医学统计学正态分布及参考值范围ppt课件

合集下载

03-医学统计学正态分布与医学参考值范围

03-医学统计学正态分布与医学参考值范围

1
ze

z2 2
dz
( X
)
2
标准正态分布的应用
实际应用中,经z变换可把求解任意一个正态分布曲线 下面积的问题,转化成标准正态分布曲线下相应面积的 问题。
欲求服从标准正态分布的随机变量在区间(-∞, z)(z≤0) 上曲线下的面积,可直接查表;对(z>0) 可根据对称性 算得,计算公式为:
正态分布的应用
• 制定医学参考值范围 • 质量控制 • 正态分布是很多统计方法的理论基础
医学参考值范围
概述
医学参考值范围(reference value range),指正常人 的解剖、生理、生化、免疫及组织代谢产物的含量等 各种数据的波动范围。
医学参考值范围,习惯上是包含95%的参照总体的 范围。
卫生部“十二五”规划教材
医学统计学
正态分布与医学参考值范围
正态分布
概述
正态分布(normal distribution),是 一种连续型随机变量常见而重要的分 布。
它首先由莫阿弗尔于1733年提出。 之后高斯对其进一步研究,使正态分 布广为人知。
A. de Moivre
Gauss
正态曲线 正态曲线(normal curve),是一条高峰位于中央,两侧逐 渐下降并完全对称,曲线两端永远不与横轴相交的钟型曲线。
Φ(z) =1-Φ( -z ) z在区间( z1, z2 )取值概率的计算公式为:
P(z1<z<z2 ) = Φ(z2)- Φ(z1)
【例】由160名7岁男孩身高测量的数据算得样本均数为 122.6cm、样本标准差为4.8cm。已知身高数据服从正态分布, 试估计该地当年7岁男孩身高介于119cm到125cm范围所占的 比例。

统计学--正态分布和参考值范围

统计学--正态分布和参考值范围
本科生卫生学5201631二正态曲线下面积的分布规律二正态曲线下面积的分布规律fx为正态变量x的分布函数即对概率密度函数求积分dx本科生卫生学5201631正态曲线下面积的分布规律正态曲线下面积的分布规律11的面积占总面积的6827196196的面积占总面积的9500258258的面积占总面积的9900本科生卫生学520163110标准正态分布表本科生卫生学520163111这样可将所有不同均数和标准差的资料都转换为均数为0标准差为1的分布即标准正态分布
i f
n x%
f
L
38
5 7
200
0.95
189
38.7(g
/
100
g
)
2020/9/30
课件本科生卫生学(5)
27
SPSS下的正态性检验
▪ 正态性检验有两大类:图示法和计算法。
▪ SPSS下可以采用图示法中的概率图进行 正态性检验;
▪ 概率图(probability-probability plot, P-P plot)或分位数图(quantile-quantile plot,Q-Q plot);
正态分布和参考值范围的估计
《医学统计学》 供研究生用
2020年9月30日星期三 课件
1
第四节 正态分布
(normal distribution)
正态分布的概念和特征
➢正态分布
➢正态分布的两个参数
➢正态曲线下面积分布规律
标准正态分布
➢标准正态分布与标准化变换
➢标准正态分布表
正态分布的应用
➢估计频数分布
2020/9/30
课件本科生卫生学(5)
29
正态分布时:
▪ 偏度系数r1=0;峰度系数r2=0 非正态分布时:

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

医学统计学-正态分布和医学参考值范围1

医学统计学-正态分布和医学参考值范围1
第四节 正态分布及其应用
一、正态分布(2)
(1)
(2)
(3)
正态曲线下面积分布规律(2)
68.27% 95.00%
-2.58

-1.96

-1.
0 99.00%
1

1.96
2.58

68.27% 95.00%
-2.58 -1.96 -1
0 99.00%
1 1.96 2.58
A正态分布 和 标准正态分布 曲线下面积分布规律
95% 99%
x 1.64S (或x u s)
x 2.33S (99%)





根据标准正态曲线下的面积计算 . 由 值可得出 Ua 值 ( 在假设检验中,叫检验水准)常用正态分布法参考值 范围 是: 单侧 双侧 0.20 0.84 1.28 0.10 1.28 1.64 0.05 1.64 1.96 0.02 2.05 2.33 0.01 2.33 2.58
8)选定合适的百分界限,

参考值范围是指绝大多数正常人的测定值应该所在 的范围,这个“绝大多数”习惯上指 80% 、 90% 、 95% 99% 最常用的是95%
9 )对资料的分布进行正态正态性检验 10)根据资料的分布类型制定适当的方 法 进行参考估计范围。



3.参考值范围的估计方法
99.00%
实际工作中经常要用的面积分布规律有以下三点: 范围内占正态曲线下面积 68.27%,也就是说 有68.27%的变量值分布此范围内。 x 1.96s — x 1.96s 范围内占正态曲线下面积的95%,也 就说95%的变量值分布次范围. 内同理 x 2.58s 范围内占正态曲线99%,也就说只有 1.00%的变量值分布此范围外。

医学统计学-正态分布和医学参考值范围

医学统计学-正态分布和医学参考值范围

② 百分位数法,
如资料呈偏态分布或分布不明,用百分位数法:
双侧 95% P2。5 —— P97。5 单侧 95% P95 (单侧上界 ) 计算用百分位数的公式:
P5 (单侧下界)
例9-12 利用例9-7的资料计算6岁以下男童发铅值95%的参考值范 围。发铅值是一个偏态分布的 资料,可用百分数法制定其参考 值范围 ,发铅过高才属异常,所以应计算其
.
8)选定合适的百分界限,
参考值范围是指绝大多数正常人的测定值应该所在
的范围,这个“绝大多数”习惯上指80%、90%、95%
99%
最常用的是95%
9)对资料的分布进行正态正态性检验
10)根据资料的分布类型制定适当的方 法
进行参考估计范围。
.
3.参考值范围的估计方法
估计参考值范围方法很多。主要是正态分布法。百分位数法和对 数正态分布法,以95%为例来说明。
10 .0 4 11 .1 05
u1
1.05 5.86
10.08 11.105
u2
查附表(1)
0.37 5.86
u 1 1 .0 50 .146 u2 9 0.3 70.3557
D u 2 u 1 0 . 3 3 0 . 1 5 4 0 . 2 7 6 0 9
.
正态分布的应用:
取单或双侧正常值范围。
5.百分位数法应用广泛,计算较简单,故制定正常值范围时应
首选百分位数法。
6.近似正态分布资料以 X uS 法估计正常值范围,较百
分位数法稳定,受两端数据影响较小。
.
医学统计方法(试题分析)
二、选择题:
1、某资料的观察值呈正态分布,理论上有________的观察值落

统计学--正态分布和参考值范围

统计学--正态分布和参考值范围

➢估计频数分布
➢制定参考值范围
➢质量控制
2020/8/8
➢统计方法的基础
2
一、正态分布
(一)正态分布的图形 例:某地7岁男童身高的
频数分布
2020/8/8
3
正态分布图形特点
▪ 正态分布 频数分布是中间(靠近均数)频数多, 两边频数少,且左右对称。
▪ 正态曲线 呈钟型:两头低中间高,左右对称
▪ 若指标X的频数分布图接近正态分布曲线, 则初步判断该指标服从正态分布。
2020/8/8
29
正态分布时:
▪ 偏度系数r1=0;峰度系数r2=0 非正态分布时:
▪ R1>0 正偏态; r1 <0 负偏态 ▪ r2 >0 尖峭峰; r2 <0 平阔峰
2020/8/8
30
作业 p31~32 三、计算分析题
题 1. 2. 3.
▪ 要求: *不必抄题目,只写明页数和题号 *能用spss计算的均用spss计算 *写出主要的命令和结果 如:weight case, frequencies
2020/8/8
8
正态曲线下面积的分布规律---续
▪ (-1, +1) 的面积占总面积的68.27% ▪ (-1.96, +1.96)的面积占总面积的95.00% ▪ (-2.58, +2.58)的面积占总面积的99.00%
2020/8/8
9
三、标准正态分布
▪ 标准正态分布与标准化变换 ▪ 标准正态分布表
压 ▪ >95mmHg :高血压
2020/8/8
23
参考值范围的确定
▪ 方法:正态近似法,百分位数法
▪ 95%参考值(正常值)范围

03正态分布与医学参考值范围(医学统计学)

03正态分布与医学参考值范围(医学统计学)
σ 是形状参数,决定着正态曲线的分布形状
正态曲线下的面积分布有一定的规律
图3-3
图3-4
方差相等、均数不等的正态分布图示
2 1 3
3 1 2
正态方程的积分式(分布函数):
F(X)为正态变量X的累计分布函数,反映正态曲线 下,横轴尺度自-∞到X的面积,即下侧累积面积 。
Normal distribution
图3-5
图3-6
正态分布是一种对称分布,其对称轴为直线X=µ,即均 数位置,理论上:
µ±1σ范围内曲线下的面积占总面积的68.27% µ±1.96σ范围内曲线下的面积占总面积的95% µ±2.58σ范围内曲线下的面积占总面积的99% 实际应用中:
±1 S范围内曲线下的面积占总面积的68.27% ±1.96 S范围内曲线下的面积占总面积的95% ±2.58 S范围内曲线下的面积占总面积的99%
属异常,采用双侧界值;有些指标仅过大或者过 小为异常,采用单侧界值。
肺活量参考值范围
白细胞数参考值范围
血铅参考值范围
5. 选择适当的百分数范围 结合专业知识,根据研究目的、研究指标的性质、
数据分布特征等情况综合考虑。百分数范围的不同 将导致不同的假阳性率和假阴性率。
6. 选择计算参考值范围的方法
异常
正常
异常
异常
正常
双侧下限
双侧上限
单侧下限
正常
异常
单侧上限
例3-3 已知某地140名正常成年男子红细胞计数近似服 从正态分布, X =4.78×1012/L,S =0.38×1012/L, 估计该地正常成年男子红细胞计数95%参考值范围。
X z0.05 2S 4.78 1.960.38 4.04 , 5.52

第三章-统计学正态分布及其应用(医学统计学)-幻灯片

第三章-统计学正态分布及其应用(医学统计学)-幻灯片
-1.96
68.27%
+1.0 95.00% 2.5%
+1.96
二、标准正态分布表 附表Ⅰ
Φ(u)
-∞ -3 -2
-1
0
+1 +2 +3 + ∞
查表确定标准正态分布曲线下的面积时 必须注意:
(1)当μ,σ和X已知时,先按u变 换公式求得u值,再用u值查表;
ux
当μ,σ和X未知时,用样本均数 和样本标准差S代替求u值。
Ф(u2)- Ф(u1) = 0.2643 - 0.1251
=0.1392=13.92%
即身高界于116.5-119.0cm范围内 的7岁男童比例为13.92%,其人数 为110×13.92%=15(人)。
第三节 正态分布的应用
一、估计频数分布 二、制定参考值范围 三、质量控制 四、统计处理方法的基础
u1=
= - 1.15
4.72
119.0-121.95
u2=
= - 0.63
4.72
例3.3 已知 X=121.95cm, S=4.72cm 欲估计身高界于116.5-119.0cm范
围内的7岁男童比例及人数。
求该面积
-1.15 -0.63
Ф(u1) =Ф(-1.15)=0.1251
Ф(u2) =Ф(-0.63)=0.2643
1、正态分布法
(1)适用范围:(近似)正态分布或对数正态分布 资料
x (2)计算公式: ±uS x 双侧: 95% ±1.96S
x 99% ±2.58S x 单侧: 上限 95% +1.645S
x 99% +2.326S x 下限 95% -1.645S
x 99% -2.326S
2、百分位数法 (1)适用范围: a.偏态分布资料 b.分布不清资料 c.开口资料
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数μ和σ会产生
norm1a909l0%%
不同位置不同
distribution)
形状的正态分 布曲线。
μ–2.58σ
μ–σ μ μ+σ
μ+2.58σ
μ–1.96σ
μ+1.96σ
标准正态分布
标化过程 u变换
x~N(µ,σ2)
①平移过程:
使均数µ变为0 —— “x–μ” x
μ–2.58 μ–1.96σμ–σ μ μ+σ μ+1.96 μ+2.58σ
正态分布与医学参考值范围
内容
1 正态分布的特点
2 标准正态分布 正态分布的应用
3
35
30
25
人数
某地140名正常
20
成年男子红细
15 10
胞数(1012/L
5
) 频数分布图 观察人数不断
0
3.7
4.1 4.5 4.9 5.3 5.7
红细胞数(1012/L)
增加,组段不 断细分,直条 不断变窄
顶端逐渐接近一 条光滑的曲线
双侧
μ±1.64σ μ±1.96σ μ±2.58σ
单侧
只有下限
只有上限
μ-1.28σ
μ+1.28σ
μ-1.64σ
μ+1.64σ
μ-2.33σ
μ+2.33σ
实际应用中,常用样本均数X 及样本标准差S来代替μ和σ 。
百分位数法 应用条件 : 偏态分布资料
参考值范围 (%)
90
双侧 P5~P95
只有下限
正态分布的数学函数表达式
如果随机变量X的概率密度函数满足
X
f(x) 1
-(-x)2
µ为总
e22 , - x 体均数
2
σ2 为总
则称X服从正态分布,记作X~N(µ,σ2)体。方差
正态分布的特征
(1)正态分布曲线位于直角坐标系上方,呈钟 形,中间高,两边低,以x=μ为中心,左右完全 对称,两端以x轴为渐近线。
➢确定目标总体 ➢选择“正常人” ➢选择一批病人作为制订参考值之参考 ➢统一测量方法和条件 ➢确定观察对象例数 ➢确定单双侧位界 ➢确定参考值组数 ➢选定百分位界
估计方法
正态分布法 百分位数法
正态分布法 应用条件 :正态分布或近似正态分布资料
正态分布法制定医学参考值
参考值范围 (%)
90 95 99
-
22
2
②区间μ±σ的面
由上式可得出:
积为68.27%, 区间μ±1.96σ的
面积为95%,区
间μ±2.58σ的面
积为99%。
正①态x轴分与布正是一
为了更方便用
个态分布簇曲。线曲
统一的统计量
线所与夹μ面和积σ恒两个
表,将其转化
参等数于有1或关,对
为标准正6态8.2分7%
应10于0%不同的参
布(stand95a%rd
单侧
只有上限
P10
P90
95
P2.5~P97.5
P5
P95
99
P0.5~P9 -2.58 -1.96 -1 0 1 1.96 2.58
应用
➢估计医学参考值范围 ➢质量控制:临床检验、生物鉴定、食品卫生 监督 ➢其他许多统计方法的基础
医学参考值估计
含义
绝大多数(一般95%或99%)正常人的 各种生理、生化、组织或排泄物中各种 成分的含量
考虑问题
u x-
u~N(0,1)
( )
( )
②使1—改标—变准“形差( x状由–:σ变μ/16为8.σ.92”76%)
95%
19090%
u
-2.58 -1.96 -1 0 1 1.96 2.58
标准正态分布表
标准正态分布曲线下的面积可以通过查标准正 态分布表得到 P ( 1 u 1 ) ( 1 ) ( 1 ) 0 .6827 P ( 1 . 9 u 6 1 . 9 ) 6 ( 1 . 9 ) 6 ( 1 . 9 ) 0 . 6 95 P ( 2 . 5 u 8 2 . 5 ) 8 ( 2 . 5 ) 8 ( 2 . 5 ) 0 . 8 99
0.6
0.4
σ=1
0.2
σ=2
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
正态分布形态变换示意图
正态分布的特征
(4)正态分布曲线下的面积规律: 服从正态分布的随机变量在一区间上曲线下 的面积与该随机变量在同一区间内取值的概 率相等。
概率分布函数:
F(x) 1
(x-)2
e dx x
(2)在x=μ处,f(x)有最大值 x越远离μ,
f(x)值越小。在 处有拐点。
(3)正态分布有两个参数:位置参数——均数μ 和形态参数(又叫变异度参数)——标准差σ。 正态分布曲线只与这两个参数有关。
正态分布的特征
位置参数——均数μ
决定正态分布曲线在横轴上 的集中位置。固定形态参数σ ,改变μ的值,曲线沿 x轴平 行移动,曲线形状不变。
1.2
人数
350 300 250 200 150 100
50 0
3.7 4.1 4.5 4.9 5.3 5.7
概率密度
1
0.8
0.6
0.4
0.2
0
3.5
4
4.5
5
5.5
6
红细胞数(1012/L)
红细胞数(1012/L)
正态分布曲线
中间高
正态分布曲线X 的取值是连续的
两边低
左右对称
两边低
呈钟形
X
中间高,两边低,左右对称,呈钟形
1.2 1
0.8 0.6 0.4 0.2
0 3.5
μ=4.75 μ=5.95
4 4.5 5 5.5 6 6.5 7 正态分布位置变换示意图
形态参数——标准差σ
决定正态分布曲线的形状。 固定位置参数μ ,σ值变小 ,曲线变“瘦高”(陡峭), σ值变大,曲线变“矮胖”( 平坦),曲线位置不变 。
0.8
σ=0.5
相关文档
最新文档