梁纯弯曲正应力测定实验.
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告梁的纯弯曲正应力实验报告一、实验目的本实验旨在通过对实验材料进行纯弯曲加载,测量其正应力和弯曲角度,从而掌握材料在纯弯曲状态下的应力特性,并探究材料性能的影响因素。
二、实验原理当梁在纯弯曲时,受到的载荷可以分解为一个弯矩和一个剪力。
由于实验中去除了外部作用力,剪力为零,因此我们只需要考虑弯矩作用下的应力情况。
在梁的截面上,由于受到弯曲,不同位置的应变不同,因此会形成不同大小的应力。
在正常情况下,当梁未发生破坏时,梁的内部应力呈线性分布,即受到的弯矩越大,所受到的应力也会相应增大。
三、实验设备本实验所使用的设备包括:1.纯弯曲实验台2.测力仪3.梁材料(一定长度的圆形钢管或方管)四、实验步骤1. 选择一段合适材质的梁进行实验。
2. 将梁固定在纯弯曲实验台上。
3. 在梁的一端加上一定荷载。
4. 通过测力仪测量在梁部位不同位置受到的正应力。
5. 在梁的另一端加上一定数量的荷载,并重复步骤4,记录正应力。
6. 重复以上操作,直到梁发生破坏。
五、实验结果在实验过程中,我们记录了梁不同位置受到的正应力,并根据实验数据分析了不同弯矩下的应力分布曲线。
实验结果表明,在纯弯曲状态下,梁的内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
六、实验分析根据实验结果,我们可以发现梁的性能会受到材料的影响。
不同的材料具有不同的弯曲特性,不同的性能和抗断性能。
而在实验中,我们也可以通过调整材料的材质和长度来控制弯曲的程度,从而控制梁的应力分布和破坏点位置。
七、实验结论本实验通过纯弯曲实验台对梁进行弯曲测试,得到了不同弯矩下的应力分布曲线。
实验结论表明,梁在纯弯曲状态下,其内部应力呈线性分布,随着弯矩的增大,所受应力也会逐渐增大,直到梁发生破坏。
同时,不同材质和长度的材料在弯曲状态下具有不同的弯曲特性和抗断性能。
纯弯曲梁正应力测定试验(精)

实验四 纯弯曲梁正应力测定试验一、实验目的1. 掌握电测法测定应力的基本原理和电阻应变仪的使用。
2. 验证梁的理论计算中正应力公式的正确性,以及推导该公式时所用假定的合理性。
二、试验原理梁弯曲理论的发展,一直是和实验有着密切的联系。
如在纯弯曲的条件下,根据实验现象,经过判断,推理,提出了如下假设:梁变形前的横截面在变形后仍保持为平面,并且仍然垂直于变形后梁的轴线,只是绕截面内的某一轴旋转了一定角度。
这就是所说的平面假设。
以此假设及单向应力状态假设为基础,推导出直梁在纯弯曲时横截面上任一点的正应力公式为 y I M z=σ (4-1) 式中:M--横截面上的弯矩;I z —横截面轴惯性矩;Y —所求应力点矩中性轴的距离。
整梁弯曲试验采用矩形截面的低炭钢单跨简支梁,梁承受荷载如图4-1所示。
图4-1 整梁弯曲试验装置 在这种载荷的作用下,梁中间段受纯弯曲作用,其弯矩为Fa ,而在两侧长度各为a 的两段内,梁受弯曲和剪切的联合作用,这两段的剪力各为±F 。
实验时,在梁纯弯曲段沿横截面高度自上而下选八个测点,在测点表面沿梁轴方向各粘贴一枚电阻应变片,当对梁施加弯矩M 时,粘贴在各测点的电阻应变片的阻值将发生变化。
从而根据电测法的基本原理,就可测得各测点的线应变值εj (角标j 为测点号,j=1,2,3, …,8)。
由于各点处于单向应力状态,由虎克定律求得各测点实测应力值R 实j ,即 j j E εσ=实梁表面的横向片是用来测量横向应变的,可用纵向应变与横向应变的关系求得横向变形系数μ值。
所谓叠梁,是两根矩形截面梁上下叠放在一起,两界面间加润滑剂,如图3-2所示。
两根梁的材料可相同,也可不同;两根梁的截面高度尺寸可相同,亦可相异。
只要保证在变形时两梁界面不离开即可。
图4-2 所示的叠梁,在弯矩M 的作用下,可以认为两梁界面处的挠度相等,并且挠度远小于梁的跨度;上下梁各自的中性轴,在小变形的前提下,各中性层的曲率近似相等。
梁纯弯曲实验

纯弯曲梁的正应力测定实验一、实验目的1. 测定梁在纯弯曲时横截面上正应力大小和分布规律2. 验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具1. 组合实验台中纯弯曲梁实验装置2. XL2118A 系列静态电阻应变仪3. 游标卡尺、钢板尺 三、实验原理及方法在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任一点的正应力,计算公式为σ=M·y/I z式中:M ——为弯矩;M=P·a/2;I z ——为横截面对中性轴的惯性矩;y ——为所求应力点至中性轴的距离。
铰支梁受力变形原理分析简图如图1所示。
图1 纯弯曲梁受力分析简化图为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片(如图2)。
实验可采用半桥单臂、公共补偿、多点测量方法。
加载采用增量法,即每增加等量的载荷ΔP ,测出各点的应变增量Δεi 实,然后分别取各点应变增量的平均值ε,依次求出各点的应力增量Δσi 实=EΔεi 实 ( i=1,2,3,4,5)纯弯曲实验装置简图弯矩: M=F a F=P/2F QMc)构件AB 力学简化模型将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。
图 2应变片在梁中的位置实验接线方法实验接桥采用1/4桥(半桥单臂)方式,应变片与应变仪组桥接线方法如图3所示。
使用弯曲梁上的应变片Ri(R1,R2,R3,R4,R5即工作应变片)分别连接到应变仪测点的A/B上,测点上的B和B1用短路片短接;温度补偿应变片Rt连接到桥路选择端的A/D上,桥路选择短接线将D1/D2短接,并将所有螺钉旋紧。
四、实验步骤1.设计好本实验所需的各类数据表格。
2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变片到中性层的距离y i。
见附表13.拟订加载方案。
可先选取适当的初载荷P0=200N,估算P max(该实验载荷范围P max≤2000N),分4级加载(300N,600N,900N,1200N)。
梁的纯弯曲正应力实验

梁的纯弯曲正应力实验
工作片
R1
B
A
R2 温度补偿片 C 固定电阻
相同应变片R1.R2,R1贴 在构件受力处,R2贴在附 近不受力处,环境温度对 R1.R2引起的阻值变化相 同,为DRT,则
R4
R3
D
梁的纯弯曲正应力实验
五、实验数据的记录与计算
梁的纯弯曲正应力实验
六、注意事项
1.加载时要缓慢, 防止冲击。 2.读取应变值时, 应保持载荷稳定。 3.各引线的接线柱必须拧紧, 测量过程中不要触动引线, 以 免引起测量误差。
梁的纯弯曲正应力实验
一、实验目的
1.测定纯弯曲下矩形截面梁横截面上正应力的 分布规律,并与理论值比较;
2.熟悉电测法基本原理和电阻应变仪的使用。 二、实验仪器 1.纯弯曲试验装置;
2.YD-15型静态数字电阻应变仪。
梁的纯弯曲正应力实验
三、试验原理
1. 结构示意图及理论值计算
b hz
y
F/2 a
F/2
DR1 R1
-
DR2 R2
DR3 R3
-
DR4 R4
)
E 4
K
(
1
-
2
3
-
4
)
梁的纯弯曲正应力实验
4.电桥接法及温度补偿 1.电桥接法: 全桥接法(四个电阻均为应变片);
半桥接法(R1、R2为应变片, R3.R4为固定电阻)
两种接法中的应变片型号、阻值尽可能相同 或接近, 固定电阻与应变片阻值也应接近。
F F/2
ma m
FQ +
梁的纯弯曲正应力实验报告

梁的纯弯曲正应力实验报告一、实验目的。
本实验旨在通过对梁的纯弯曲实验,了解在梁的弯曲变形中产生的正应力分布规律,并通过实验数据的处理和分析,验证梁的正应力分布与理论计算的结果是否一致。
二、实验原理。
梁的纯弯曲是指梁在外力作用下只产生弯曲变形,不产生轴向拉伸或压缩的情况。
在梁的弯曲变形中,梁的上表面产生拉应力,下表面产生压应力,且在梁的截面上,不同位置的应力大小不同。
根据梁的弯曲理论,梁在弯曲变形中的正应力分布规律可以通过理论计算得出。
三、实验装置和仪器。
本实验所使用的实验装置包括梁的支撑装置、加载装置、测力传感器、位移传感器等。
其中,测力传感器用于测量梁在加载过程中的受力情况,位移传感器用于测量梁在加载过程中的位移情况。
四、实验步骤。
1. 将梁放置在支撑装置上,并调整支撑装置,使梁能够自由地产生弯曲变形;2. 将加载装置与梁连接,并通过加载装置施加一定的加载力;3. 同时记录梁在加载过程中的受力情况和位移情况;4. 依据实验数据,计算梁在不同位置的正应力大小,并绘制出正应力分布图;5. 将实验数据与理论计算结果进行对比分析,验证梁的正应力分布规律。
五、实验数据处理和分析。
通过实验测得的数据,我们计算出了梁在不同位置的正应力大小,并绘制出了正应力分布图。
通过对比实验数据与理论计算结果,我们发现梁的正应力分布与理论计算的结果基本一致,验证了梁的正应力分布规律。
六、实验结论。
通过本次实验,我们了解了梁的纯弯曲正应力分布规律,并通过实验数据的处理和分析,验证了梁的正应力分布与理论计算的结果基本一致。
因此,本实验取得了预期的实验目的。
七、实验总结。
本次实验通过对梁的纯弯曲实验,加深了我们对梁的弯曲变形和正应力分布规律的理解,同时也提高了我们的实验操作能力和数据处理能力。
希望通过本次实验,能够对大家有所帮助。
八、参考文献。
[1] 《材料力学实验指导书》。
[2] 《材料力学实验讲义》。
以上为梁的纯弯曲正应力实验报告,谢谢阅读。
实验六纯弯曲梁正应力的测定一、实验目的二、实验仪器

实验六 纯弯曲梁正应力的测定一、实验目的1. 初步掌握电测法的基本原理和方法。
2. 测定梁在纯弯曲时横截面上正应力大小和分布规律;验证纯弯曲梁的正应力计算公式。
二、实验仪器、设备和工具1、组合实验台纯弯曲梁实验装置。
2、静态电阻应变仪。
3、游标卡尺、钢板尺。
三、实验原理梁受纯弯曲时,纯弯曲正应力计算公式为:ZI My=σ式中:M-弯矩-横截面对中性轴的惯矩Z I y-所求应力点到中性轴的距离由上述可知,梁在纯弯曲时,各点处的正应力沿横截面高度按直线规律分布。
如将电阻应变计粘贴在距中性层不等的位置上(见图),测得纯弯曲时沿横截面高度各点的纵向应变ε。
根据理论推导可知,各纵向纤维层只受简单拉伸或压缩,由单向应力状态的虎克定律εσE =,可求出各点处的实验应力实σ。
要测纯弯曲梁沿截面高度各点的应变值,可采用温补半桥组桥方法,见电阻应变片各种接桥方法(1)。
加载采用增量法,即每增加等量的载荷,测出各点的应变增量P ΔεΔ,然后分别取各点应变增量的平均值i εΔ,记录应变仪读数并填入表中,依次求出各点的应变增量实i εΔ.实实i E εσΔ=将实测应力值实σ与理论应力值理σ进行比较,以验证弯曲正应力公式。
四、实验步骤(一)、实验准备1、 按规定位置粘贴电阻应变计,焊线、防护(己由生产厂家准备好)。
2、 制定加载方案,四级加载:20Kg、40Kg、60Kg、80Kg。
3、 接通传感器和负荷显示器及电阻应变仪,预热10分钟。
4、 记录梁的截面尺寸,载荷作用点到支点距离及各应变计的位置。
见附表15、 加初载荷0P (一般取0P =10%max P 左右)估算max P ,记下初读数。
(二)、进行实验1、 均匀缓慢加载到初载荷0P ,记下各点应变的初始读数:后分级等量加载,每增加一级载荷,依次记录各点电阻应变片的应变值仪i ε,直到最终载荷。
实验至少重复两次。
见附表2 2、 按力值对照表分四级加载。
3、 做完实验后,卸掉载荷,仪器复原。
梁纯弯曲正应力测定实验(最全)word资料

梁纯弯曲正应力测定实验(一)实验目的*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;*熟悉电测初步知识和测量方法。
(二)实验原理*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表*注:应力平均值(增量)计算:=E 理论值计算:zM yI σ∆⋅∆=,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题*弯曲正应力的大小与材料的弹性模量E 是否有关?*分析理论值计算与实验值产生的误差原因。
(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?临床实验室定量测定室内质量控制一术语和定义1偏倚 bias试验结果偏离可接受参考值的系统偏离(带有正负号)。
2不精密度 imprecision一组重复测定结果的随机离散,其值由统计量定量表示为标准差或变异系数。
3质量控制quality control质量管理的一部分,致力于满足质量要求。
[GB/T 19000-2000,]4 质量控制策略 quality control strategy质控品种类、每种检测频次、放置的位置,以及用于质控数据解释和确定分析批是在控还是失控的规则。
5 随机误差 random error测量结果与在重复性条件下对同一被测量进行无限多次测量所得结果的平均值之差。
6 系统误差 systematic error在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。
7 可报告范围 reportable range在仪器、试剂盒或系统的测定响应之间的关系,显示是有效的期间内试验值范围。
8 标准差 standard deviation观察值或测定结果中不精密度的统计度量。
变异性/离散的度量是总体方差的正平方根。
二质量控制的目的质量控制方法是用来监测检验方法的分析性能,警告检验人员存在的问题。
6 纯弯曲梁的正应力实验

实验六纯弯曲梁的正应力实验一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算公式;3. 测定泊松比μ;4. 掌握电测法的基本原理;二、实验设备1. 材料力学多功能实验台;2. 静态数字电阻应变仪一台;3. 矩形截面梁;4. 游标卡尺;三、实验原理1. 测定弯曲正应力本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。
实验装置受力简图如下图所示。
根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 21=,因此梁的BC 段发生纯弯曲。
在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。
D C B a F/2F/2E a ⑥ ⑤ ①② ④ ③ hb根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律,即可通过测定的各点应变,计算出相应的实验应力。
采用增量法,各点的实测应力增量表达式为:i i E 实实εσ∆=∆式中:i 为测量点的编号,i =1、2、3、4、5;i 实ε∆ 为各点的实测应变平均增量;为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ⋅=σ ; 增量表达式为: zi i I y M ⋅∆=∆σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯曲梁的正应力计算公式。
以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。
将5个不同测点通过计算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。
2. 测定泊松比在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式εεν'=,确定泊松比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梁纯弯曲正应力测定实验
(一)实验目的
*在承受纯弯曲的钢梁上,测取其横截面上各点的正应力,验证梁的正应力公式和观察应力的分布规律;
*熟悉电测初步知识和测量方法。
(二)实验原理
*试件、尺寸、设备——见系网页中“教学资源栏目”之“实验指导” *操作步骤、仪器使用(同上) (三)数据处理 *测量过程记录表
*注:应力平均值(增量)计算:=E 理论值计算:z
M y
I σ∆⋅∆=
,对应载荷增量∆F 所产生的弯矩:∆M=0.5∆F .a (四)思考题
*弯曲正应力的大小与材料的弹性模量E 是否有关?
*分析理论值计算与实验值产生的误差原因。
(列出可能的几种) *若在实验中出现与中性层对应的点的数值为“非零”,是什么原因?。