待定系数法求函数的解析式

合集下载

用待定系数法求函数解析式

用待定系数法求函数解析式
ห้องสมุดไป่ตู้
• 二次函数的图象经过(0,0)(-1,-1), (1,9) 求这个函数的解析式
• 例题2:已知二次函数的图像的顶点坐标为 (1,-3),且与y轴交于(0,1)。试确 定此函数的解析式。
解:由题意可设抛物线的解析式为: y=a(x-1) 3
2
函数图像与y轴交于点(0, 1 ) 1=(0-1) 3 a 4
y x
y
y x
y
x x
y=a(x-h)²
y=ax²
y=a(x-h)² +k
y=ax² +c
例题1:已知二次函数图像经过点A(0,-1) B(1,0),C(-1,2),求这个函数的解 析式。
解:设二次函数的解析式为 y=ax 2 bx c 函数图像经过点A(0,-1),B(1,0),C(-1,2) -1=c 0=a+b+c 2=a-b+c a 2 b 1 c 1 函数解析式为: y 2x2 x 1
课堂小结
确定二次函数解析式的一般方法是待定系数法, 在选择二次函数的关系式设成什么形式时,可以根据 题目的条件灵活选择,以简单为原则,一般地二次函 数的解析式可以设为如下三种形式: (1)一般式(三点式) y=ax 2 bx c 当题目给出不特殊的三个点的坐标时,可用此式。
2
(2)顶点式 y a( x h) k 当题目给出两点且其中有一个为顶点时,可用此式。
2
y 4( x 1) 3
2
即:y 4 x 8x 1
2
例题3:已知二次函数的图像点A(1,0) , 1 3 B(3,0),C( ,- ),求这个函数的解析 2 2 式。
解:设抛物线的解析式为: y a ( x 1)( x 3) 1 3 抛物线经过点( ,- ) 2 2 3 1 1 - a ( 1)( 3) 2 2 2 6 a 5 6 y ( x 1)( x 3) 5 6 2 24 18 即:y x x 5 5 5

用待定系数法求函数解析式

用待定系数法求函数解析式
由已知得:
k+b=2 解方程得:k=1, b=1 因此:所求二次函数是:y=x+1
例题解析
例3 已知一元二次函数的顶点坐标为(1,-2)并 且经过点(3,0)求f(x)的解析式.
解: 设所求的二次函数为f(x)= a(x-k)2+h (a0)
由已知得: f(x)=a(x-1)2-2
将点(3,0)代入上式得a= 1
2
因此:所求二次函数是:f(x) =1 2(x-1) 2-2
例题解析
例2 已知一元二次函数f(x)在x=-1,0,1处的函 数值分别为7,-1,-3,求f(x)的解析式.
解: 设所求的二次函数为f(x)= ax2+bx+c (a0)
a-b +c=7
由已知得:
c=-1
a+b+c=-3
解方程得: a=3, b=-5, c =-1
如果知道这个函数的一般形式, 可先把所求函数 写为一般形式,其中系数待定,然后再根据题设 条件求出这些待定系数. 这种通过求待定系数来 确定变量之间关系式的方法叫做待定系数法.
待定系数法的步骤:
设列解答
例题解析
例1 已知一个一次函数的图象过两点(-1,0), (1,2),求这个函数的解析式?
解:设所求的一次函数为y=kx+b -k+b=0
因此:所求二次函数是: y=3x2-5x-1
跟踪练习:
1.已知一次函数的图象经过两点(-1,0), (1,2),求这个函数的解析式.
2.已知一元二次函数的图像经过三点(0,-1), (1,2), (-3,2),求这个函数的解析式.
3.已知一元二次函数的图像顶点为(0,-1),且 经过点(1,2)求这个函数的解析式.

待定系数法求函数解析式

待定系数法求函数解析式
已知三个点坐标三对对应值,选择一般式
已知顶点坐标或对称轴或最值,选择顶点式
已知抛物线与x轴的两交点坐标,选择交点式
例1、已知一个二次函数的图象过点(0,-3) (4,5)(-1, 0)三点,求这个函数的解析式?
解: 设所求的二次函数为 y=ax2+bx+c

∵二次函数的图象过点(0,-3)(4,5)(-1, 0) a= 1 c=-3 解得 b=-2 16a+4b+c=5 ∴ x=0时,y=-3; a-b+c=0 c= -3
交点式: y=a(x-x1)(x-x2)
-1
o
1
x
顶点式: y=a(x-h)2+k
故所求的抛物线解析式为 y=- (x+1)(x-1) 即:y=-x2+1
已知一个二次函数的图象过点(0,-3) (4,5) 对称轴为直线x=1,求这个函数的解析式?
解:设所求的二次函数为 y=ax2+bx+c c=-3 依题意得 16a+4b+c=0 - b =1 2a
用待定系数法求函数的解析式的一般步骤
一、设 二、代 三、解 四、还原
用待定系数法确定二次函数的解析式时, 应该根据条件的特点,恰当地选用一种函数表达式。
二次函数常用的几种解析式
一般式 顶点式 交点式 y=ax2+bx+c (a≠0) y=a(x-h)2+k (a≠0) y=a(x-x1)(x-x2) (a≠0)
x=4时,y=5;
∴所求二次函数为 y=x2-2x-3
x=-1时,y=0;
最低点为( x=1,y最值 1, =-4 -4)
例2、已知抛物线的顶点为(1,-4), 且过点(0,-3),求抛物线的解析式?

考点02 求函数解析式的3种方法(解析版)

考点02  求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

四、画龙点晴
规律1:确定一个待定系数需要一个条件, 规律 :确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件 个条件. 确定两个待定系数需要 个条件. 规律2:确定正比例函数的表达式需要一个条件, 规律 :确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件. 确定一次函数的表达式需要 个条件. 个条件
四、画龙点晴
1、列方程解应用题的基本步骤有哪些? 、列方程解应用题的基本步骤有哪些? 2、用待定系数法求一次函数解析式的基本步骤: 、用待定系数法求一次函数解析式的基本步骤 找两点坐标 设 列 解 答
思路: 思路:求一次函数的解析式 求k、b的值 列二元一次方程组 解方程组
五、融会贯通——分类与分层 融会贯通 分类与分层
{
设 列 解 答
{
一次函数的解析式为
y=2x-1

1、已知一次函数y=kx+b ,当x=2时y的值为 ,当x=- 、已知一次函数 = + 的值为4, =-2 = 时 的值为 =- 时, y的值为 ,求k、b的值 (P120/6) 的值为-2, 、 的值.( ) 的值为 的值 2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 、 经过点( , )和点( , ), ),求 、 = + 经过点 b的值 ( P118/2) 的值. 的值 ) 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 、已知一次函数的图象经过点 , 与 , 的解析式。( 的解析式。( P120/7) ) 4、 已知直线 y=kx+b经过点(3,6)和点 、 经过点( , ) = + 经过点 这条直线的函数解析式。 这条直线的函数解析式。 ( P137/4) )
5 = 3k + b − 9 = −4k + b 解得 k =2 b = −1

用待定系数法求一次函数解析式

用待定系数法求一次函数解析式

y=3x-30
60 元上网费用; (2)若小李 4 月份上网 20 小时,他应付________
(3)若小李 5 月份上网费用为 75 元,则他在该月份的上网时间 是__________.
35
点拨:(1)当 x≥30 时,设函数解析式为 y=kx+b,
30k b 60 k 3 则 ,解得 .所以 y=3x-30. b 30 40k b 90
k=2 ∴ y=2 x +2 ∴ x=-1 时 y=度y(厘米)在一定限度内 所挂重物质量x(千克)的一次函数,现已测得 不挂重物时弹簧的长度是6厘米,挂4千克质量 的重物时,弹簧的长度是7.2厘米,求这个一次 函数的解析式。
解:设这个一次函数的解析式为:y=kx+b 根据题意,把x=0,y=6和x=4,y=7.2代入,得: b=6 k=0.3 4k+b=7.2 解得 b=6
Page 2
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解: ∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b
解得
b=-5
∴这个一次函数的解析式为y=2x-5
Page
3
变式4:已知一次函数y=kx+b 的图象 与y=2x平行且过点(2,-1).求这个一 次函数的解析式. ∵ y=kx+b 的图象与y=2x平行. 解:
当B点的坐标为(0,4)时,则 y=kx+4
4 ∴ 0=3k+4, ∴k= - ∴ 3 4 ∴ 0=3k+4, ∴k= 3
y= -
4 x+4 3
当B点的坐标为(0,-4)时,则 y=kx-4

用待定系数法求解析式

用待定系数法求解析式

例3.
练习3: 已知一元二次函数f(x)的图象经过点(3,8),
且与x轴交于两点(-1,0),(5,0),求函数f(x)的
已解析解知:式由一。题元意可二设次函数函的数解析f式(x为)的f (图x) 象a(x经1)(过x 点5) (0,因3为)图且象经与过(X3轴,交8)于两点(1,0) ,(3,代入0)得 ,8求 a函(3数1)(3f5()x)的解析式。
所以 a 1
因此,函数的解析式为 f (x) (x 1)(x 5)
三、小结:
已知条件
已知一次函数经过两点 A(x0,y0),B(x1,y1)
可设函数解析式为
f (x) kx b(k 0)
已知二次函数经过不重
合的三点A(x0,y0),B(x1,y1),
C(x2,y2)
f (x) ax2 bx c(a 0)
这种通过求待定系数来确定变量之间关系(函
数解析式)的方法叫做待定系数法。
二、典例讲解与练习:
例1、已知一元二次函数f(x)在x=-1,0,1处的函 数值分别为7,-1,-3,求这个函数 f(x)的解析 式。
练习1:
已知一元二次函数f(x),且x=0,-1,1 处的函数值分别为3, 6, 2,求这个函数 f(x)的解析式。
思考:
问题1: 一元二次函数 f(x)的图象的对称轴是直线x=2, 并且图象经过点P(2,0),Q(0,4),求函数f(x)的解 析式。
问题2: 一元二次函数 f(x)满足 f(2+x)=f(2-x) , 且函数 有最大值2,与 y 轴交于点(0,-6),求函数 f(x)的解析式。
一、复习引入
1.已学的函数及其解析式:
①正比例函数: y k x
②反比例函数: ③一 ຫໍສະໝຸດ 函 数:y k xy kxb

用待定系数法求函数解析式用

用待定系数法求函数解析式用
1、(2011年郴州)求与直线 y x 平行,并且
经过点P(1,2)的一次函数的解析式,则这个一次
函数解析式为 y x 1 。
2、(2007年郴州)已知正比例函数y=kx经过点 P(1,2),求这个正比例函数的解析式为 y 2x 。
3、(2010年郴州)已知双曲线 (1,2)则双曲线的解析式为
y
k x
y
的图象经过A
2 。
x
展现 自我
1、(2013年郴州)已知:如图,一次函数的图
象与y轴交于C(0,3),且与反比例函数y= 2 的图象在第一象限内交于A,B两点,其中 x
A(1,a),求这个一次函数的解析式.1
这个一次函数的解析式y=-x+3

2、(2012年郴州)已知反比例函数的图象与 直线y=2x相交于A(1,a),求这个反比例 函数的解析式. 这个反比例函数的解析式为y= 2
(1)求抛物线的表达式; (2)、(3)待续
y 2 x2 11 x 4 33
方法点拔 看图找点 见形想式 建模求解
畅谈所得
感悟提升
通过本节课的复习你对用待 定系数法求函数解析式又有什么 新的认识?
轻松 应对
任选以下三个条件中的一个,求二次函数
y=ax2+bx+c的解析式; ① 0)已知直线上两个点的坐标
反比例函数
yy kk(k 0) xx
二次函数一般式 y=ax2+bx+c
已知双曲线上一个点的坐标 已知抛物线上三个点的坐标
二次函数顶点式 y=a(x-h)2+k 已知抛物线顶点坐标(h, k)
二次函数交点式
y=a(x-x1)(x-x2)
已知抛物线与x 轴的两个交 点(x1,0)、 (x2,0),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的解析式
1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。

直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --=
b:与y 轴交点的刻度( 纵坐标)
1:若点A (2,4)在直线y=kx-2上,则k=( )
A .2
B .3
C .4
D .0
2:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。

3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。

4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( )
A .-2
B .-5
C .2
D .5
5.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( )
A .(0,0)
B .(0,1)
C .(0,-1)
D .(-1,0)
6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( )
A .y <1
B .y <0
C .y >1
D .y <2
7.已知一次函数y=kx+b 的图象如图所示
(1)当x <0时,y 的取值范围是______。

(2)求k ,b 的值.
用待定系数法求二次函数解析式
二次函数的解析式有三种基本形式:
1、一般式:y=ax2+bx+c (a≠0)。

C:与y轴交点刻度(纵坐标)
2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。

3、交点式:y=a(x-x
1)(x-x
2
) (a≠0),其中x
1
,x
2
是抛物线与x轴的交点
的横坐标。

1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式?
2.已知二次函数的图象经过点)4
,0(
),
5
,1
(-
-
-和)1,1(.求这个二次函数的解析式.
3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式?
4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式?
5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式?
6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。

求经过A、B、C 三点的抛物线的解析式。

相关文档
最新文档