O 出发,沿y 轴正方向以每秒1个单位长度运动;点E 从O 出发,沿x 轴正方向以每秒3个单位长度运动;点F 从B 出发,沿BA 方向以每秒2个单位长度运动.当E 点运动到点A 时,三点随之停止运动.运动过程中△ODE 关于直线DE 的对称图形是△O ′DE ,设运动时间为t .(1)用含t 的代数式分别表示点E ,点F 的坐标;(2)若△ODE 与以点A ,E ,F 为顶点的三角形相似,求t 的值;(3)是否存在这样的t ,使得以D ,E ,F ,O′所围成的四边形中有一组对边平行?若存在,求出t 的值;若不存在,请说明理由. 【思路点拨】(1)由题可得OE =3t ,OD =t ,BF =2t ,易证四边形OABC 是矩形,从而得到AB =OC ,BC =OA ,即可求出AF , OE ,即可求出点E ,点F 的坐标(2)只需两种情况讨论①当△ODE ∽△AEF ,②当△ODE ∽△AFE ,然后运用相似三角形的性质即可求解;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,易得△MDO′∽△NO′E,设MO′=a,根据相似三角形的性质可得出a=35t,然后分两种情况讨论即可求解.【解题过程】(1)由题可得OE=3t,OD=t,BF=2t,∵BA⊥x轴,BC⊥y轴,∠AOC=90°,∴∠AOC=∠BAO=∠BCO=90°,∴四边形OABC是矩形,∴AB=OC,BC=OA,∵B(12,10),∴BC=OA=12,AB=OC=10,∴AF=10−2t,OE=12−3t,∴点E的坐标为(3t,0),点F的坐标为(12,10−2t);(2)①当△ODE∽△AEF时,则有ODAE =OEAF,∴t 12−3t =3t10−2t,解得t1=0(舍去),t2=267,②当△ODE∽△AFE时,则有ODAF =OEAE,∴t 10−2t =3t12−3t,解得t1=0(舍去),t2=6,∵点E运动到点A时,三点随之停止运动,∴3t≤12,∴t≤4,∴t=6舍去,综上所述:t的值为267;(3)过点O′作x轴的平行线与y轴交于点M,与过点E的y轴的平行线交于点N,如图1,则有∠DMN=90°,∠N=90°,由折叠可得:DO′=DO=t,O′E=OE=3t,∠DO′E=∠DOE=90°,∴∠DMO′=∠N=90°,∠MDO′=90°−∠MO′D=∠NO′E,∴△MDO′∽△NO′E,∴MO′NE =MDNO′=O′DEO′=t3t=13,∴NE=3MO′,NO′=3MD,设MO′=a,则有OM=NE=3a,NO′=3t−a,MD=3a−t,∴3t−a=3(3a−t),解得:a=35t,∴MO′=35t,OM=95t,∴点O′的坐标为(35t,95t),①若DO′∥EF,如图2,延长O′D交x轴于S,则有O′M∥OS,∠DSE=∠FEA,∴∠MO′D=∠DSE=∠FEA,∵∠O′MD=∠EAF=90°,∴∠O ′MD ∽∠EAF ,∴MO ′AE =MD AF , ∴35t 6−3t =95t−t 5−2t ,解得:t 1=0(舍去),t 2=32, 经检验:t =32是分式方程的解, ②若OF∥DE ,如图3,过点O ′作x 轴的平行线与AB 交于点Q ,延长DE 交 BA 的延长线于点T ,同①可得 :△DOE ∽△FQO ′,∴OD QF =OE QO ′,t95t−(5−2t )=3t 6−35t ,解得t 1=0(舍去),t 2=74,综上所述:t 的值为32或74. 14.(2023秋·吉林长春·九年级长春市解放大路学校校考阶段练习)如图,在Rt △ABC 中,∠C =90°,AC =3,AB =5,点D 为边AB 上一点且BD =2.动点P 从点A 出发,沿AB 以每秒1个单位长度的速度向终点B 运动,且点P 不与点A 、B 、D 重合.过动点P 作PQ ⊥AB 交折线AC −CB 于点Q ,作点P 关于点D 的对称点E ,连结QE .设点P 的运动时间为t 秒.(1)当点Q 与点C 重合时,t =________;(2)用含t的代数式表示PE的长;(3)当△PEQ∽△CAB时,求t的值;(4)当Q在BC上运动时,若△BEQ为等腰三角形,直接写出此时t的值.【思路点拨】(1)利用面积计算即可;(2)分两种情况讨论即可;(3)由△PEQ∽△CAB可得PEAC =PQBC,代入线段计算即可;(4)画出图形,分类讨论即可.【解题过程】(1)∵∠C=90°,AC=3,AB=5,∴BC=√AB2−AC2=4,当点Q与点C重合时,S△ABC=12AC⋅BC=12PQ⋅AB∴S△ABC=12×3×4=12PQ×5∴PQ=125,∴PA=√AC2−PQ2=95,∴t=PA÷1=95,故答案为:95;(2)由题意可得,PA=t,PB=AB−PA=5−t,AD=AB−BD=3∵点P关于点D的对称点E,∴PD=DE,∴PE=2PD,当点P在点D的右边时,0<t<3,此时PD=AD−PA=3−t=DE,∴PE=2PD=6−2t,当点P在点D的左边时,3<t<5,此时PD=PA−AD=t−3=DE,∴PE=2PD=2t−6,综上所述,PE ={6−2t(0<t <3)2t −6(3<t <5)(3)当0<t ≤95时,点Q 在AC 边上,点P 在点D 的右边,PE =6−2t ∵∠APQ =∠ACB =90°∴△PAQ ∽△CAB ,∴PA AC=PQ BC , ∴t 3=PQ 4∴PQ =43t ∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=43t 4 ∴t =2(舍)当95<t <3时,点Q 在BC 边上,点P 在点D 的右边,PE =6−2t ,∵∠BPQ =∠ACB =90°∴△PBQ ∽△CBA ,∴BP BC =PQ AC =BQ AB , ∴5−t 4=PQ 3=BQ 5 ∴PQ =34(5−t),BQ =54(5−t)∵△PEQ ∽△CAB∴PE AC =PQ BC ∴6−2t 3=34(5−t)4t =5123,当3<t<5时,点Q在BC边上,点P在点D的左边,此时PQ=34(5−t),PE=2t−6∵△PEQ∽△CAB∴PE AC =PQBC∴2t−63=34(5−t)4t=141 41综上,当△PEQ∽△CAB时,t=5123,t=14141(4)当当Q在BC上运动时,95<t<5,当95<t<3时,点Q在BC边上,点P在点D的右边,PE=6−2t,PQ=34(5−t)此时△BEQ为钝角三角形,若△BEQ为等腰三角形,则EB=EQ=AB−PE−PA=5−(6−2t)−t=t−1,在Rt△PQE中,PQ2+PE2=QE2,∴[34(5−t)]2+(6−2t)2=(t−1)2,此方程无解当3<t<5时,点Q在BC边上,点P在点D的左边,PE=2t−6,PQ=34(5−t),BE=PA−PE=t−(2t−6)=6−t,BQ=54(5−t)。

相似三角形中的几何动点问题模型专题汇总

相似三角形中的几何动点问题模型专题汇总

相似三角形中的几何动点问题模型专题汇总这节课我们学什么1. 动点动点函数型函数型----横竖型横竖型问题问题2. 动点动点函数型函数型----斜线型斜线型问题问题3. 动点动点几何型几何型----二次相似二次相似问题问题4. 动点动点几何形几何形----A -A 问题知识点梳理1.本专项的前半部分为二次函数中动点相似三角形之函数型,主要为有一对等角的两个三角形相似时,对等角的夹边作讨论的题型,简称S.A.S型. 题型分为横竖型和斜线型两大类:题型分为横竖型和斜线型两大类:横竖型:动点在平行于坐标轴的直线上;斜线型:动点在倾斜的直线上.(等角类型分为锐角、钝角;等角的位置有公共角、对顶角、内错角等,还可通过三角比的计算得到等角.)求斜线上的点坐标方法可以采用代数方法(两点间距离公式)(两点间距离公式),还可以用几何方法注:求斜线上的点坐标方法可以采用代数方法构造相似三角形或是三角比来求解. 2.本专项的后半部分为二次函数中动点相似三角形之几何.本专项的后半部分为二次函数中动点相似三角形之几何.和两次相似两大类:题型分为A-A和两次相似两大类:A-A:确定一组相等的角,讨论分析另一组角,可以结合等腰三角形的性质或者锐角三角比;三角比;两次相似:借助第一次证明的相似三角形相等的角,结合已知条件证明第二次相似. 两次相似:借助第一次证明的相似三角形相等的角,结合已知条件证明第二次相似.典型例题分析1、动点横竖型问题例1.在平面直角坐标系中,O 为坐标原点,二次函数214y x bx c=-++的图像经过点()4,0A 、()0,2C .(1)试求这个二次函数的解析式,并判断点()2,0B -是否在该函数的图像上;是否在该函数的图像上; (2)设所求函数图像的对称轴与x 轴交于点D ,点E 在对称轴上,若以点C 、D 、E 为顶点的三角形与ABC D 相似,试求点E 的坐标.的坐标.【答案:(1)∵c bx x y ++-=241过点40A (,)、02C (,)∴2,21==c b∴211242y x x =-++∵当2x =-时,0y = ∴点(2,0)B -在该二次函数的图像上;(2)∵二次函数的对称轴为直线1x = ∴10D (,)∵点E 在对称轴上,且对称轴平行y 轴 ∴OCD CDE Ð=Ð又6AB =,25AC =,5CD =2OC =,1OD =易得OCD OAC D D ∽∴OCD OAC Ð=Ð, 从而CDE OAC Ð=Ð若以点C 、D 、E 为顶点的三角形与ABC D 相似 则有以下两种情况:.A. C .O x y 1.A. C .Oxy 1 DB EEⅰ)当AB DC AC DE =时,即6552=DE ,解得:35=DE ∴点E 的坐标为)35,1( ⅱ)当AC DCAB DE=时,即5256=DE ,解得:3=DE ∴点E 的坐标为)3,1( 综上点E 的坐标为)35,1(或)3,1(.】例2.如图,已知在ABC D 中,90A Ð=°,32AB AC ==,经过这个三角形重心的直线DE BC //,分别交边AB 、AC 于点D 和点E ,P 是线段DE 上的一个动点,过点P 分别作PM BC ^,PF AB ^,PG AC ^,垂足分别为点M 、F 、G ,设BM x =,四边形AFPG 的面积为y . (1)求PM 的长;的长;(2)求y 关于x 的函数解析式,并写出它的定义域;的函数解析式,并写出它的定义域;(3)联结MF 、MG ,当PMF D 与PMG D 相似时,求BM 的长.的长.【答案:解:(1)过点A 作AH BC ^,垂足为点H ,交DE 于点Q . ∵90BAC Ð=°,32AB AC ==,∴6BC =. 又∵AH BC ^,∴132BH CH BC ===,Q 是ABC D 的重心.∴113QH AH ==. ∵DE BC //,PM BC ^,AH BC ^,∴1PM QH ==.(2)延长FP ,交BC 于点N .∵90BAC Ð=°,AB AC =,∴45B Ð=°.于是,由FN AB ^,得45PNM Ð=°.又由PM BC ^,得1MN PM ==,2PN =.MP ABCDEFG∴1BN BM MN x =+=+,2(1)2FB FN x ==+. ∴2232(1)(5)22AF AB FB x x =-=-+=-,22(1)2(1)22FP FN PN x x =-=+-=-.∵PF AB ^,PG AC ^,90BAC Ð=°,∴90BAC PFA PGA Ð=Ð=Ð=°. ∴四边形AFPG 是矩形.∴22(1)(5)22y FP AF x x =×=-×-,即所求函数解析式为215322y x x =-+-.定义域为15x <<. (3)∵四边形AFPG 是矩形,∴)5(22x AF PG -==. 由135FPM GPM Ð=Ð=°,可知,当PMF D 与PMG D 相似时,有两种情况:PFM PGM Ð=Ð或PFM PMG Ð=Ð. (ⅰ)如果PFM PGM Ð=Ð,那么PF PMPG PM=.即得PF PG =. ∴22(1)(5)22x x -=-.解得3x =.即得3BM =.(ⅱ)如果PFM PMG Ð=Ð,那么PF PMPM PG=.即得2PM PF PG =×. ∴22(1)(5)122x x -×-=.解得132x =+,232x =-.即得32BM =+或32BM =-.∴当PMF D 与PMG D 相似时,BM 的长等于32-或3或32+.】2、动点斜线型问题 例3.已知:已知:如图,如图,如图,在平面直角坐标系在平面直角坐标系xOy 中,中,二次函数二次函数213y x bx c =-++的图像经过点1()1,A -和点()2,2B ,该函数图像的对称轴与直线OA 、OB 分别交于点C 和点D .(1)求这个二次函数的解析式和它的对称轴;)求这个二次函数的解析式和它的对称轴; (2)求证:ABO CBO Ð=Ð;(3)如果点P 在直线AB 上,且POB D 与BCD D 相似,求点P 的坐标.的坐标.【答案:(1)解:由题意,得解得∴所求二次函数的解析式为.对称轴为直线1x =.(2)证明:由直线OA 的表达式y x =-,得点C 的坐标为11-(,).∵,,∴A B B C =.又∵,,∴O A O C =.∴A B O C B O Ð=Ð.(3)解:由直线OB 的表达式y x =,得点D 的坐标为(1,1). 由直线AB 的表达式,得直线与x 轴的交点E 的坐标为40-(,).∵POB D 与BCD D 相似,ABO CBO Ð=Ð ∴BOP BDC Ð=Ð或BOP BCD Ð=Ð.10=AB 10=BC 2=OA 2=OCyxOA B1 1 -1 -1 (i )当BOP BDC Ð=Ð时,由135BDC Ð==°,得135BOP Ð=°. ∴点P 不但在直线AB 上,而且也在x 轴上,即点P 与点E 重合.∴点P 的坐标为40-(,). (ii )当BOP BCD Ð=Ð时,由POB BCD D D ∽,得.而,,,∴.又∵,∴.作PH x ^轴,垂足为点H ,BF x ^轴,垂足为点F . ∵PH BF //,∴.而2BF =,6EF =,∴,.∴.∴点P 的坐标为48(,)55. 综上所述,点P 的坐标为(4,0)-或48(,)55.】3、动点几何型—二次相似问题 例4.如图,在Rt ABC D 中,90ACB Ð=°,CE 是斜边AB 上的中线,10AB =,4tan 3A =,点P 是CE 延长线上的一动点,过点P 作PQ CB ^,交CB 延长线于点Q ,设,EP x BQ y ==. (1)求y 关于x 的函数关系式及定义域;的函数关系式及定义域;(2)联结PB ,当PB 平分CPQ Ð时,求PE 的长;的长;(3)过点B 作BF AB ^交PQ 于F ,当BEF D 和QBF D 相似时,求x 的值.的值.22=BO 2=BD 10=BC 102=BE【答案:(1)在Rt ABC 中,°=Ð90ACB ,∵34tan ==AC BCA ,10=AB∴8=BC ,6=AC ∵CE 是斜边AB 上的中线,∴521===AB BE CE∴ABC PCB Ð=Ð,∵°=Ð=Ð90ACB PQC ∴BQC ABC D D ∽,∴54==AB BC PC CQ ,即5458=++x y ∴445y x =-,定义域为5x >. (2)过点B 作BM PC ^,垂足为M .∵PB 平分CPQ Ð,PQ BQ ^,垂足为Q . ∴y BQ BM ==∵52485353=´==BC BM ∴524454=-x ∴11=x (3)∵°=Ð=Ð90ACB Q ,AQBF Ð=Ð∴BQF ABC D D ∽当BEF D 和QBF D 相似时,可得BEF D 和ABC D 也相似. 分两种情况: 1)当A FEB Ð=Ð时,在Rt FBE D E 中,°=Ð90FBE ,5=BE ,y BF 35=ABCE PQ(备用图) ABC E(备用图) ABCEEDB FC A【答案:(1)∵ABC D 是等边三角形, ∴,. 由题意可知AEF DEF D D ≌,∴,,. ∴. ∵, ∴. 又∵,∴. ∵,∴BDE CFD D D ∽. 方法①∵BDE CFD D D ∽,∴. 设,则由知,,,,.设,则. ∴. 即整理,得°=Ð=Ð=Ð60C B A CA BC AB ==°=Ð=Ð60A EDF AE DE =AF DF =BDF EDF BDE Ð=Ð+ÐC CFD BDF Ð+Ð=Ð=Ð+ÐEDF BDE C CFD Ð+ÐC EDF Ð=°=Ð60CFD BDE =ÐC B Ð=Ðk AE 5=4:5:=AF AE k AF 4=k AE DE 5==k AF DF 4==k BE 56-=k CF 46-=x BD =x CD -=6BCA备用图备用图ABCDEF。

专题10 相似三角形中的动点问题的三种考法(解析版)(北师大版)

专题10 相似三角形中的动点问题的三种考法(解析版)(北师大版)

专题10相似三角形中的动点问题的三种考法类型一、相似三角形存在性问题【答案】2或5∴PE∥AB.(1)当45CBP ∠=︒时,求点E 的坐标;(2)在旋转过程中,是否存在以P O E 、、为顶点的三角形与存在,请说明理由.【答案】(1)(5,0);(2)132130,3P ⎛⎫- ⎪ ⎪⎝⎭或(0,13-【分析】(1)证45ABE CBP ∠=∠=︒,则AE AB =(2)设PC t =,本题需先证出BCP BAE ∆∆∽,求出若OP OE AE AB=时,POE EAB △∽△,①若OP OE AB AE =,则OPE ABE ∽,∴3232332t t t +-=,解得:1313t =+,2313t =-(不合题意舍去),3313313OP t ∴=-=+-=,()0,13P ∴-;②若OP OE AE AB =,则OEP ABE ∽,∴323233t t t +-=,整理得:类型二、几何图形存在性问题(1)请直接用含t 的代数式表示(2)当t 为何值时,以点D (3)当t 为何值时,DPQ V 【答案】(1)82t -;4t(2)41s 14或40s 13(3)1t =或3或207或196【分析】(1)根据勾股定理求出的长;(2)分PQD AED ∽、(3)分DP DQ =、DQ 【详解】(1)由勾股定理得,∵E 、D 分别是AC AB 、∴18cm 2DE BC AE ==,由题意得,2cm EQ t =,∵90PQB AED ∠=∠=∴PQD AED ∽,∴PD QD AD DE =,由题意得:即82410108t t --=,∴PD QD ED AD =,∴42410810t t --=,∴4013t =,41s 40s可得82104t t -=-,解得1t =,如图4中,当点Q 在线段可得82410t t -=-,解得3t =,如图5中,当点Q 在线段过点Q 作QM AE ⊥于M ∴90QMD C ∠=∠=︒,∵QDM B ∠=∠,∴QDM ABC △△∽,∴BC DM AB QD =,∴()()18241042t t --=:20综上所述,1t =或3或207或196时,DPQ V 是等腰三角形.【点睛】本题考查的是相似三角形的判定和性质、等腰三角形的性质、三角形中位线定理的应用,解题的关键是掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想.例2.如图,在平面直角坐标系中,矩形OABC 的两边2OC =.点P 从点O 出发,沿x 轴以每秒1个单位长的速度向点设点P 运动的时间是t 秒.将线段CP 的中点绕点P 连接DP ,DA .(1)当2t =时,点D 的坐标是;(2)请用含t 的代数式表示出点D 的坐标;(3)在点P 从O 向A 运动的过程中,DPA 能否成为直角三角形?若能,求t 的值.若不能,请说明理由.【答案】(1)()31,(2)12t t ⎛⎫+ ⎪⎝⎭,∴1804590DPE ∠=︒-︒-︒∴212PE DE PD ===,∴点D 坐标为()31,;故答案为:()31,;(2)解:∵点P 从点O 出发,沿OP t ∴=,而2OC =,P ∴设CP 的中点为F ,过D 点作则F 点的坐标为12t ⎛⎫ ⎪⎝⎭,,F 点绕点P 按顺时针方向旋转90DPE OPC ∴∠+∠=︒,又90POC ∠=︒ ,OCP ∠+OCP EPD ∴∠=∠,OCP ∴△:1:2PD CP = ,:::DE PO PE CO PD CP ∴==122t DE PO ∴==,12PE =D ∴点坐标为12t t ⎛⎫+ ⎪⎝⎭,,故答案为:12t t ⎛⎫+ ⎪⎝⎭,;(3)解:能构成直角三角形.①当90PDA ∠=︒时,PC ∥可知,COP PAD△∽△,CP PD CO2==,PD PD PA2=,PA=时,求t的值;(1)当AP AQBEP BCA PFC ∴∠=∠=∠∴四边形CEPF 是矩形,当12PE QC =时,即FC 此时把PCQ △沿QC 翻折得到四边形B B ∠∠= ,PBE ABC ∴ ∽,(1)当t 为何值时,EF AB ∥?(2)设四边形ABFE 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)当t 为何值时,四边形ABFE 的面积S 等于矩形ABCD 面积的38?(4)当t 为时,EFD △是等腰三角形.【答案】(1)207(2)236245S t t =-+(3)515-(4)103或5021【分析】(1)勾股定理求得(2)如图,过点E 作EG ⊥∴90EGD A ∠=∠=︒,又∵EDG BDA ∠=∠,∴EDG BDA ∽,∴ED EG BD AB=,∴626105AB ED t EG t BD ⨯⨯===∴ABFE S 四边形12ABD EFD S S =-=236245t t =-+,∴236245S t t =-+;(3)解:依题意,2365t t -+解得12515,515t t =-=+(不合题意,舍去)②当EF ED =时,如图,过点∴90EGD A ∠=∠=︒,又∵EDG BDA ∠=∠,∴EDG BDA ∽,∴DG ED AD BD=,∵EF ED =,∴EFG EDG ∠=∠,FG DG =∴11022t DG FG DF -===∴1022810t t -=,解得5021t =,③若EF DF =如图,过点∴DFG DBA ∽,∴DG DF DA DB=,∵2,10DE t DF t==-∴DG t=∴10810t t -=解得409t =∵4t <∴不存在EF DF =的情形,综上所述,当t =103或5021时,【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,等腰三角形的定义,综合运用以上知识是解题的关键.【答案】(1)2;(2)①见解析;②存在,43PC =或3【分析】(1)首先连接DE ,证明D ,E ,Q 三点共线,再证明ABF DQF @V V (2)①首先连接DE ,CQ ,证明PED QEC ≌△△∵AB =AC ,∠BAC =90°,∴△ABC 为等腰直角三角形,∴2222(42)(42)8AC AB AC =+=+=又∵AD ⊥BC ,△斜边BC上的高,E ∵AD是等腰Rt ABC△斜边AC上的高,即∴DE是等腰Rt ACD∵90PEQ ∠=︒,∴90HEP BEH Ð+Ð=°,PEF PEQ ∠+∠又∵90HBE BEH ∠+∠=︒,∴HBE HEP Ð=Ð,∴PEH EBH ∽△△,得PH EH EH BH =,从而226PH =,∴23PH =,则24233PC =-=;(II )如图2(b ),当90EPF ∠=︒时,同理得:PEH FPD ∽△△,且2PD FD =∴2EH PH =,∴1PH =,则3PC =.(III )当点P 在线段DH 上时,由于PD类型三、最值问题【答案】1855【分析】如图,连接OB 交PQ 23QD BD QB PD DO OP ===,可得PQ ∴QBD POD ∠=∠,又∵QDB PDO ∠=∠,∴QDB PDO ∽,∴23QD BD QB PD DO OP ===,PQ 2BD DO =AB AC,=∴=,BD CD设P点的运动时间为t,在CD上的运动速度为【点睛】本题考查了垂线段最短,相似三角形的判定与性质,识,关键是根据相似三角形的性质,把【变式训练3】在Rt ABC 中,90ACB ∠=的最小值.12+BD AD 的最小值②如图,连接CD,在CA上取点∵CD=2,AC=4,∴121=,242 CF CDCD AC==,∴1=2 CF CDCD AC=,【点睛】本题考查构造相似三角形解决比例问题,勾股定理,掌握相似三角形的判定与性质,勾股定理,关键是引辅助线准确作出图形是解题关键.【答案】4【分析】由题意知2AE =,如图,过OH OE QG EQ =,即142OH =,解得2OH =交BC 于Q ',连接EF 、EQ '中点O '∵OEH QEG ∠=∠,OHE QGE ∠=∠=∴OEH QEG ∽,∴OH OE QG EQ =,即142OH =,解得2OH =,△∽△(1)求证:BDE CEA(2)设BE x=,AD y=,请求(3)E点在运动的过程中,V 【答案】(1)见解析(1)当3t=秒时,P点的坐标为((2)当t为何值时,以C P、、(3)在平面内是否存在一个点不存在,说明理由.315(1)当t 为何值时,PQ CD ∥(2)设BPQ V 的面积为()2cm s ,求(3)连接BD ,是否存在某一时刻【答案】(1)207;(2)310s t =-105(3)作PF BD⊥于F,∠则当PF PA=时,BP平分ABD【点睛】此题考查相似三角形和勾股定理,解题关键是通过相似比列出方程进行求解.6.如图,在ABC 中,4AC =,秒4个单位长度的速度向点B 匀速运动.当点Q ,连接PD .设点P 的运动时间为(1)AB =__________;(2)求PQ 的长(用含t 的代数式表示);(3)连接DQ ,当PQD △是直角三角形时,求t 的值.【答案】(1)5;(2)43051620453354t t PQ t t ⎧⎛⎫<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩;∵90APQ ACB ∠=∠=︒,∴~APQ ACB ,∴AP PQ AC CB=,∵动点P 的速度为每秒4∴443t PQ =,∵90BPQ ACB ∠=∠=∴~BPQ BCA ,∴PQ BP AC CB=,∵动点P 的速度为每秒当90PDQ ∠=︒时,∵90ACB ∠=︒,∴PD BC ,∵D 是AC 的中点,∴1AP AD PB CD==,。

相似三角形汇总5相似中的动点问题

相似三角形汇总5相似中的动点问题

相似三角形提高一、相似三角形动点问题1.如图,在Rt △ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB 1∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF ⊥AC 交射线BB1于F ,G 是EF 中点,连接DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD=AB ,并求出此时DE 的长度;(2)当△DEG 与△ACB 相似时,求t 的值.2.如图,在△ABC 中,∠ABC =90°,AB=6m ,BC=8m ,动点P 以2m/s 的速度从A 点出发,沿AC 向点C 移动.同时,动点Q 以1m/s 的速度从C 点出发,沿CB 向点B 移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t 秒.(1)①当t=2.5s 时,求△CPQ 的面积;②求△CPQ 的面积S (平方米)关于时间t (秒)的函数解析式;(2)在P ,Q 移动的过程中,当△CPQ 为等腰三角形时,求出t 的值.3.如图1,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 在边AB 上运动,DE 平分∠CDB 交边BC 于点E ,EM ⊥BD ,垂足为M ,EN ⊥CD ,垂足为N .(1)当AD =CD 时,求证:DE ∥AC ;(2)探究:AD 为何值时,△BME 与△CNE 相似?4.如图所示,在△ABC 中,BA =BC =20cm ,AC =30cm ,点P 从A 点出发,沿着AB 以每秒4cm 的速度向B 点运动;同时点Q 从C 点出发,沿CA 以每秒3cm 的速度向A 点运动,当P 点到达B 点时,Q 点随之停止运动.设运动的时间为x .(1)当x 为何值时,PQ ∥BC ?(2)△APQ 与△CQB 能否相似?若能,求出AP 的长;若不能说明理由.5.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t (s )表示移动的时间(0<t <6)。

相似三角形与动点问题练习题(带答案

相似三角形与动点问题练习题(带答案

∵将
沿直线 翻折后,顶点 恰好落在 边上的点 处,

,且











∵在
中,



∴ 四边形 故选: .


, ,

2
【标注】【知识点】相似A字型
3. 如图,矩形 ,
中, 是 的中点,将 ,则 的长为( ).
沿 折叠后得到
.延长 交 于 点.若
A.
B.
C.
D.
【答案】 B 【解析】 方法一:连接 ,
.④
沿 折叠,点 恰落在边 上的点 处,有下列结论:①
.其中正确的是( ).
A. 个
B. 个
C. 个
6
D. 个
【答案】 C
【解析】 ①∵ 将 ∴ ∴ ②在 ∴ 设 在 ∴ ∴ ∴ ③∵ ∴ ∴ 而 ∴ ∴ ∴ ∴ 而 ∴ ∴ ④∵ ∴
沿 折叠,点 恰落在边 上的点 处.点 在
沿 折叠,点 恰落在线段 上的点 处,
4. 如图,将正方形
折叠,使顶点 与 边上的一点 重合( 不与端点 , 重合),折痕交
于点 ,交 于点 ,边 折叠后与边 交于点 .设正方形
的周长为 ,
的周长为
,则 的值为( ).
A.
B.
C.
D. 随 点位置的变化而变化
【答案】 B
【解析】 方法一:设













又∵






专题13 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(解析版)

专题13 难点探究专题:相似三角形中动点问题压轴题六种模型全攻略(解析版)

专题13难点探究专题:相似三角形中动点问题压轴题六种模型全攻略【考点导航】目录【典型例题】 (1)【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】 (1)【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】 (9)【考点三相似三角形动点中求线段及线段和最值问题】 (17)【考点四相似三角形中的动点问题与函数图像问题】 (25)【考点五相似三角形中的动点问题与几何综合问题】 (31)【考点六相似三角形中的动点探究应用问题】 (40)【典型例题】【考点一相似三角形动点中求时间多解问题(利用分类讨论思想)】【答案】185或367或365【分析】根据题意可知B B∠=∠【详解】解:∵在Rt ABC△中,【变式训练】【答案】经过0.8s或2s秒时,△△【分析】设经过t秒时,QBP边的比相等且夹角对应相等的两个三角形相似进行分类讨论:BP BQ(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为24 5【答案】(1)3050 1113或;(2)2或3.∵QE⊥AO,BO⊥AO,∴QE∥BO,∴△AEQ∽△AOB,∴45 QE BO AQ AB==(1)填空:当t=___________时,AF CE=,此时BH (2)当BEF△与BEH△相似时,求t的值.当BEF BHE △∽△时:BE BF BH BE=即()24212t t =-⨯,解得:317t =+(负值已舍);综上,t 的值为2或4或317+【点睛】此题考查了相似图形,掌握相似三角形的判定和性质等相关知识是解题的关键.【考点二相似三角形动点中求线段长多解问题(利用分类讨论思想)】例题:(2023春·江西九江·九年级统考期中)如图,菱形16BD =,点P 是AD 上一点,【答案】8或294或6465-【分析】分三种情况讨论:当角形的判定与性质即可求解.【详解】解:∵四边形ABCD∴7DF =,∵90,QFD AOD QDF ∠=∠=︒∠∴QDF ADO ∽ ,∴AD OD QD FD =,即1087QD =,∴354QD =,∴OA PE ∥,∴AOD PED ∽ ,∴AD AO OD PD PE ED==,即10106-∴1216,55PE ED ==,12【变式训练】【答案】2或8【分析】由矩形的性质,垂直的定义推出=,列出关于x的方程,求出设DE x=,【详解】解:设DE x【答案】487或163【分析】分两种情形:如图明BPM BDC ∽△△,利用相似三角形的性质列式计算即可;设CM PM PN CN ===∵PM CD ∥,∴BPM BDC ∽△△,∴PM BM CD BC =,设MC MP y ==.∵16AB =,12BC =,∴22BD BC CD =+=由折叠的性质得PD =【答案】4或134或11926【分析】由翻折变换的性质得:AE则BG FG ==12BF ,90BCG B A ∠=︒-∠=∠,又90CGB ACB ∠=∠=︒,∴CGB ACB ∽,【答案】53或634或6【分析】通过直角三角形未确定直角分三种情况进行讨论,利用互余关系,得到三角形相似,得到边长比例关系进行求解即可.∴90AED CEP∠+∠= ,∵矩形ABCD,∴90C D∠∠== ,∴90CEP CPE∠+∠= ,∵90DAE BAE BAE BAP ∠+∠=∠+∠=同理得到ADE ABP ,∴1259AD DE AB PB BP===,同理得:ABP PCE ~ ,∴9124AB BP x PC CE x ===-,∴126x x ==,【考点三相似三角形动点中求线段及线段和最值问题】【答案】8 5【分析】作点理可求得AB=点H,交AB于点则PC PC '=,90ACB ∠=︒ ,90C HC '∴∠=︒,此时,PH PC PC '+=+C H BC '∥ ,【变式训练】【答案】32【分析】取BE 的中点,连接12BH BE =,可得到BH BF BF BC =1DF FC DF FH +=+,当点∵BEM △沿着BM 翻折得到 ∴BF BE =,∵4BC =,E 是BC 中点,∴122BE BC ==,4【点睛】本题主要考查了一次函数与几何综合,平行四边形的性质与判定,勾股定理,轴对称的性质,相似三角形的性质与判断,等腰直角三角形的性质与判定等等,正确作出辅助线确定是解题的关键.【考点四相似三角形中的动点问题与函数图像问题】例题:(2023春·河南安阳·九年级统考期末)如图,正方形ABCD 一边AB 在直线l 上,P 是直线l 上点A 左侧的一点,24AB PA ==,E 为边AD 上一动点,过点P ,E 的直线与正方形ABCD 的边交于点F ,连接BE BF ,,若设DE x =,BEF △的面积为S ,则能反映S 与x 之间函数关系的图象是()....【答案】B【分析】分别求出点F 在边重合时时,点F 在边即可求解.【详解】解:24AB PA ==,【变式训练】1.(2023·河南焦作·统考二模)如图,在Rt ABC △中,90,3,4ACB AC BC ∠=︒==,点P 为边AB 上一动点,过点P 作直线l AB ⊥,交折线ACB 于点Q .设,AP x CQ y ==,则y 关于x 的函数图象大致是()A .B .C .D .【答案】B⊥,∵直线l AB∠=∠=∴BPQ ACB ∵B B∠=∠,A...D.【分析】分三种情况讨论得出y关于x的函数关系式即可得出答案.与点A重合时,【点睛】本题考查动点问题函数图像,考查了相似三角形的判定与性质,正方形的性质,反比例函数及一次函数的图像.解题的关键和难点在于根据点3.(2023·黑龙江·模拟预测)如图,已知直线下方的l上的一动点AB=,设AD若6....【答案】B【分析】根据AE BD ∥得∠,根据直线l 是线段AB 的中垂线可得132BC AB ==,再证 ,然后根据相似三角形列比例式化简可得定函数图像即可即可解答.【考点五相似三角形中的动点问题与几何综合问题】例题:(2023春·山东济宁·八年级统考期末)如图,在平面直角坐标系中,O 是坐标原点,矩形OABC 的两(1)点P 的坐标为______,点Q 的坐标为(2)请判断四边形APCQ 的面积是否会随时间(3)若A ,P ,Q 为顶点的三角形与△【答案】(1)()3,0t ,()12,2t (2)四边形APCQ 的面积不会随时间【变式训练】【答案】(1)DG BE =;(2)12DG BE DG BE =⊥,.理由见解析;(3)2;(4)410∵矩形ECGF 、矩形ABCD ,∴90ECG BCD ∠=∠=︒,∴DCG BCE ∠=∠,∵:2:41:2CD CB ==,:CG CE ∴::CD CB CG CE =,则90ENC CMG ∠=∠=︒,∵90ECG ∠=︒,∴ECN GCM GCM ∠+∠=∠+∠根据解析(3)可知,点G 的运动轨迹是直线∵DG GG '=,∴BG DG BG GG BG ''+=+=,∵两点之间线段最短,∴此时BG GD +的值最小,最小值为特例故知:(1)勤奋小组从特殊情况入手:如图1,45B ∠=︒,E 为AB 的中点,则变式探究(2)希望小组受此启发,作了如下改变:如图2,将(1)中“B ∠进行解答即可;(3)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,证明EMG ENF △∽△,结合解直角三角形的知识进行解答即可.【详解】解:(1)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,∵90CAB ∠=︒,AD BC ⊥,45B ∠=︒,∴45MAE NBE ∠=∠=︒,∵90AME ENB ∠=∠=︒,∴AME △和ENB △为等腰直角三角形,∵E 为AB 的中点,∴AE BE =,∴EM EN =,∵AD BC ⊥,,EM AD EN BC ⊥⊥,∴四边形M END 是矩形,∴90MEN ∠=︒,∵EF CE ⊥,∴MEG CEN CEN NEF ∠+∠=∠+∠,∴MEG NEF ∠=∠,在MEG 和NEF 中,MEG NEF EM EN EMG ENF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴(ASA)MEG NEF ≌,∴EF EG =,故答案为:EF EG =;(2)过点E 作,EM AD EN BC ⊥⊥,垂足分别为,M N ,同理可得四边形M END 是矩形,∴90MEN ∠=︒,∵EF CE ⊥,∴MEG CEN CEN ∠+∠=∠+∠同(2)可得EMG ENF △∽△,∴EG EM EF EN=,∵B α∠=,AE kBE =,【考点六相似三角形中的动点探究应用问题】5BC 【答案】(1)证明见解析;(2)①证明见解析;②AE MN ∥,理由见解析;(3)223或4.【分析】(1)根据题可得90AEC ACE ∠+∠=︒、90ACD ACE ∠+∠=︒(2)①90EAC BAD ∠=∠=︒ .EAC BAC BAD BAC ∴∠-∠=∠-∠,即BAE CAD ∠=∠.AB AD = ,由(1)知AEC ACD ∠=∠,(ASA)BAE DAC ∴ ≌.BE DC ∴=.∵M ,F 分别是BD ,BC 的中点,MF ∴是BCD △的中位线.2CD MF ∴=.2BE MF ∴=.②//AE MN ,理由如下:(3)解:①如图:当点E在线段CF交于点K,335,AB AB BC == ,∴5BC =∵四边形ABCD 是矩形,∴90BCD AB CD ∠=︒⊥,,∴90OHC BCD OPC ∠=∠=∠=∴四边形OHCP 是矩形,同理可得OPF OHE ∽,即∴3354CF CP PF =+=+=【变式训练】【基础巩固】(1)参照小慧提供时思路,利用图(2)请证明上述结论;(2)A 、B 、C 、是同一直线l 上从左到右顺次的点,点P 是直线外一动点,【尝试应用】①若2AB =,1BC =,延长AB 至D ,使CD BC =【拓展提高】②拓展:若AB m =,BC n =,()m n ≠,P 点在长为___________(用含m 、n 的式子表示).【答案】(1)见解析;(2)见解析;【尝试应用】①2,【拓展提高】∥,交作CE AP∴∽APB CEBPA AB∴=,CE BC∠PB平分APC∴∠=∠APB CPB∴∠=∠,CPB E=延长PC至T,使CT PC延长PC 至Q ,使PQ AP =PCD QCB ∴∽ ,PD PC BQ CQ∴=,PB 平分APC ∠,AP AB m PC BC n∴==,不妨设AP ma =,PC na =由上知:PAB QPB ≌ ,BQ AB m ∴==,(1)操作推断如图1,点P是正方形纸片ABCD的边AD的中点,沿BP折叠,使点A落在点连接PF.则BPF∠=︒.(2)迁移探究小华在(1)的条件下,继续探究:如图2,延长PM交CD于点E,连接设BF与AD交于E,∵DF AB∥,∴ABE DFE∽,∴AB AE BE DF DE EF==,∵DF AB∥,∴ABH DFH∽,∴AB AH BH DF DH FH==,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形复习专题一
——相似形三角形与一次函数
一、例题讲解
二、练习巩固
1.如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x 轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,
90OPM MQN ∠=∠=。

试求:
(1)AN ∶AM 的值;
(2)一次函数y kx b =+的图象表达式。

四边形OABC 是放在直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将BC 边折叠,使点B 落在边OA 的点D 处,已知 43DA AE ,55CE == 是否相似?说明理由与判断DAE COD 1.∆∆2、根据相似和已知条件你能求解出那些结论?
3、求直线CE 与x 轴的交点P 的坐标
4、是否存在过点D 的直线l ,使直线l 、直线CE 与x 轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,试写出其解析式并画出相应的直线;如果不存在,试说明理由。

三、自我提高
.如图,在平面直角坐标系中,点(30)C -,,点A B ,分别在x 轴,y 轴的正半轴上,且满足2310OB OA -+-=.
(1)求点A ,点B 的坐标.
(2)若点P 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连结AP .设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
设一次函数y=12x+2的图象为直线l ,直线l 与x 轴、y 轴分别交于点A 、B ,如图:
(1)求点A 和点B 的坐标;
(2)直线m 过点P (-3,0),若直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似,求直线m 与y 的交点N 的坐标.
相似三角形复习专题二
动态型问题(一)动点题
例题讲解:
1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解y
x A O C B
析式;(2) 当t 为何值时,△APQ 与△AOB 相似? (3) 当t 为何值时,△APQ 的面积为5
24个平方单位?
3、如图,在矩形ABCD 中,AB =6米,BC =8米,动点P 以2米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1米/秒的速度从点C 出发,沿CB 向点B 移动,设P 、Q 两点移动t 秒(0<t<5)后,四边形ABQP 的面积为S 米2。

(1)求面积S 与时间t 的关系式;
(2)在P 、Q 两点移动的过程中,四边形ABQP 与△CPQ 的面积能否相等?若能,求出此时点P 的位置;若不能,请说明理由。

分析:本题是一个动态几何问题,也是一个数形结合的典型问题,综合性较强。

5、已知:如图,△ABC 中,∠C=90°,AC =3厘米,CB =4厘米.两个动点P 、Q 分别从
A 、C 两点同时按顺时针方向沿△ABC 的边运动.当点Q 运动到点A 时,P 、Q 两点运动即停止.点P 、Q 的运动速度分别为1厘米/秒、2厘米/秒,设点P 运动时间为t (秒).
(1)当时间t 为何值时,以P 、C 、Q 三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2;
(2)当点P 、Q 运动时,阴影部分的形状随之变化.设PQ 与△ABC 围成阴影部分面积为S (厘米2),求出S 与时间t 的函数关系式,并指出自变量t 的取值范围;
(3当t 为多少时,⊿CPQ ∽⊿CAB
y
x O P
Q A
B C
P Q
4、如图,在梯形ABCD 中,A D ∥BC, AD=3, DC=5,
AB= , ∠B=45°, 动点M 从B 点出发沿线段BC
以每秒2个单位长度的速度向终点C 运动,动点N 同
时从C 点出发沿线段CD 一每秒1个单位长度的速度向终点D 运动,设运动的时间t 秒。

(1)、求BC 的长。

(2)当M N ∥AB 时,求t 的值.
5、如图在矩形ABCD 中,AB=12cm, BC=6cm,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t(s)表示移动的时间,那么:
(1)、当t 为何值时,⊿PAQ 为等腰直角三角形。

(2)、求四边形QAPC 的面积;提出一个与计算结果有关的结论。

(3)、当t 为何值时,以P 、A 、Q 为顶点的三角形与⊿ABC 相似。

6、如图AB 是一根电杆,杆顶A 处有一个路灯,一个高1.8m 的人站在路灯下D 处,影子DC 长1.5m ,他向远离路灯的方向前行6米到达F 处,影子FH 长2.5 m ,求路灯的高度。

相关文档
最新文档