最新3-2第三讲2假设检验
合集下载
《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。
《假设检验的概念》PPT课件

假设检验实例及解读
• 生物统计学实例:比较两个药物治疗组的患者生存率是否存在显著差异。 • 社会调查实例:通过问卷调查数据,研究两个群体之间的收入差异是否显著。
总结与回顾
假设检验是一种重要的统计方法,帮助我们进行数据分析和科学决策。通过清晰的步骤和方法,我们可以对总体参 数进行有效推断。
3 方差分析
4 非参数检验
用于比较多个样本均值之间是否存在显著差异。
当数据不满足正态分布假设时,使用的一类假设 检验方法。
注意事项
1 假设检验的局限性
假设检验是概率性推断,结果并不能绝对确定总体参数,仅供参考。
2 防范与排除偏差
在实际研究中,要注意样本选择的随机性和可比性,以排除偏差对推断结果的影响。
p值判定
4
参数估计和假设检验。
根据计算出的统计量,计算p值,并与显著性
水平比较,判断是否拒绝原假设。
5
结论推断
根据p值的判定结果,得出对总体参数的推断 结论,并解释研究的统计显著性和实际意义。
常见假设检验方法
1 单样本t检验
2 双样本t检验
用于比较一个样本的均值与总体均值是否存在显 著差异。
用于比较两个独立样本的均值是否存在显著差异。
应用领域
假设检验广泛应用于医学、社会科学、经济学等领 域,帮助我们进行数据分析和做出科学决策。
假设检验的步骤
1
假设设立
首先,根据研究问题,明确原假设和备择假
ห้องสมุดไป่ตู้
显著性水平确定
2
设,以便进行后续统计推断。
确定假设检验的显著性水平,通常为0.05或
0.01,用于判断统计显著性。
3
统计量计算
计算适应研究问题的合适统计量,以便进行
《假设检验检验》课件

《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
最新中国医科大学研究生医学统计学 第三讲 总体均数的估计与假设检验2_PPT课件ppt课件

Sn
x
u
x~N(,2) u~N(0,1)
x~N(,2n)
u x x
x ( x )~ N(0,1)
ux x x / n
未知
t x
S/ n
二、t 分布的图形与特征
t 分布是一簇曲线。当自由度ν不同时,曲线
的形状不同。当ν
时,t 分布趋近于标准正
态分布,但当自由度ν较小时,与标准正态分布差
异较大。其图形如下:
X
( X u 2 X , X u 2 X )
准正态分布是 t分布的特例。
自由度
单侧 双侧
1
2 3 4 5
6 7 8 9 10
21 22 23 24 25
0.25 0.50
1.000 0.816 0.765 0.741 0.727
0.718 0.711 0.706 0.703 0.700
0.686 0.686 0.685 0.685 0.684
中国医科大学研究生医 学统计学 第三讲 总体 均数的估计与假设检验
2_PPT课件
第一节 均数的抽样误差 与标准误
• 统计推断(statistical inference):
样本 推断 总体
(1)参数估计 (2)假设检验
S S Sx X nn
均数的标准误: (1)意义: (2)应用:
-t
0
t
0.005 0.01
63.657 9.925 5.841 4.604 4.032
0.0025 0.001
0.005 0.002
127.321 318.309
14.089 7.453 5.598 4.773
22.327 10.215 7.173 5.893
假设检验的基本原理 ppt课件

ppt课件 8
3.显著性水平
统计学中把拒绝零假设的概率称为显著性水
平,用α 表示。
显著性水平也是进行统计推断时,可能犯错
误的概率。
常用的显著性水平有两个:
α =0.05
和
α =0.01。
ppt课件 9
在抽样分布曲线上,显著性水平既可以
放在曲线的一端(单侧检验),也可以分在
曲线的两端(双侧检验)。
H0:零假设,或称原假设、虚无假设(null
hypothesis)、解消假设;是要检验的对象之间没
有差异的假设。
H1:备择假设(alternative hypothesis),
或称研究假设、对立假设;是与零假设相对立的假
设,即存在差异的假设。
ppt课件 5
进行假设检验时,一般是从零假设出
发,以样本与总体无差异的条件计算统计 量的值,并分析计算结果在抽样分布上的 概率,根据相应的概率判断应接受零假设、 拒绝研究假设还是拒绝零假设、接受研究
数为中心形成一个正态分布。这个分布可以分成两个区域。
如果这个样本统计量的值落在了这个抽样分布中出现概率比较大的区
域里,这时只好保留零假设,即研究者不得不承认这个样本来自这个假设的 总体,或者这个样本所属总体与假设总体没有真正的差异。如果这个样本统 计量的值落在了抽样分布中出现概率极小的区域里,根据小概率事件在一次
两类错误的关系及控制
O
X
ppt课件
12
两类错误的关系及控制
ppt课件
13
为了将两种错误同时控制在相对最小的
程度,研究者往往通过选择适当的显著性水 平而对α 错误进行控制,如α =0.05或α = 0.01。
3.显著性水平
统计学中把拒绝零假设的概率称为显著性水
平,用α 表示。
显著性水平也是进行统计推断时,可能犯错
误的概率。
常用的显著性水平有两个:
α =0.05
和
α =0.01。
ppt课件 9
在抽样分布曲线上,显著性水平既可以
放在曲线的一端(单侧检验),也可以分在
曲线的两端(双侧检验)。
H0:零假设,或称原假设、虚无假设(null
hypothesis)、解消假设;是要检验的对象之间没
有差异的假设。
H1:备择假设(alternative hypothesis),
或称研究假设、对立假设;是与零假设相对立的假
设,即存在差异的假设。
ppt课件 5
进行假设检验时,一般是从零假设出
发,以样本与总体无差异的条件计算统计 量的值,并分析计算结果在抽样分布上的 概率,根据相应的概率判断应接受零假设、 拒绝研究假设还是拒绝零假设、接受研究
数为中心形成一个正态分布。这个分布可以分成两个区域。
如果这个样本统计量的值落在了这个抽样分布中出现概率比较大的区
域里,这时只好保留零假设,即研究者不得不承认这个样本来自这个假设的 总体,或者这个样本所属总体与假设总体没有真正的差异。如果这个样本统 计量的值落在了抽样分布中出现概率极小的区域里,根据小概率事件在一次
两类错误的关系及控制
O
X
ppt课件
12
两类错误的关系及控制
ppt课件
13
为了将两种错误同时控制在相对最小的
程度,研究者往往通过选择适当的显著性水 平而对α 错误进行控制,如α =0.05或α = 0.01。
《假设检验》PPT课件-(2)

t检验的正确应用
资料的代表性与可比性 所谓代表性是指该样本从相应总体中经随机抽样获得,能够代表总体的特征; 所谓可比性是指各对比组间除了要比较的主要因素外,其它影响结果的因素应尽可能相同或相近 为了保证资料的可比性,必须要有严密的实验设计,保证样本随机抽取于同质总体,这是假设检验得以正确应用的前提 。
在两个样本均数比较时,若两组样本含量都很大,可用u检验,其计算公式为:
u为标准正态离差,按正态和1993抽查部分12岁男童对其发育情况进行评估,其中身高的有关资料如下,试比较这两个年度12岁男童身高均数有无差别。
1973 年:n1=120 =139.9cm s1=7.5cm; 1993 年:n2=153 =143.7cm s2=6.3cm。 H0 :1=2,即该市两个年度12岁男童平均身高相等; H1 :1≠2,即该市两个年度12岁男童平均身高不等。 双侧 =0.05。
-t
t
0
-2.064
2.064
0
=24
0.025
0.025
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
P=P(|t|≥5.4545)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性P(| t | ≥5.4545)小于0.05,是小概率事件,即现有样本信息不支持H0。 抉择的标准为: 当P≤ 时,拒绝H0,接受H1 当P> 时,不拒绝H0 本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,差别有统计学意义。认为该病女性患者的Hb含量高于正常女性的Hb含量。
根据抽样误差理论,在H0假设前提下,统计量t服从自由度为n-1的t分布,即t值在0的附近的可能性大,远离0的可能性小,离0越远可能性越小。 t值越小,越利于H0假设 t值越大,越不利于H0假设
资料的代表性与可比性 所谓代表性是指该样本从相应总体中经随机抽样获得,能够代表总体的特征; 所谓可比性是指各对比组间除了要比较的主要因素外,其它影响结果的因素应尽可能相同或相近 为了保证资料的可比性,必须要有严密的实验设计,保证样本随机抽取于同质总体,这是假设检验得以正确应用的前提 。
在两个样本均数比较时,若两组样本含量都很大,可用u检验,其计算公式为:
u为标准正态离差,按正态和1993抽查部分12岁男童对其发育情况进行评估,其中身高的有关资料如下,试比较这两个年度12岁男童身高均数有无差别。
1973 年:n1=120 =139.9cm s1=7.5cm; 1993 年:n2=153 =143.7cm s2=6.3cm。 H0 :1=2,即该市两个年度12岁男童平均身高相等; H1 :1≠2,即该市两个年度12岁男童平均身高不等。 双侧 =0.05。
-t
t
0
-2.064
2.064
0
=24
0.025
0.025
t0.05,24=2.064 P =P ( |t| ≥2.064 )=0.05
P=P(|t|≥5.4545)<0.05
结论(根据小概率原理作出推断)
在H0成立的前提下出现现有差别或更大差别的可能性P(| t | ≥5.4545)小于0.05,是小概率事件,即现有样本信息不支持H0。 抉择的标准为: 当P≤ 时,拒绝H0,接受H1 当P> 时,不拒绝H0 本例P<0.05,按 =0.05的水准,拒绝H0,接受H1,差别有统计学意义。认为该病女性患者的Hb含量高于正常女性的Hb含量。
根据抽样误差理论,在H0假设前提下,统计量t服从自由度为n-1的t分布,即t值在0的附近的可能性大,远离0的可能性小,离0越远可能性越小。 t值越小,越利于H0假设 t值越大,越不利于H0假设
假设检验完整版PPT课件

H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
数据分析方法2(2假设检验)课件PPT

么是小概率的标准。这要看具体应用的需要。但在一般的统计书 和软件中,使用最多的标准是在零假设下(或零假设正确时)抽 样所得的数据拒绝零假设的概率应小于0.05(也可能是0.01,0.005, 0.001等等)。
9
假设检验的过程和逻辑
这种事先规定的概率称为显著性水平(significant level),用字
如果小概率事件发生,是相信零假设,还是相信数据呢?当然 是相信数据。于是就拒绝零假设。但事件概率小并不意味着不 会发生,仅仅发生的概率很小罢了。拒绝正确零假设的错误常 被称为第一类错误(type I err有第一类错误,还有第二类错误;那是备选零假设 正确时反而说零假设正确的错误,称为第二类错误(type II error)。如要“接受零假设”就必须给出第二类错误的概率. 但对于目前面对的问题, 无法计算它.
4
假设检验的过程和逻辑
注意:零假设和备选假设在我们涉及的假设检验中并不对称。 检验统计量的分布是从零假设导出的, 因此, 如果有矛盾, 当然 就不利于零假设了。 不发生矛盾也不说明备选假有问题。
5
假设检验的过程和逻辑
检验统计量在零假设下,这个样本的数据实现值的概率称为
p-值(p-value)。显然得到很小p-值意味着小概率事件发生了。
假设检验
在假设检验中,一般要设立一个原假设;而设立该 假设的动机主要是企图利用人们掌握的反映现实世界的 数据来找出假设和现实的矛盾,从而否定这个假设。
1
假设检验
在多数统计教科书中(除了理论探讨之外),假设检验都是以 否定原假设为目标。如否定不了,那就说明证据不足,无法否定原 假设。但这不能说明原假设正确。
和临界值的大小。
13
假设检验的过程和逻辑
使用临界值而不是p-值来判断拒绝与否是前计算机时代的产 物。当时计算p-值不易,只有采用临界值的概念。但从给定的a
9
假设检验的过程和逻辑
这种事先规定的概率称为显著性水平(significant level),用字
如果小概率事件发生,是相信零假设,还是相信数据呢?当然 是相信数据。于是就拒绝零假设。但事件概率小并不意味着不 会发生,仅仅发生的概率很小罢了。拒绝正确零假设的错误常 被称为第一类错误(type I err有第一类错误,还有第二类错误;那是备选零假设 正确时反而说零假设正确的错误,称为第二类错误(type II error)。如要“接受零假设”就必须给出第二类错误的概率. 但对于目前面对的问题, 无法计算它.
4
假设检验的过程和逻辑
注意:零假设和备选假设在我们涉及的假设检验中并不对称。 检验统计量的分布是从零假设导出的, 因此, 如果有矛盾, 当然 就不利于零假设了。 不发生矛盾也不说明备选假有问题。
5
假设检验的过程和逻辑
检验统计量在零假设下,这个样本的数据实现值的概率称为
p-值(p-value)。显然得到很小p-值意味着小概率事件发生了。
假设检验
在假设检验中,一般要设立一个原假设;而设立该 假设的动机主要是企图利用人们掌握的反映现实世界的 数据来找出假设和现实的矛盾,从而否定这个假设。
1
假设检验
在多数统计教科书中(除了理论探讨之外),假设检验都是以 否定原假设为目标。如否定不了,那就说明证据不足,无法否定原 假设。但这不能说明原假设正确。
和临界值的大小。
13
假设检验的过程和逻辑
使用临界值而不是p-值来判断拒绝与否是前计算机时代的产 物。当时计算p-值不易,只有采用临界值的概念。但从给定的a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S n 6 100
三.确定概率P值和作出统计推断
本例P<0.05,则拒绝H0,接受H1,差异有统计学意义。可以认为常 锻炼学生的心率低于一般学生。常年参加体育锻炼有助于增强 中学男生的心脏功能。
关于假设检验的几个观点
1. 对于H0只能说拒绝与不拒绝,而对H1只能说接受。 2. P≤α,则拒绝H0 ,接受H1 ,差异有统计学意义,
S n 25.74 36 查 附 表 2 t 界 值 表 得 , t0.05/2,35= 2.030, t > t0.05/2,35,
P<,拒 绝 H0,接 受 H1,差 异 有 统 计 学 意 义 ,认 为 从 事 铅 作
人的血红蛋白不同于正常成年男性的。
二、配对设计资料均数的t检验
1.异源配对:将受试对象按某些混杂因素 (如性别、年龄、窝别等)配成对子,然后 将每对中的两个个体随机分配给两种处理 (如处理组与对照组) 2.同源配对:同一受试对象作两次不同的处 理,或一种处理的前后比较。
S/ n
=n-1
当 ZZ/2 或 tt/2()时 , 即 P时 , 拒 绝 H0。
当 Z<Z/2 或 t<t/2()时 , 即 P>时 , 不 拒 绝 H0。
【 单 侧 检 验 时 界 值 用 μ或 t()】
例4-2
某 医 生 测 量 了 36 名 从 事 铅 作 业 男 性 工 人 的 血 红 蛋 白
调查设计:从两组具有不同特征的人群中,分别随机 抽取一定数量的样本,比较某一指标在不同特征人群中是 否相等。
与专业上|μ-μ0 |差异的大小无直接关系。
5. 应事先确定α。选α=0.05只是一种习惯,而不是
绝对的标准。
第二节 t 检验
一、单样本的t 检验
推断一个取自正态资料N(μ,σ2) ,容量为n的样本所代表的 未知总体均数μ与已知总体均数μ0是否相等。
当样本量n足够大(n≥ 50)时,用Z 检验。
t X 0
优点:配对设计减少了比较对子间的个体 差异。
特点:资料成对,每对数据不可拆分。
假设检验方法
(1)建 立 检 验 假 设 为 : H0:d =0, H1: d 0, = 0.05
(2)计 算 检 验 统 计 量 t 值 当计算出了每对的差值 d 后就可以用上一节介绍的 t检验方法进行 假 设 检 验 。如 果 配 对 设 计 的 两 个 总 体 均 数 相 同 ,则 值 d 的 总 体 均 数 d = 0 ,
(有足够的证据)可认为……不同或不等。
3. P>α,则不拒绝H0 ,差异无统计学意义(“阴性” 结果),尚不能认为……不同或不等(或拒绝H0的证据尚
不足) 4. 下统计检验结论只能说有、无统计学意义,而不能
说明专业上的差异大小。P值越小只能说明:作出拒绝H0, 接受H1的统计学证据越充分,推论时犯错误的机会越小,
所 以 用 d 代 替 X , 用 d=0 代 替 0, 用 sd 代 替 S, n 为 对 子 数 , 公 式 为 :
t d d d 0 Sd / n Sd / n , = n - 1
(3)确 定 概 率 P并 作 出 统 计 推 断 。 通 过 查 t 界 值 表 , 得 到 t/2,。 当 tt/2,时 , 即 P时 , 拒 绝 H0, 接 受 H1。 当 t<t/2,时 , 即 P>时 , 不 拒 绝 H0。
H1: 孪 生 兄 弟 体 重 不 同 , 即 d 0。
双 侧 检 验 ,=0.05
s d = 0 . 0 6 3 , d = 0 . 0 2 7 , n = 1 5 。 将 数 据 代 入 式 ( 5 - 3 ) 得
t 0.063 0 0.063 2.33
0.104 15 0.027
, =n-1=14
表4-1 15对孪生兄弟的出生体重(kg)
编号 先出生者体重
1
2.79
2
3.06
3
2.34
4
3.41
5
3.48
6
3.23
7
2.27
8
2.48
9
3.03
10
3.07
11
3.61
12
2.695
2.65
后出生者体重
2.69 2.89 2.24 3.37 3.50 2.93 2.24 2.55 2.82 3.05 3.58 2.66 3.20 2.92 2.60
3-2第三讲2假设检验
第一节 假设检验的概念与原理
总体A
样本1 样本2
总体B
样本3
例4-1
一.建立检验假设,确定检验水准
H0:μ=μ0, 常锻炼学生的心率与一般学生相等。 H1:μ<μ0 ,常锻炼学生的心率低于一般学生。
α=0.05 二.选择检验方法和计算统计量
ZX0 657415, P=3.67×10-51
查 附 表 2 t 界 值 表 得 , t0.05/2(14)=, t t0.05/2(14) =2.145,
即 P<。 因 此 拒 绝 H0, 接 受 H1, 差 异 有 统 计 学 意 义 , 认
为在孪生兄弟中先出生者与后出生者的出生体重不同。
三、完全随机设计两总体均数的t 检验
实验设计:用完全随机设计(completely random design) 方法,把受试对象随机分为两组,分别给予不同 处理,然后比较独立的两组样本均数。各组对象数不必严 格相同。
di xi1xi2
0.10
0.17
0.10
0.04 H0:μd=0
-0.02 0.30
H1:μd≠0
0.03
-0.07
0.21
0.02
0.03 d 0 .0 6 3
0.03 -0.11
S d 0.027
0.06
0.05
例4-3的假设检验
H0: 孪 生 兄 弟 体 重 相 同 , 即 d =0。
含 量 , 算 得 其 均 数 为 X =130.83g/L , 标 准 差 为
S=25.74g/L。 问 从 事 铅 作 业 工 人 的 血 红 蛋 白 是 否 不 同 于
正 常 成 年 男 性 平 均 值 0=140g/L? H0: = 0 铅 作 业 工 人 血 红 蛋 白 与 正 常 成 年 男 性 相 等 。 H1: 0 铅 作 业 工 人 血 红 蛋 白 与 正 常 成 年 男 性 不 等 。 =0.05。 t X 0 130.83 140 2.138 , = n - 1 = 3 5 , P < 0 . 0 5
三.确定概率P值和作出统计推断
本例P<0.05,则拒绝H0,接受H1,差异有统计学意义。可以认为常 锻炼学生的心率低于一般学生。常年参加体育锻炼有助于增强 中学男生的心脏功能。
关于假设检验的几个观点
1. 对于H0只能说拒绝与不拒绝,而对H1只能说接受。 2. P≤α,则拒绝H0 ,接受H1 ,差异有统计学意义,
S n 25.74 36 查 附 表 2 t 界 值 表 得 , t0.05/2,35= 2.030, t > t0.05/2,35,
P<,拒 绝 H0,接 受 H1,差 异 有 统 计 学 意 义 ,认 为 从 事 铅 作
人的血红蛋白不同于正常成年男性的。
二、配对设计资料均数的t检验
1.异源配对:将受试对象按某些混杂因素 (如性别、年龄、窝别等)配成对子,然后 将每对中的两个个体随机分配给两种处理 (如处理组与对照组) 2.同源配对:同一受试对象作两次不同的处 理,或一种处理的前后比较。
S/ n
=n-1
当 ZZ/2 或 tt/2()时 , 即 P时 , 拒 绝 H0。
当 Z<Z/2 或 t<t/2()时 , 即 P>时 , 不 拒 绝 H0。
【 单 侧 检 验 时 界 值 用 μ或 t()】
例4-2
某 医 生 测 量 了 36 名 从 事 铅 作 业 男 性 工 人 的 血 红 蛋 白
调查设计:从两组具有不同特征的人群中,分别随机 抽取一定数量的样本,比较某一指标在不同特征人群中是 否相等。
与专业上|μ-μ0 |差异的大小无直接关系。
5. 应事先确定α。选α=0.05只是一种习惯,而不是
绝对的标准。
第二节 t 检验
一、单样本的t 检验
推断一个取自正态资料N(μ,σ2) ,容量为n的样本所代表的 未知总体均数μ与已知总体均数μ0是否相等。
当样本量n足够大(n≥ 50)时,用Z 检验。
t X 0
优点:配对设计减少了比较对子间的个体 差异。
特点:资料成对,每对数据不可拆分。
假设检验方法
(1)建 立 检 验 假 设 为 : H0:d =0, H1: d 0, = 0.05
(2)计 算 检 验 统 计 量 t 值 当计算出了每对的差值 d 后就可以用上一节介绍的 t检验方法进行 假 设 检 验 。如 果 配 对 设 计 的 两 个 总 体 均 数 相 同 ,则 值 d 的 总 体 均 数 d = 0 ,
(有足够的证据)可认为……不同或不等。
3. P>α,则不拒绝H0 ,差异无统计学意义(“阴性” 结果),尚不能认为……不同或不等(或拒绝H0的证据尚
不足) 4. 下统计检验结论只能说有、无统计学意义,而不能
说明专业上的差异大小。P值越小只能说明:作出拒绝H0, 接受H1的统计学证据越充分,推论时犯错误的机会越小,
所 以 用 d 代 替 X , 用 d=0 代 替 0, 用 sd 代 替 S, n 为 对 子 数 , 公 式 为 :
t d d d 0 Sd / n Sd / n , = n - 1
(3)确 定 概 率 P并 作 出 统 计 推 断 。 通 过 查 t 界 值 表 , 得 到 t/2,。 当 tt/2,时 , 即 P时 , 拒 绝 H0, 接 受 H1。 当 t<t/2,时 , 即 P>时 , 不 拒 绝 H0。
H1: 孪 生 兄 弟 体 重 不 同 , 即 d 0。
双 侧 检 验 ,=0.05
s d = 0 . 0 6 3 , d = 0 . 0 2 7 , n = 1 5 。 将 数 据 代 入 式 ( 5 - 3 ) 得
t 0.063 0 0.063 2.33
0.104 15 0.027
, =n-1=14
表4-1 15对孪生兄弟的出生体重(kg)
编号 先出生者体重
1
2.79
2
3.06
3
2.34
4
3.41
5
3.48
6
3.23
7
2.27
8
2.48
9
3.03
10
3.07
11
3.61
12
2.695
2.65
后出生者体重
2.69 2.89 2.24 3.37 3.50 2.93 2.24 2.55 2.82 3.05 3.58 2.66 3.20 2.92 2.60
3-2第三讲2假设检验
第一节 假设检验的概念与原理
总体A
样本1 样本2
总体B
样本3
例4-1
一.建立检验假设,确定检验水准
H0:μ=μ0, 常锻炼学生的心率与一般学生相等。 H1:μ<μ0 ,常锻炼学生的心率低于一般学生。
α=0.05 二.选择检验方法和计算统计量
ZX0 657415, P=3.67×10-51
查 附 表 2 t 界 值 表 得 , t0.05/2(14)=, t t0.05/2(14) =2.145,
即 P<。 因 此 拒 绝 H0, 接 受 H1, 差 异 有 统 计 学 意 义 , 认
为在孪生兄弟中先出生者与后出生者的出生体重不同。
三、完全随机设计两总体均数的t 检验
实验设计:用完全随机设计(completely random design) 方法,把受试对象随机分为两组,分别给予不同 处理,然后比较独立的两组样本均数。各组对象数不必严 格相同。
di xi1xi2
0.10
0.17
0.10
0.04 H0:μd=0
-0.02 0.30
H1:μd≠0
0.03
-0.07
0.21
0.02
0.03 d 0 .0 6 3
0.03 -0.11
S d 0.027
0.06
0.05
例4-3的假设检验
H0: 孪 生 兄 弟 体 重 相 同 , 即 d =0。
含 量 , 算 得 其 均 数 为 X =130.83g/L , 标 准 差 为
S=25.74g/L。 问 从 事 铅 作 业 工 人 的 血 红 蛋 白 是 否 不 同 于
正 常 成 年 男 性 平 均 值 0=140g/L? H0: = 0 铅 作 业 工 人 血 红 蛋 白 与 正 常 成 年 男 性 相 等 。 H1: 0 铅 作 业 工 人 血 红 蛋 白 与 正 常 成 年 男 性 不 等 。 =0.05。 t X 0 130.83 140 2.138 , = n - 1 = 3 5 , P < 0 . 0 5