2020高考数学专题复习 概率 文
高考大题规范解答系列(六)——概率与统计

高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③
2020届高考文数二轮复习常考题型大通关(全国卷):第19题+统计概率+Word版含答案

常考题型大通关:第19题统计概率1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。
射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a,b的值;(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表:年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60]频数 5 10 10 5 10赞成人数 4 6 8 4 91.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[)本亊件,并求选取2人中恰有1人持不赞成态度的概率.4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。
现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者.组号分组频数频率160,165 5 0.05第1组[)第2组[165,170)0.35第3组[170,175)第4组[175,180)20 0.20第5组[180,185)10合计100 1.001.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;2.为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?3.在2的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?5、某中学组织了一次高三学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.1.若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?2.在1中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.6、某乡镇根据中央文件精神,在2014年通过精准识别确定建档立卡的贫困户共有473户,结合当地实际情况采取多项精准扶贫措施,从2015年至2018年该乡镇每年脱贫户数见下表:年份2015 2016 2017 2018 年份代码x 1 2 3 4脱贫户数y55 69 71 85(1)根据2015-2018年的数据,求出y关于x的线性回归方程$$y bx a=+$;(2)利用(1)中求出的线性回归方程,试判断到2020年底该乡镇的473户贫困户能否全部脱贫.附:$$1221,ni iiniix y nxyb a y bxx nx==-==--∑∑$$7、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。
文科高考数学重难点05 概率与统计(解析版)

重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2021·广西钦州一中高三开学考试(文))点在边长为2的正方形内运动,P ABCD 则动点到顶点的距离的概率为( )P A 2PA <A .B .C .D .14124ππ【答案】C 【解析】分析:先根据题意得出PA 等于2 的临界值情况,再根据几何概型求解即可.详解:由题可知当PA=2时是以A 为圆心2为半径的四分之一圆,所以概率为P=,故选C21444r ππ=2.(2020·全国高三其他模拟(文))从某高中女学生中选取10名学生,根据其身高、体重数据,得到体重关于身高的回归方程,用来刻画回归效(cm)(kg)ˆ0.8585yx =-果的相关指数,则下列说法正确的是( )20.6R =A .这些女学生的体重和身高具有非线性相关关系B .这些女学生的体重差异有60%是由身高引起的C .身高为的女学生的体重一定为170cm 59.5kgD .这些女学生的身高每增加,其体重约增加0.85cm 1kg 【答案】B【分析】因为回归方程为,且刻画回归效果的相关指数,所以,ˆ0.8585y x =-20.6R =这些女学生的体重和身高具有线性相关关系,A 错误;这些女学生的体重差异有60%是由身高引起的,B 正确;时,,预测身高为的女学生体重为,C 错170x =ˆ0.851708559.5y=⨯-=170cm 59.5kg 误;这些女学生的身高每增加,其体重约增加,D 错误.0.85cm 0.850.850.7225(kg)⨯=故选:B3.(2020·石嘴山市第三中学高三其他模拟(文))网络是一种先进的高频传输技5G 术,我国的技术发展迅速,已位居世界前列.华为公司2019年8月初推出了一款手5G 5G 机,现调查得到该款手机上市时间和市场占有率(单位:%)的几组相关对应数5G x y 据.如图所示的折线图中,横轴1代表2019年8月,2代表2019年9月……,5代表2019年12月,根据数据得出关于的线性回归方程为.若用此方程分析并预y x0.042y x a =+测该款手机市场占有率的变化趋势,则最早何时该款手机市场占有率能超过0.5%(精5G 确到月)()A .2020年6月B .2020年7月C .2020年8月D .2020年9月【答案】C【分析】:,1(12345)35x =⨯++++=1(0.020.050.10.150.18)0.15y =⨯++++=点在直线上()3,0.1ˆˆ0.042y x a =+,ˆ0.10.0423a=⨯+ˆ0.026a =-ˆ0.0420.026yx =-令ˆ0.0420.0260.5y x =->13x ≥因为横轴1代表2019年8月,所以横轴13代表2020年8月,故选:C4.(2020·河南新乡市·高三一模(文))年的“金九银十”变成“铜九铁十”,全2020国各地房价“跳水”严重,但某地二手房交易却“逆市”而行.下图是该地某小区年2019月至年月间,当月在售二手房均价(单位:万元/平方米)的散点图.(图中月11202011份代码分别对应年月年月)113:2019112020:11根据散点图选择和两个模型进行拟合,经过数据处理得到的两y a =+ln y c d x =+个回归方程分别为,并得到以下一些0.9369y =+0.95540.0306ln y x =+统计量的值:是()A .当月在售二手房均价与月份代码呈正相关关系y xB .根据年月在售二手房均价约为万元/0.9369y =+20212 1.0509平方米C .曲线的图形经过点0.9369y =+0.95540.0306ln y x =+()x yD .回归曲线的拟合效果好于的拟合效0.95540.0306ln y x =+ 0.9369y =+果【答案】C【分析】对于A ,散点从左下到右上分布,所以当月在售二手房均价与月份代码呈正y x 相关关系,故A 正确;对于B ,令,由,16x =0.9369 1.0509y =+=所以可以预测年月在售二手房均价约为万元/平方米,故B 正确;20212 1.0509对于C ,非线性回归曲线不一定经过,故C 错误;()x y 对于D ,越大,拟合效果越好,故D 正确.2R 故选:C.5.(2020·全国高三专题练习(文))现行普通高中学生在高一时面临着选科的问题,学校抽取了部分男、女学生意愿的一份样本,制作出如下两个等高堆积条形图:根据这两幅图中的信息,下列哪个统计结论是不正确的( )A .样本中的女生数量多于男生数量B .样本中有两理一文意愿的学生数量多于有两文一理意愿的学生数量C .样本中的男生偏爱两理一文D .样本中的女生偏爱两文一理【答案】D【分析】:由条形图知女生数量多于男生数量,故A 正确;有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故B 正确;男生偏爱两理一文,故C 正确;女生中有两理一文意愿的学生数量多于有两文一理意愿的学生数量,故D 错误.故选:D.6.(2021·全国高三专题练习(文))下图为中国古代刘徽的《九章算术注》中研究“勾股容方”问题的图形,图中为直角三角形,四边形为它的内接正方形,已知ABC :DEFC ,,在内任取一点,则此点取自正方形内的概率为(2BC =4AC =ABC :DEFC)A .B .C .D .12592949【答案】D【分析】解:,,4tan 22AC B BC === tan 2EFB FB ∴==,解得,22()2(2)EF FB BC EF EF ==-=-43EF =,,1142422ACB S AC BC ∴==⨯⨯=::4416339DEFC S =⨯=根据几何概型.164949P ==故选:D .7.(2021·江西新余市·高三期末(文))2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数.素数对称为孪生素数.从15以p 2p +(,2)p p +内的素数中任取2个构成素数对,其中是孪生素数的概率为()A .B .C .D .13141516【答案】C【分析】以内的素数有,,,,,,共个,任取两个构成素数对,则152********有:,,,,,,,,,,()2,3()2,5()2,7()2,11()2,13()3,5()3,7()3,11()3,13()5,7,,,,,共中取法,而是孪生素数的有,()5,11()5,13()7,11()7,13()11,1315()3,5,,其概率为.()5,7()11,1331155p ==故选:C.8.(2021·安徽阜阳市·高三期末(文))如图,根据已知的散点图,得到y 关于x 的线性回归方程为,则( )ˆ0.2y bx =+ˆb =A .1.5B .1.8C .2D .1.6【答案】D【分析】因为,所以,解得12345235783,555x y ++++++++====530.2b =+ .1.6b = 故选:D .9.(2021·全国高三专题练习(文))在上随机取一个数,则事件“直线与[]1,1-k y kx =圆相交”发生的概率为( )22(x 13)25y -+=A .B .12513C .D .51234【答案】C【分析】直线与圆相交y kx =22(x 13)25y -+=555,1212d k ⎛⎫⇒∈- ⎪⎝⎭直线斜率时与圆相交,故所求概率.55,1212k ⎛⎫∈- ⎪⎝⎭10512212P ==故答案选C10.(2021·全国高三专题练习(文))给出下列说法:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆy bx a =+(,)x y ②两个变量相关性越强,则相关系数就越接近1;||r ③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少ˆ20.5y x =-x ˆy0.5个单位.其中说法正确的是( )A .①②④B .②③④C .①③④D .②④【答案】B【分析】对于①中,回归直线恒过样本点的中心,但不一定过一个样本ˆˆˆy bx a =+(x y 点,所以不正确;对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1,||r 所以是正确的;对于③中,根据方差的计算公式,可得将一组数据的每个数据都加一个相同的常数后,方差是不变的,所以是正确的;对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增ˆ20.5y x =-x 加一个单位时,预报变量平均减少0.5个单位,所以是正确的.ˆy 故选:B.11.(2020·江西吉安市·高三其他模拟(文))给出一组样本数据:1,4,,3,它们出m 现的频率分别为0.1,0.1,0.4,0.4,且样本数据的平均值为2.5,从1,4,,3中任取m 两个数,则这两个数的和为5的概率为()A .B .C .D .12231314【答案】C【分析】由题意得,样本平均值为,解得,10.140.10.430.4 2.5m ⨯+⨯+⨯+⨯=2m =即这组样本数据为1,4,2,3,从中任取两个有,,,,,共6种情况,()1,4()1,2()1,3()4,2()4,3()2,3其中和为5的有,两种情况,()1,4()2,3∴所求概率为,2163P ==故选:C.12.(2020·全国高三专题练习(理))物流业景气指数反映物流业经济发展的总体LPI 变化情况,以作为经济强弱的分界点,高于时,反映物流业经济扩张;低于50%50%时,则反映物流业经济收缩。
2020高考复习数学:概率(附答案)

利用多出来的一个月,多多练习,提升自己,加油!一、选择题(每小题5分,共60分)1.从含有10个元素的集合的全部子集中任取一个,所取的子集是含有3个元素的集合的概率是A.103 B.121 C.6445D.12815 解析:含有3个元素的集合个数为C 310,所有子集的个数为210, 所求概率P =103102C =12815. 答案:D2.把红、白、黑三张卡片随机地分给甲、乙、丙三人,每人一张,事件“甲分得红牌”与事件“乙分得红牌”是A.互斥非对立事件B.对立事件C.互相独立事件D.以上都不对解析:由定义可得,选A. 答案:A3.甲、乙两人射击的命中率分别为0.8和0.7,二人同时射击互不影响,结果都命中的概率是A.0.56B.0.06C.0.14D.0.24解析:P =0.8×0.7=0.56,选A. 答案:A4.一批零件10个,其中有8个合格品,2个次品,每次任取一个零件装配机器,若第一次取得合格品的概率是P 1,第二次取得合格品的概率是P 2,则A.P 1>P 2B.P 1=P 2C.P 1<P 2D.P 1=2P 2解析:P 1=108=54,P 2=2101819A C C =54,所以P 1=P 2.答案:B5.袋中有红、黄、白色球各一个,每次任取一个,有放回地抽取3次,则下列事件中概率是98的是A.颜色全同B.颜色全不同C.颜色无红色D.颜色不全同解析:先计算颜色全相同的概率为P =3333⨯⨯=91,所以98是颜色不全同的概率.答案:D6.一个正方体,它的表面涂满了红色.在它的每个面上切两刀,可得27个小立方块,从中任取2个,其中恰有1个一面涂有红色,1个两面涂有红色的概率为A.11716B.11732C.398 D.3916解析:由22711216C C C =398.故选C.答案:C7.从1,2,…,6这六个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A.95 B.94C.61D.65解析:3个数的和为偶数可能都是偶数或2个奇数1个偶数,其取法为C 33+C 23C 13.∴P =36132333C C C C ⋅+=61.故选C.答案:C8.从3台甲型彩电和2台乙型彩电中任取2台,其中两种品牌齐全的概率是A.51 B.52C.53D.54解析:品牌齐全的取法有C 13C 12, 故所求概率P =251213C C C =53.答案:C9.设两个独立事件A 和B 均不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是A.92 B.181 C.31D.32解析:设A 、B 发生的概率分别为p 1、p 2,由题意知⎪⎩⎪⎨⎧-=-=--).1()1(,91)1)(1(122121p p p p p p 解得p 1=p 2=32.故选D.答案:D10.(2004年潍坊市模拟题)一次课改经验交流会打算交流试点类学校的论文5篇和非试点类学校的论文3篇.排列次序可任意排列,则最先和最后交流的论文不来自同类学校的概率是A.5615B.2815C.2813D.5613解析:最先和最后交流论文来自不同学校的取法为C 15C 13A 22A 66.∴所求概率P =8866221315A A A C C =2815.答案:B11.甲袋内装有白球3个、黑球5个,乙袋内装有白球4个、黑球6个.现从甲袋内随机抽取一个球放入乙袋,充分掺混后再从乙袋内随机抽取一个球放入甲袋,则甲袋内白球没有减少的概率为A.4437B.4435C.4425D.449解析:分两类.(1)若从甲袋取黑球,其白球没有减少的概率P 1=1111811115C C C C .(2)若从甲袋中取白球,同样P 2=111181513C C C C .故白球没有减少的概率P =1111811115C C C C +111181513C C C C =8855+8815=4435.答案:B12.如果一个人的生日在星期几是等可能的,那么6个人的生日都集中在一个星期中的两天,但不是都在同一天的概率是A.662772)(2C - B.662774)(2C - C.762762)(2A -D.76276)42(A -解析:(1)每个人生日都有7种可能,故共有76种;(2)集中在两天中,故为C 27(26-2)(每人生日有两种可能,集中在同一天也为2种).所以P =66267)22(C -,故选A.答案:A二、填空题(每小题4分,共16分)13.(2004年广东,13)某班委会由4名男生与3名女生组成.现从中选出2人担任正副班长,其中至少有1名女生当选的概率是________.(用分数作答)解析:2名女生当选的取法为C 23,1名女生当选的取法为C 14C 13.∴概率为27131423C C C C +=75.答案:7514.(2005年春季上海,6)某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是________.(结果用最简分数表示)解析:∵抽查三位学生双胞胎在内的方法为C 138种, ∴P =340138C C =2601.答案:2601 15.某厂有三个顾问,假定每个顾问发表的意见是正确的概率为0.8.现就某事可行与否征求各顾问的意见,并按顾问中多数人的意见作出决策,作出正确决策的概率是________.解析:至少有两个顾问作出正确决定即可.P =C 23·0.82·0.2+0.83=0.896.答案:0.89616.六位身高全不相同的同学拍照留念,摄影师要求前后两排各三人,则后排每人均比前排同学高的概率是________.解析:6位同学共有A 66种排法,其中后排每人均比前排同学高,共有A 33A 33种排法,故其概率为663333A A A =201. 答案:201 三、解答题(本大题共6小题,共74分)17.(12分)已知集合A ={-8,-6,-4,-2,0,1,3,5,7},在平面直角坐标系中,点(x ,y )的坐标x ∈A ,y ∈A ,且x ≠y ,计算:(1)点(x ,y )正好在第二象限的概率; (2)点(x ,y )不在x 轴上的概率. 解:(1)P 1=291414A A A =92.(2)P 2=291828A A A =98(或P 2=1-29A 8=98.2,∴点(x,y)正好在第二象限的概率是98.点(x,y)不在x轴上的概率是918.(12分)某商店采用“购物摸球中奖”促销活动,摸奖处袋中装有10个号码为n(1≤n≤10,n∈N*),重量为f(n)=n2-9n+21(g)的球.摸奖方案见下表:说明:凭购物发票到摸奖处,按规定方案摸奖;这些球以等可能性从袋中摸出;假定符合条件的顾客均参加摸奖.试比较方案①与②的中奖概率的大小.解:当球的重量小于号码数时,有n2-9n+21<n,解得3<n<7.∵n∈N*,∴n的取值为4,5,6.3.∴所求的概率为P1=10设第n号与第m号的两个球的重量相等,不妨设n<m,则有n2-9n+21=m2-9m+21,即(n -m )(m +n -9)=0. ∵n ≠m ,∴m +n =9.∴(n ,m )的取值满足(1,8),(2,7),(3,6),(4,5). ∴所求的概率为P 2=210C 4=454. ∴P 1>P 2,即方案①的中奖概率大.19.(12分)如图,电路中4个方框处均为保险匣,方框内数字为通电后在一天内保险丝不被烧断的概率,假定通电后保险丝是否烧断是互相独立的.求:(1)通电后电路在一天内A 、B 恰有一个被烧断的概率; (2)通电后电路在一天内不断路的概率.解:以A 、B 、C 、D 分别记为各处保险丝不被烧断的事件,则它们的对立事件为A 、B 、C 、D ,依题意各事件是相互独立的.(1)通电后电路在一天内A 、B 恰有一个被烧断包括两种情况:A 被烧断但B 不被烧断,即A ·B 事件发生; A 不被烧断但B 被烧断,即A ·B 事件发生.由题意事件A ·B 与A ·B 互斥, 故所求概率为P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B )=(1-21)×32+21×(1-32)=21.(2)左电路系统不断路的概率为1-P (A ·B ·C )=1-P (A )P (B )P (C )=1-(1-21)(1-32)(1-43)=2423.一天内电路不断路的概率为2423×54=3023.20.(12分)某学生骑自行车上学,从家到学校的途中有2个交通岗.假设他在这两个交通岗处遇到红灯的事件是相互独立的,并且概率都是0.6,计算:(1)2次都遇到红灯的概率; (2)至少遇到1次红灯的概率.(1)解:记“他第一次遇到红灯”为事件A ,记“他第二次遇到红灯”为事件B .由题知,A 与B 是相互独立的,因此,“他两次都遇到红灯”就是事件A ·B 发生.根据相互独立事件的概率乘法公式,得P (A ·B )=P (A )·P (B )=0.6×0.6=0.36.答:他两次都遇到红灯的概率是0.36.(2)解法一:A =“他第一次没有遇到红灯”,B =“他第二次没有遇到红灯”.∴A ·B =“他第一次没有遇到红灯,第二次遇到红灯”,A ·B =“他第一次遇到红灯,第二次没有遇到红灯”,并有A ·B 与A ·B 是互斥的,因此,他恰有一次遇到红灯的概率是P (A ·B +A ·B )=P (A ·B )+P (A ·B )=(1-0.6)×0.6+0.6×(1-0.6)=0.48.∴他至少遇到1次红灯的概率是P (A ·B )+P (A ·B +A ·B )=0.36+0.48=0.84.答:至少遇到1次红灯的概率是0.84.解法二:A =“他第一次没有遇到红灯”,B =“他第二次没有遇到红灯”.∴A ·B =“他两次都没有遇到红灯”,P (A ·B )=P (A )·P (B )=(1-0.6)×(1-0.6)=0.16.∴他至少遇到1次红灯的概率是P =1-P (A ·B )=1-0.16=0.84. 答:至少遇到1次红灯的概率是0.84.21.(12分)(理)现有5个工人独立地工作,假定每个工人在1小时内平均有12分钟需要电力.(1)求在同一时刻有3个工人需要电力的概率;(2)如果最多只能供应3个人需要的电力,求超过负荷的概率. 解:(1)依题意,每名工人在1小时内需要电力的概率是P =6012=51.因此,在同一时刻有3个工人需要电力的概率为P 1=C 35(51)3(54)2=0.0512.(2)超负荷的概率为P 2=C 45(51)4(54)+C 55(51)5=6254+31251=0.00672. (文)甲、乙两个篮球运动员,投篮命中率分别是0.7和0.8,每人投篮两次.(1)求甲进2球,乙进1球的概率;(2)若投进1球得2分,未投进得0分,求甲、乙二人得分相等的概率.解:(1)依题意,所求概率为P 1=C 220.72·C 120.8×0.2=0.1568.(2)甲、乙二人得分相等的概率为P2=C220.72·C220.82+C120.7×0.3×C120.8×0.2+0.32×0.22=0.3136+0.1344+0.0036=0.4516.22.有点难度哟!(14分)某数学家随身带着甲、乙两盒火柴,每盒有n根,每次用时,随机地任取一盒,然后从中抽取一根(巴拿赫火柴问题).求:(1)第一次发现一盒空时,另一盒恰剩r根火柴的概率(r=0,1,…,n);(2)第一次用完一盒火柴(不是发现空)时另一盒恰剩r根火柴的概率(r=1,2,…,n).分析:第n+1次取到甲盒时,才发现甲盒空,但第n次取甲盒后即已用完甲盒火柴.因此(1)(2)中的两个事件不同.解:(1)记A=“首次发现一盒空时另一盒恰剩r根火柴”,B=“首次发现的空盒是甲盒且此时乙盒恰剩r根火柴”,C=“首次发现的空盒是乙盒且此时甲盒恰剩r根火柴”.则事件B与C互斥,A=B+C.由于甲、乙盒所处地位相同,故P(B)=P(C).为求P(B),令D=“在甲、乙两盒中任取一盒,得到甲盒”,则P(D)=21.事件B发生相当于独立重复地做了2n-r+1次试验,前2n-r次D 恰好发生n 次、第2n -r +1次D 也发生.因此P (B )=C n r n -2(21)n (1-21)n -r ·21 =1221+-r n C nr n -2, P (A )=P (B )+P (C )=2P (B )=rn -221C n r n -2.(2)记E =“首次用完一盒时另一盒恰有r 根”,F (G )=“首次用完的是甲(乙)盒且此时乙(甲)盒恰有r 根火柴”.则事件F 与G 互斥,E =F +G .事件F 发生相当于独立重复地做了2n -r 次试验,前2n -r -1次D 恰好发生n -1次,第2n -r 次D 也发生.故P (F )=C 112---n r n (21)n -1(1-21)n -r ·21=12221--⨯r n C 112---n r n .类似(1),P (E )=P (F )+P (G )=2P (F )=1221--r n C 112---n r n . 评述:改记A 为A r ,则A 0,A 1,…,A n 彼此互斥,和是必然事件,故∑=nr 0rn -221C 12--n r n =1;改记E 为E r ,则E 1,E 2,…,E n 也彼此互斥,和是必然事件, 故∑=nr 1121--r n C 112---n r n =1.因此使用概率方法我们可以得到一些恒等式. (1)中分别取r =0和n ,得P (首次发现一盒空时另一盒也空)=C n n2n221, P (首次发现一盒空时另一盒原封未动)=n21;(2)中取r =n ,得1 n .P(用完一盒时另一盒原封未动)=12。
(江苏专用)2020版高考数学复习第十章算法、统计与概率10.2抽样方法教案

§10.2 抽样方法考情考向分析 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以填空题为主,属于中低档题.1.简单随机抽样(1)定义:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当N n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.概念方法微思考三种抽样方法有什么共同点和联系?提示 (1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.( √)(2)抽签法中,先抽的人抽中的可能性大.( ×)(3)系统抽样在第1段抽样时采用简单随机抽样.( √)(4)要从1002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( ×)(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( ×)题组二教材改编2.[P52习题T1]某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.答案分层抽样法解析从全体学生中抽取100名宜用分层抽样法,按男、女学生所占的比例抽取.3.[P52习题T4]某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_____名学生.答案15解析从高二年级中抽取的学生数与抽取学生总数的比为310,所以应从高二年级抽取学生人数为50×310=15.4.[P52习题T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是________.答案16解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16.题组三易错自纠5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.答案p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 1800解析 分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1800件.题型一 简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是________.(填序号) ①这次抽样中可能采用的是简单随机抽样; ②这次抽样一定没有采用系统抽样;③这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率; ④这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率. 答案 ①解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,①正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,②错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,③和④均错误.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 01解析 由题意知前5个个体的编号为08,02,14,07,01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.答案514解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=514. 思维升华应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二 系统抽样例1(1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 4解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.(2)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 12解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240(人),又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练1将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三 分层抽样命题点1 求总体或样本容量例2(1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________. 答案 13解析 ∵360=n120+80+60,∴n =13.(2)(2018·江苏省南京金陵中学模拟)某校共有教师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为________. 答案 120解析 因为共有教师200人,男学生1200人,女学生1000人, 所以女学生占的比例为10002400=512,女学生中抽取的人数为50人, 所以n ×512=50,所以n =120.命题点2 求某层入样的个体数例3(1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为________.答案 180解析 由题意,得抽样比为3201600=15, ∴该样本中的老年教师的人数为900×15=180.(2)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣________人. 答案 108解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×81008100+7488+6912=300×810022500=108.思维升华分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练2 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =________. 答案 1040解析 分层抽样是按比例抽样的,所以81×12001000+1200+n=30,解得n =1040.(2)(2018·如东模拟)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 答案 30解析 参与调查的总人数为150,由8∶n =40∶150, 得n =30.1.(2018·盐城调研)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n=10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =100050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________.答案 1200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3600×13=1200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4300人中抽取一个样本,这4300人中青年人1600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001600=y320,得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是_____. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人中有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人.答案 78解析 设持“喜欢”、“不喜欢”、“一般”态度的人数分别为6x,2x,3x ,由题意可得3x -2x =13,x =13,∴持“喜欢”态度的有6x =78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ;分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2, 所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.。
2023年统考版《师说》高考数学复习(文科)课件 第10章 概率

(3)不可能事件的概率:P(A)=____.
(4)概率的加法公式
P(A)+P(B)
如果事件A与事件B互斥,则P(A∪ B)=____________.
(5)对立事件的概率
若事件A与事件B互为对立事件,则A∪ B为必然事件.P(A∪ B)=
1
1-P(B)
____,P(A)=________.
二、必明2个常用结论
1.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交
集为空集.
ഥ 所含的结果组成的集合,是全集中由事件A所
(2)事件A的对立事件A
含的结果组成的集合的补集.
2.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法
公式的推广,即
P(A1∪ 2 ∪ ⋯ ∪ An )=P(A1)+P(A2)+…+P(An).
学科素养:通过随机事件概率的应用考查数学建模、数据分析的核
心素养.
必备知识—基础落实
一、必记4个知识点
1.事件的分类
事件的分类
确定事件
随机事件
具体事件
必然事件
不可能事件
随机事件
在条
件S下
定义
一定会发生
一定不会发生
可能发生也
可能不发生
的事件
2.频率和概率
(1)频数、频率的概念比较
名称
条件一
条件二
万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.
据统计,当X=70时,Y=460;X每增加10,Y增加5.
已知近20年X的值为
140,110,160,70,200,160,140,160,220,200,110,160,
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
2020版高考数学二轮复习第2部分专题3概率与统计第1讲概率、随机变量及其分布教案理(最新整理)

第1讲概率、随机变量及其分布[做小题——激活思维]1.若随机变量X的分布列如表所示,E(X)=1。
6,则a-b=( )X0123P0。
1a b0。
1A.0.2C.0。
8 D.-0。
8B[由0。
1+a+b+0.1=1,得a+b=0。
8,又由E(X)=0×0.1+1×a+2×b+3×0。
1=1。
6,得a+2b=1.3,解得a=0。
3,b=0.5,则a-b=-0。
2.]2.已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0。
5,两个路口连续遇到红灯的概率为0。
4,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率为( )A.0。
6 B.0.7C.0.8 D.0。
9C[记“第一个路口遇到红灯"为事件A,“第二个路口遇到红灯”为事件B,则P(A)=0.5,P(AB)=0。
4,则P(B|A)=错误!=0.8,故选C。
]3.两个实习生每人加工一个零件,加工为一等品的概率分别为错误!和错误!,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A。
错误!B。
错误!C。
14D。
错误!B[设事件A:甲实习生加工的零件为一等品;事件B:乙实习生加工的零件为一等品,且A,B相互独立,则P(A)=错误!,P(B)=错误!,所以这两个零件中恰有一个一等品的概率为P(A错误!)+P(错误!B)=P(A)P(错误!)+P(错误!)P(B)=错误!×错误!+错误!×错误!=错误!。
]4.设随机变量X~B(2,p),Y~B(4,p),若P(X≥1)=错误!,则P(Y≥1)=( )A.错误!B。
错误!C。
错误!D.1C[∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C错误!(1-p)2=错误!,解得p=错误!,∴P(Y≥1)=1-P(Y=0)=1-C0,4(1-p)4=1-错误!=错误!,故选C.]5.罐中有6个红球和4个白球,从中任取1球,记住颜色后再放回,连续取4次,设X为取得红球的次数,则X的方差D(X)的值为________.错误![因为是有放回地取球,所以每次取球(试验)取得红球(成功)的概率均为错误!,连续取4次(做4次试验),X为取得红球(成功)的次数,则X~B错误!,∴D(X)=4×错误!×错误!=错误!.]6.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为________.(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学专题复习:概率(文科)1.某果农选取一片山地种植沙糖桔,收获时,该果农随机选取果树20株作为样本测量它们,每一株的果实产量(单位:kg),获得的所有数据按照区间(](](](]60,55,55,50,50,45,45,40进行分组,得到频率分布直方图如图,已知样本中产量在区间(4550,⎤⎦上的果树株数是产量在区间(5060,⎤⎦上的果树株数的43倍. (Ⅰ)求a ,b 的值 (Ⅱ)从样本中产量在区间(5060,⎤⎦上的果树随机抽取两株,求产量在区间(5560,⎤⎦上的果树至少有一株被抽中的概率.O4055图3a频率组距6050452.一个均匀的正四面体上分别有4321,,,四个数字,现随机投掷两次,正四面体面朝下的数字分别为c b , (Ⅰ)记()()2233-+-=c b z ,求4=z 的概率(Ⅱ)若方程02=--c bx x 至少有一根{}4,3,2,1∈x ,称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.3.以下茎叶图记录了甲组3名同学寒假假期中去图书馆A 学习的次数和乙组4名同学寒假假期中去图书馆B 学习的次数. 乙组记录中有一个数据模糊,无法确认,在图中以x 表示. (Ⅰ)如果7=x ,求乙组同学去图书馆学习次数的平均数和方差(Ⅱ)如果9=x ,从学习次数大于8的学生中选两名同学,求选出的两名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.4.某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在0.8米(精确到1.0米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为30.0,28.0,14.0,10.0,04.0.第6小组的频数是7.(Ⅰ)求这次铅球测试成绩合格的人数(Ⅱ)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由(Ⅲ)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a 、b 的成绩均为优秀,求两人至少有1人入选的概率.5.高三某班有两个数学课外兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生.现在班主任老师要从第一组选出2人,从第二组选出1人,请他们在班会上和全班同学分享学习心得. (Ⅰ)求选出的3人均是男生的概率(Ⅱ)求选出的3人中有男生也有女生的概率.甲组0 1x 8 29 21 9 乙组6.一个袋中装有四个形状大小完全相同的球,球的编号分别为4321,,, (Ⅰ)从袋中随机抽取一个球,将其编号记为a ,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b .求关于x 的一元二次方程2220x ax b ++=有实根的概率(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n .若以(,)m n 作为点p 的坐标,求点p 落在区域⎩⎨⎧<-+≥-050y x y x 内的概率.7.某网站体育版块足球栏目组发起了“射手的上一场进连续进球有关系”的调查活动,在所有参与调查的人中,持“有关系”“有关系 无关系 不知道 40岁以下800 450 200 40岁以上(含40岁)100150300(Ⅰ)n 个人,已知从持“有关系”态度的人中抽取45人,求n (Ⅱ)在持“不知道”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任选取2人,求至少一人在40岁以下的概率(Ⅲ)在接受调查的人中,有8人给这项活动打出分数如下:8.29.09.38.79.69.28.69.4,,,,,,,,把这8个人打出的分数看做一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过6.0 的概率8.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是4,3,2,1,现从盒子中随机抽取卡片. (Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到2的概率9.某学校组织500名学生体检,按身高(单位:cm )分组:第1组[)160,155,第2组[)165,160,第3组[)170,165,第4组[)175,170,第5组[]180,175,得到的频率分布直方图如图所示.(Ⅰ)下表是身高的频数分布表,求正整数n m ,的值(Ⅱ)现在要从第3,2,1组中用分层抽样的方法抽取6人,第3,2,1组应抽取的人数分别是多少?(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人,求至少有1人在第3组的概率区间 [)160155,[)165160,[)170165,[)175170,[]180175,人数5050m150n10.参加市数学调研抽测的某校高三学生成绩分析的茎叶图和频率分布直方图均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:(Ⅰ)求参加数学抽测的人数n、抽测成绩的中位数及分数分别在[)80,90,[]90,100内的人数(Ⅱ)若从分数在[]80,100内的学生中任选两人进行调研谈话,求恰好有一人分数在[]90,100内的概率.()()()()()()()() ()()()()()()158.2,4;73,2510.1514;4,1,1;509.167.438.81.107,1007.164,1266.65,3035.125.4.364.155.27,93.1634,3,3,2,2,1,16242.159,04.0,08.012==================⇒=====pnpnppppnppppppSxpzppba2020高考数学专题复习:概率模拟题1.某高级中学共有学生2000人,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是19.0(Ⅰ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少人?(Ⅱ)已知,245,245≥≥zy求高三年级女生比男生多的概率.2.某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O为圆心,且标有20元、10元、0元的三部分区域面积相等,假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动.高一高二高三女生373 x y男生377 370 z(Ⅰ) 若顾客甲消费了128元,求他获得优惠券面额大于0元的概率?(Ⅱ)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率?3.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图. (Ⅰ) 根据茎叶图判断哪个班的平均身高较高(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于cm 173的同学,求身高为cm 176的同学被抽中的概率4.商场举行购物抽奖活动,每位顾客从装有编号为3,2,1,0四个相同小球的抽奖箱中,每次取出一球记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6则中一等奖,等于5中二等奖,等于4或3中三等奖(Ⅰ) 求中三等奖的概率 (Ⅱ)求中奖的概率5.为了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:10,9,8,7,6,5.把这6名学生的得分看成一个总体 (Ⅰ) 求该总体的平均数(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过5.0的概率6.为了对某课题进行研究,用分层抽样方法从三所高校C B A ,,的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人) (Ⅰ) 求y x ,(Ⅱ)若从高校C B ,抽取的人中选2人作专题发言,求这二人都来自高校C 的概率7.为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行抽样检查,测得身高情况统计图如下:(Ⅰ) 估计该校男生的人数(Ⅱ)估计该校学生身高在185~170之间的概率(Ⅲ)从样本中身高在190~180之间的男生中任选2人,求至少有1人身高在190~185之间的概率8.设平面向量m a ()1,m =, n b =()n ,2,其中{}4,3,2,1,∈n m (Ⅰ) 请列出有序数组()n m ,的所有可能结果 (Ⅱ)记“使得m a ⊥(m a -nb )成立的()n m ,”为事件A ,求事件A 发生的概率9.设连续掷两次骰子得到的点数分别为m n 、,令平面向量(,)a m n =r ,(1,3)b =-r.(Ⅰ)求使得事件“a b ⊥r r”发生的概率(Ⅱ)求使得事件“||||a b ≤r r”发生的概率(Ⅲ)使得事件“直线x n m y =与圆()1322=+-y x 相交”发生的概率.高校 相关人数 抽取人数A 18 xB 36 2C54y10.设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ) 若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求方程有实根的概率 (Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率 11.设一元二次方程20Ax Bx C ++=,根据下列条件分别求解(Ⅰ) 若C B A 、,1=是一枚骰子先后掷两次出现的点数,求方程有实数根的概率(Ⅱ)设3,-=-=A C A B ,A 随机的取实数使方程有实数根,求方程至少有一个非正实数根的概率12.为了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图 (Ⅰ)估计数据落在()30.1,15.1中的概率(Ⅱ)将上面捕捞的100条鱼分别作记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数13.以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,在图中以X 表示.(Ⅰ) 如果8=X ,求乙组同学植树棵树的平均数和方差(Ⅱ)如果9=X ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.14.某日用品按行业质量标准分成五个等级,等级系数X 依次为54321,,,,.现从一批该日用品中随机抽取20(Ⅰ) 若所抽取的20件日用品中,等级系数为4的恰有4件,等级系数为5的恰有2件,求c b a 、、的值 (Ⅱ)在(Ⅰ)条件下,将等级系数为4的3件记为321,,x x x ,等级为5的2件记为21,y y ,现从21321,,,,y y x x x 这5件日用品中任取两件,写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率15.在某次测验中,有6位同学的平均成绩为75分,用nx 表示编号为()6,,2,1Λ=n n 的同学所得成绩,(Ⅰ) 求第6位同学的成绩6x ,及这6位同学成绩的标准差S(Ⅱ)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间()75,68中的概率16.某河流上一座水力发电站,每年六月份的发电量Y 与该河上游在六月份时的降雨量X 有关,据统计,当70=X 时,460=Y ;X 每增加10,Y 增加5.已知近20年X的值为:,110,200,220,160,140,160,200,70,160,110,140 160,140,220,160,110,140,200,160,160份该水力发电站的发电量低于490或超过530的概率17.(某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共n 2小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(Ⅰ) 假设2=n ,求第一大块地都种植品种甲的概率(Ⅱ)试验时每大块地分成8小块,即8=n ,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403 397 390 404 388 400 412 406品种乙419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种哪一品种?18.假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:(Ⅰ)估计甲品牌产品寿命小于200小时的概率(Ⅱ)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率19.某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:[)[)[)[)[]100,90,90,80,80,70,70,60,60,50(Ⅰ) 求图中a的值(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分(Ⅲ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[)90,50之外的人数分数段[)60,50[)70,60[)80,70[)90,80 yx:1:11:24:35:420.袋中有五张卡片,其中红色卡片三张,标号分别为3,2,1;蓝色卡片两张,标号分别为2,1.(Ⅰ) 从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率(Ⅱ) 现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.21.某地有小学21所,中学14所,大学7所,现采取分层抽样的从这些学校中抽取6所学校对学生进行视力调查(Ⅰ) 求应从小学、中学、大学中分别抽取的学校数目(Ⅱ)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果(2)求抽取的2所学校均为小学的概率22.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.y(单位:元)关于当天需求量n的函数解析式(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14 15 16 17 18 19 20频数10 20 16 16 15 13 10(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.1时,则视为合格品,否则视为不合格品,在近期一次23.若某产品的直径长与标准值的差的绝对值不超过mm产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品,计算这mm分组频数频率[)2,3--0.1[)1,2--8(]2,10.5(]3,210(]43,合计50 1(Ⅰ)将上面表格中缺少的数据补齐(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(]3,1内的概率(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格,据此估算这批产品中的合格品的件数24.某超市为了解顾客的购物量及结算时间等信息,随机收集了在该超市购物的100位顾客的相关数据,如下表:已知这100位顾客中的一次购物量超过8件的顾客占55%(Ⅰ)确定yx,的值,并估计顾客一次购物的结算时间的平均值(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)25.某中学从高二年级学生中随机地抽取120名学生,测得身高情况如下表所示.(Ⅰ) 请在频率分布表中的①,②位置上填上适当的数据,并补全频率分布直方图(Ⅱ)现从190180~这些同学中随机地抽取两名,求身高为185以上(包括185)的同学被抽到的概率26.由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所支持保留不支持20岁以下800 450 20020岁以上(含20岁)100 150 300(Ⅰ)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45人,求n值(Ⅱ)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率(Ⅲ)在接受调查的人中,有8人给这项活动打出的分数如下:2.8,0.9,3.9,7.8,6.9,2.9,6.8,4.9把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.27.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(Ⅰ) 求回归直线方程$y abx+=,其中20-=b(Ⅱ)预计在今后的销售中,销量与单价仍然服从(Ⅰ)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?28.某班同学利用寒假进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(Ⅰ)补全频率分布直方图并求pan,,的值(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作 为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率29.有E D C B A ,,,,五位工人参加技能竞赛培训.现分别从B A ,二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:(Ⅰ)现要从B A ,中选派一人参加技能竞赛,从平均状况和方差的角度考虑,派哪位工人参加合适? (Ⅱ)若从参加培训的5位工人中选2人参加技能竞赛,求B A ,二人中至少有一人参加技能竞赛的概率.30.汽车是碳排放量比较大的行业之一,欧盟规定,从2020年开始,将对2CO 排放量超过km g /130的1M 型新车进行惩罚,某检测单位对甲、乙两类1M 型品抽取5辆进行2CO 排放量检测,记录如下甲 80 110 120140150 乙100120xy160经测算发现,乙品牌车2CO 排放量的平均值为120/.x g km 乙(Ⅰ)从被检测的5辆甲类品牌中任取2辆,则至少有一辆2CO 排放量超标的概率是多少? (Ⅱ)若乙类品牌的车比甲类品牌的2CO 的排放量的稳定性要好,求x 的范围31.某中学随机抽取了50名学生举行了一次环保知识竞赛,本次竞赛的成绩(得分均为整数,满分100分)整理得到的频率分布直方图如右. (Ⅰ) 若图中第一组(成绩为[)40,50)对应矩形高是第六组(成绩为[)90,100)对应矩形高的一半,试求第一组、第六组分别有学生多少人?(Ⅱ)在(Ⅰ)的条件下,若从第一组中选出一名学生,从第六组中选出2名学生,共3名学生召开座谈会,求第一组中学生1A 和第六组中学生1B 同时被选中的概率?32.某产品按行业生产标准分成8个等级,等级系数ξ依次为1,2,,8…,其中5ξ≥为标准A ,3ξ≥为标准B ,产品的等级系数越大表明产品的质量越好. 已知某厂执行标准B 生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数7ξ≥的为一等品,等级系数57ξ≤<的为二等品,等级系数35ξ≤<的为三等品.(Ⅰ)试分别估计该厂生产的产品的一等品率、二等品率和三等品率(Ⅱ)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率33.某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行了问卷调查,得到了如下列联表:喜欢户外运动 不喜欢户外运动 合计 男性 5 女性 10 合计 50已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是35(Ⅰ) 请将上面的列联表补充完整 (Ⅱ)求该公司男、女员各多少名(Ⅲ)是否有%5.99的把握认为喜欢户外运动与性别有关?并说明你的理由;下面的临界值表仅供参考:2()P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.82822()=,()()()()n ad bc K n a b c da b c d a c b d -=+++++++参考公式:其中34.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查, 其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性 (Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率非体育迷 体育迷 合计 男 女 合计()()()()()()()()()()()()()()()[][]()()()()()()()()()()()()()()()()()()()()()()()()()()()()()107.90%3.8413.0333100.10,45,15,3043%.59.932532532533.51,3015,9,62341123;4,231.130,90011700220,220,10730.10735.5.418529.1582:4.1000,60,65.028%.5.993.8,50/503425.8100033020250204.25027.81,9.107,10026.362135.0,625107,9.1,20,15241980,7.0237.075,4.7617,851017,85225115.1,2,321.158,10320.1073,05.019.291514575,411856.S 57.25S 412400,61173.0210,1304255.0;15.0,35.0,15.016.52.7,901552104.1.0,2.0,05.014.41164,1611,43513.2000,47.012.434,003,012.03361911.6412910.3653663629.811.168.53159,217035,4007.103,3,16.15787,5.75.85,834.52171.11703.32,322.115,1212222222226222=⇒<==⇒====⇒<+-=+=======⇒===⇒==⇒-+-=+--============≥=⎩⎨⎧<-≥============≥≤⇒+============⇒⎪⎩⎪⎨⎧⇒≥∆⇒=⇒==-+-⇒-=======-===p k K p p x x y x p p S S x x p n a p K x x x x x L a p x p n p p x y x x p x n n n y p n x a p x x x x P X Y p S x p c b a S x n n A Ax Ax m n A P y x P x x x ;,,,,,,,,,,,,,,乙甲乙甲乙甲乙甲乙甲φ2020山东文科高考真题:概率(14)海关同时从C B A ,,三个不同地区进口的商品进行抽样检查,从各地区进口该商品的数量如图所示,工作人员用分层抽样的的方法从这些商品中共抽取6件样品进行检测 (Ⅰ)求这6件样品中来自C B A ,,各地区商品的数量2件商品来自同地区的概率(13)某小组共有AB C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)(Ⅰ)从该小组身高低于80.1的同学中任选2人,求选到的2人身高都在78.1以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在70.1以上且体重指标都在[)9.23,5.18中的概率(12)袋中有五张卡片,其中红色卡片三张,标号分别为1、2、3;蓝色卡片两张,标号分别为1、2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和 小于4的概率.(11)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(Ⅰ)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率 (Ⅱ)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.(10)一个袋中装有四个形状大小完全相同的球,球的编号分别为4,3,2,1 (Ⅰ)从袋中随机取两个球,求取出的球的编号之和不大于4的概率(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率(09)汽车厂生产C B A ,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求Z 的值(Ⅱ)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆, 求至少有1辆舒适型轿车的概率(Ⅲ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,得分如下,7.8,6.9,2.9,6.8,4.9:2.8,0.9,3.9.把这8辆轿 车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过5.0的概率.(08)现有8名奥运会志愿者,其中志愿者321A A A 、、通晓日语,321B B B 、、通晓俄语,21C C 、通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率(Ⅱ)求1B 和1C 不全被选中的概率.()()()()()()().65,3108.0.7510740009.16133110.329411.15810312.1032113.15423114;,;;,,;,,2020.解:(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有: (A ,B),(A ,C),(A ,D),(B ,C),(B ,D),(C ,D),共6个.选到的2人身高都在1.78以下的事件有:(A ,B),(A ,C),(B ,C),共3个.因此选到的2人身高都在1.78以下的概率为36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),共10个. 由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D),(C ,E),(D ,E),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为310.2020.(1)甲校两男教师分别用A 、B 表示,女教师用C 表示;乙校男教师用D 来表示,两女教师用E 、 F 表示. 从甲校和乙校报名的教师中各任选1名的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,)A D A E A F B D B E B F C D C E C F 共9种.从中选出两名教师性别相同的结果有:(,),(,),(,),(,)A D B D C E C F 共4种,选出的两名教师性别相同的概率为49P =.(2)从甲校和乙校报名的教师中任选2名的所有可能结果为:()()()()()()()()()()()()()()()F E F D E D F C E C D C F B E B D B C B F A E A D A C A B A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,共15种从中选出的两名教师来自同一学校的结果有:(,),(,),(,),(,),(,),(,)A B A C B C B D D E E F 共6种,选出的两名教师来自同一学校的概率为62153P ==.2020解: (1).设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,所以n=2000.z=2000-100-300-150-450-600=400设所抽样本中有m 辆舒适型轿车,用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以40010005m=,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,则从中任取2辆的基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为7 10.(3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x=+++++++=,那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.。