热学玻尔兹曼分布.ppt

合集下载

《物理化学第4版》第六章6.4 玻尔兹曼分布ppt课件

《物理化学第4版》第六章6.4 玻尔兹曼分布ppt课件
即 q0 = qt·qr qv0qe0qn0
能量零点的选择对玻尔 兹曼分布有无影响 ?
ni
N
gq0 qe0 kT
形式完全相同!
ni
N q
g i e i
kT
N q0 eε 0
kT
g e
ε
0 i
ε
0
kT
i
N q0
g eε
0 i
i
kT
结论:对玻尔兹曼分布中任一能级上粒子的分布
4. 能量零点的选择对配分函数的影响
设粒子的能级为ε0,ε1,ε2,…,则
q
g i e i
kT
g 0 e 0
kT
g e1 / kT 1
i
通常选择粒子的基态能级作为能量的零点(任何能级的
能量不为负),各能级的能量为 i0 i 0
q0
g ei0 i
kT
g eε
0 0
0
kT
g1eε
0 1
/ kT
数 ni 没有影响。
结论:选择不同的能量零点会影响配分函数的
值,但对计算玻尔兹曼分布中任一能级上粒子 的分布数 ni 没有影响。
注意:
由基态能级的能位为零的粒子 配分函数q0,计算所得系统系
U
nii
ni
(
0 i
0)
统的热力学函数U、H、A、G
i
i
,与由绝对能量对应的粒子配
ni
0 i
N 0
kT
i
振动配分函数
qv
g e v,i v ,i
kT
i
电子配分函数
qe
g ee ,i e ,i
kT
i

热力学统计 第七章玻尔兹曼统计

热力学统计 第七章玻尔兹曼统计

al !
al lal ln ln N ! N ln N al ln al ! l l l x 1 ln x ! x ln x x S k ln S
0
设=1时,S=0 S0=0
ln Z S Nk (ln Z )
2.内能U与广义力Y的统计表达式
2.1 内能U的统计表达式
N N l U al l ll e Z Z l l N Z ln Z N Z
e l l
N al l e l Z Z l e l
配分函数Z :
l
Z l e l
l
分布在能级l 的粒子数:
N al l e l Z
已知(l, l),可求Z——并不容易!
经典粒子: 配分函数Z :
Z l e l
l
Z e
( q . p )
dqdp e D( )d r h
积分因子:
如果 X ( x, y )dx Y ( x, y )dy 不是全微分,但存在函数 ( x, y ) ,使得
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy 为全微分, 即
( x, y ) X ( x, y )dx ( x, y )Y ( x, y )dy ds ( x, y )
S k ln
满足经典极限的非定域系统:
ln
l
la
l
al !
al S k N ln N al ln l l
S0
lal al ln ln N ln N al ln ln N ! l l al ! l

玻尔兹曼速度分布律

玻尔兹曼速度分布律
这个分布律描述了气体分子在各个方向上的速度分布情况,反映了气体分子运动 的统计规律。
分子平均动能与温度的关系
分子平均动能是气体分子动能的平均值,与温度T有关。根据 玻尔兹曼速度分布律,分子平均动能随着温度的升高而增大 。这是因为高温下气体分子运动速度更快,具有更高的动能 。
分子平均动能与温度的关系可以用公式E=3/2kT表示,其中E 是分子平均动能,k是玻尔兹曼常数,T是绝对温度。这个公 式反映了气体分子平均动能与温度的正比关系。
高温高压下的适用性
当温度和压力较高时,玻尔兹曼速度分布律可能不再适用。这是因为高温和高压条件下,气体分子间 的相互作用以及分子与容器壁之间的相互作用变得更加复杂,需要考虑量子效应和相对论效应的影响 。
在高温高压条件下,可能需要采用其他理论模型,如量子统计力学或相对论统计力学,来描述气体分 子的速度分布。
适用范围
玻尔兹曼速度分布律适用于稀薄气体,即在分子数密度较低的情况 下,气体分子的运动行为可以用该定律来描述。
02 玻尔兹曼速度分布律的数 学表达式
表达式概述
玻尔兹曼速度分布律是描述气体分子在平衡态下速度分布的统计规律,其数学表达 式为:f(v) = (m/2πkT)^(3/2) * 4πv^2 * e^(-mv^2/2kT),其中m是分子质量,k 是玻尔兹曼常数,T是绝对温度。
玻尔兹曼速度分布律
目录
CONTENTS
• 引言 • 玻尔兹曼速度分布律的数学表达式 • 玻尔兹曼速度分布律的物理意义 • 玻尔兹曼速度分布律的应用 • 玻尔兹曼速度分布律的局限性 • 玻尔兹曼速度分布律的发展与展望
01 引言
背景介绍
气体分子运动论
气体分子运动论是物理学的一个重要 分支,主要研究气体分子在空间中的 运动规律和相互作用。

气体分子运动论和热力学基础之玻尔兹曼分布律

气体分子运动论和热力学基础之玻尔兹曼分布律

kT
)dvx
dvy
dvz
dxdydz
在温度一定时,分子的平均动能是一定的, 所以,分子优先占据势能较低的位置。
如果对坐标 进行积分
N0 n0
V
exp( p )dxdydz
kT
上式就演化为麦克 斯韦速率分布律。
由于对速率的积
分是归一化的
(m 2πkT
)3/ 2
exp(
k kT
)dvxdvydvz
/
2
exp(
kT
)dvx
dvy
dvz
dxdydz
分布律,exp(-ε/kT) 称为概率因子。
其中n0表示εp = 0处单位体积内各种速度的总分子数。
在一定的速度和坐标范围内,在一定的温度下的 平衡状态中,分子的能量越低,分子数就越多态。
{范例8.6} 玻尔兹曼分布律
dN
n0
(
m 2πkT
)3
/
2
exp(
[解析](2)在重力场中,气体分子的密度 随高度的分布可用点的密集程度表示。
不论什么 分子,由 于重力的 作用,分 子数密度 在低空比 较大,在 高空比较 小。
氖气的分 子量比较 小,分子 数密度减 小得比较 慢,在同 样的高度 内,点数 相对比较 均匀。
氧气的 分子量 比较大, 分子数 密度减 小得比 较快, 在高空 比较稀 薄。
由于势能与位置有关,因此分子在空间的分布是不均匀的。
玻尔兹曼认为:气体在一定的温度下处于平衡状态时,在速
度间隔vx~vx + dvx、vy~vy + dvy、vz~vz + dvz和坐标间隔x~x + dx 、
y~ y + dy、z~z + dz中的分子数为

11-3最可几分布、平衡分布、玻尔兹曼分布及配分函数定义

11-3最可几分布、平衡分布、玻尔兹曼分布及配分函数定义

Physical Chemistry(下册)物理化学(下册)第七章电化学第九章化学动力学第八章界面现象第十章胶体化学第十一章统计热力学物理化学(下)绪论第十一章统计热力学Chapter 11 Statistical thermodynamics§11-!本章基本要求§11-1统计热力学基本概念及术语§11-2能级分布的微态数及系统的总微态数§11-3最可几分布、平衡分布、玻尔兹曼分布及配分函数定义§11-4粒子配分函数的计算§11-5系统内能热容与配分函数的关系§11-6系统熵与配分函数的关系§11-7其它热力学函数与配分函数的关系§11-8理想气体反应标准平衡常数与配分函数的关系§11-$本章小结与学习指导一、概率二、等概率定理三、最概然分布四、最概然分布与平衡分布五、最概然分布推导六、粒子配分函数定义七、玻尔兹曼分布§11-3最概然分布、平衡分布、玻尔兹曼分布及配分函数定义1.概率若一个事件有多种可能则称为复合事件,各种可能出现的事件称为可能事件,或偶然事件。

复合事件重演m 次偶然事件A 出现n 次,当m趋于无穷大时,n/m 为定值,定义为事件A 出现的概率或称概然率,用PA表示。

一、概率§11-3最概然分布、平衡分布、玻尔兹曼分布及配分函数定义一、概率§11-3最概然分布、平衡分布、玻尔兹曼分布及配分函数定义在统计热力学中,系统的粒子数量级一般为1024左右,且粒子在不停的运动,碰撞频率极高,使系统微态不断变化。

在很短的时间内粒子经历的微态已足以反映出各种微态出现几率的稳定性。

即出现各微态的可能性与数学几率相符。

等概率定理:在(N、U、V)确定情况下,系统各微态出现的概率相等。

P=1/二、等概率定理§11-3最概然分布、平衡分布、玻尔兹曼分布及配分函数定义1.分布概率在(N、U、V)确定时粒子的各种分布D的微态数ωD不同,所以各种分布出现的几率不同。

玻尔兹曼分布

玻尔兹曼分布

玻尔兹曼分布玻尔兹曼分布律是一种覆盖系统各种状态的概率分布、概率测量或者频率分布。

当有保守外力(如重力场、电场等)作用时,气体分子的空间位置就不再均匀分布了,不同位置处分子数密度不同。

玻尔兹曼分布律是描述理想气体在受保守外力作用、或保守外力场的作用不可忽略时,处于热平衡态下的气体分子按能量的分布规律玻尔兹曼(L.E.Boltzmann)将麦克斯韦分布律推广到有外力场作用的情况。

在等宽的区间内,若E1>E2,则能量大的粒子数dN1小于能量小的粒子数dN2,状态即粒子优先占据能量小的,这是玻尔兹曼分布律的一个重要结果。

经过将近一个世纪的传播,物理学界、化学界渐渐接受了道尔顿的“原子—分子模型”,但原子、分子的确凿证据迟迟没有找到。

恰恰此时,一股更强大的科学成就——热力学第一、第二定律出现了。

热力学原则上解决了一切化学平衡的问题。

1892年,物理化学家奥斯特瓦尔德试图在此基础上证明,将物理学和化学问题还原为原子或分子之间的力学关系是多余的。

他试图将“能量”赋以实物一样的地位,甚至要把物质还原为能量。

他提出“世界上的一切现象仅仅是由于处于空间和时间中的能量变化构成的”。

在统计学中,麦克斯韦- 玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。

它一开始在物理中定义并使用是为了描述(特别是统计力学中描述理想气体)在理想气体中粒子自由移动的在一个固定容器内与其它粒子无相互作用的粒子速度,除了它们相互或与它们的热环境交换能量与动量所产生的非常短暂的碰撞。

在这种情况下粒子指的是气态粒子(原子或分子),并且粒子系统被假定达到热力学平衡。

在这种分布最初从麦斯威尔1960年的启发性的基础上衍生出来时,玻尔兹曼之后对这种分布的物理起源进行了大量重要调查粒子速度概率分布指出哪一种速度更具有可能性:粒子将具有从分布中随机选择的速度,并且比其它选择方法更可能在速度范围内。

玻尔兹曼分布

玻尔兹曼分布

玻尔兹曼分布定律是覆盖系统各种状态的概率分布,概率测量或频率分布。

当存在保守的外力(例如重力场,电场等)时,气体分子的空间位置不再均匀分布,并且在不同位置分子数密度也不同。

玻尔兹曼分布定律描述了在保守外力或保守外力场的作用下处于热平衡状态的理想气体分子的能量分布。

L. E. Boltzmann将麦克斯韦分布定律扩展到外力场的情况。

在相同的宽度范围内,如果E1> E2,则能量DN1大的粒子的数量少于能量DN2小的粒子的数量,并且状态是粒子优先占据较小的能量,这是玻尔兹曼的重要结果分配法。

经过近一个世纪的传播,物理和化学界逐渐接受道尔顿的“原子分子模型”,但是原子和分子的确凿证据尚未得到发现。

这时,出现了更强大的科学成就,即热力学的第一定律和第二定律。

热力学原则上解决了化学平衡的所有问题。

1892年,物理化学家奥斯特瓦尔德(Ostwald)试图证明没有必要将物理和化学问题减少到原子或分子之间的机械关系。

他试图赋予“能量”与物质对象相同的状态,甚至使物质恢复能量。

他提出“世界上所有现象都仅由时空的能量变化构成”。

在统计中,麦克斯韦·玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。

它首先被定义并在物理学中用于描述(特别是在统计力学中)粒子在理想气体中自由移动而不与固定容器中的其他粒子相互作用的速度,除了粒子与其热环境之间的非常短时间的碰撞之外通过交换能量和动力。

在这种情况下,粒子是指气态粒子(原子或分子),并且假定粒子系统达到了热力学平衡。

当这种分布最初是从1960年的麦克斯韦启蒙运动中获得的时,玻尔兹曼对这种分布的物理起源进行了许多重要的研究。

粒子速度的概率分布表明哪个速度更有可能:粒子具有从分布中随机选择的速度,并且比其他选择方法更有可能处于速度范围内。

分布取决于系统温度和颗粒质量。

Maxwell Boltzmann分布适用于经典理想气体,这是理想的真实气体。

第七章节-玻尔兹曼统计

第七章节-玻尔兹曼统计

在准静态过程中,系统从外界所吸收的热量等于 粒子在各能级重新分布所增加的内能. 根据热力学第二定律
dQ不是全微分,与过程有关,有一积分因子, 除以T后得全微分dS,dS是全微分
BEIJING NORMAL UNIVERSITY
BEIJING NORMAL UNIVERSITY
积分因子
熵的统计表达式
3 U = NkT 2
BEIJING NORMAL UNIVERSITY
麦克斯韦速度分布律
讨论气体分子作无规热运动时,气体分子质心的平移 运动速度所表现出来的统计分布规律。 一、麦克斯韦速度分布律 1859年,麦克斯韦在研究分子相互碰撞作无规则运 动时,得到了气体分子按其质心速度分布的统计规律 麦克斯韦速度分布律
物态方程
∂ ln Z 注:也可直接利用公式 p = NkT 计算 ∂V
⎛ ∂F ⎞ S = −⎜ ⎟ ⎝ ∂T ⎠V
2πmk 3 3 3 = Nk ln V + Nk ln 2 + Nk ln T + Nk 2 h 2 2
3 = Nk ln V + Nk ln T + S 0 2
BEIJING NORMAL UNIVERSITY
熵的统计表达式,Boltzmann 关系
BEIJING NORMAL UNIVERSITY
由于
特性函数,自由能
量子情况下,粒子不可分辨性带来的差别
BEIJING NORMAL UNIVERSITY
计算单原子分子理想气体的熵:
3 3 2πmkT S = Nk + Nk ln V + Nk ln( ) 2 2 2 h
(ⅰ)系统在热力学过程中的规律 (ⅱ)系统的基本热力学函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n(z) n(0) exp( m*gz ), RT
其中m* m(1 0 )
1908年法国科学家 Perrin首次观测到,1926年 获得诺贝尔物理奖。
旋转体中悬浮粒子径向分布: ω
l
r dr
h
超速离心技术与同位素分离:
台风、飓风和龙卷风:
四、玻尔兹曼分布
设n1和n2分别表示在温度T的系统中,处于粒子能 量为ε 1的某一状态与ε 2的另一状态的粒子数密度。
例4 气体分子的自由度
将每个原子看作质点 所以分子是 质点系
单原子分子
t 3
双原子分子 多原子分子
t 3 r 2 s 1
t 3 r 3 s 3N 6
刚性分子 单原子分子 双原子分子 多原子分子
s0
t 3
t3 r2
t3 r3
i t r
i 3 i 5 i 6
n1

n2
exp(
1 2
kT
)
玻尔兹曼分布
对于处于平衡态的气体中的原子、分子、布朗粒子, 以及液体、固体中的很多粒子,一般都可应用玻尔兹曼 分布,只要粒子之间相互作用很小而可予忽略。
T

1 2
k ln( n1 )
n2
它表示处于平衡态的系统,在(无 相互作用)粒子的两个不同能量的状态 上的粒子数的比值与系统的温度及能量 之差有确定 的关系。
若受到限制自由度降低 平面上 2个 平动自由度 t=2 直线上 1个 平动自由度 t=1
例2 自由运动的刚体 (如大家熟悉的手榴弹)自由度? 首先应明确刚体的振动自由度 s = 0 按基本运动分解:平动 + 转动 整体随某点(通常选质心)平动
cc
cc
c
6个自由度 t+ r = 3 + 3 = 6
定质心位置 需3个平动自由度
§2.7 能量均分定理
§2.7.1 理想气体的热容
定义热容:
c lim Q dQ T 0 T dT
C=νCm, C=mc
Cm为摩尔热容,c为比热
理想气体的内能: 对单原子理想气体
3
3
Um NA 2 kT 2 RT
理想气体的热容:
3 CV ,m 2 R
1 2
mvx2

n(z) n(0) exp( Mmgz ) RT
p+dp
系统 ρg
z+dz
z p
二、等温大气标高
定义大气标高:
kT RT H
mg M m g
大气标高是粒子按高度分布的特征量,它反映
了气体分子热运动与分子受重力场作用这一对矛盾。
三、悬浮微粒按高度的分布
设每一个微粒的质量为m,体积为V,微粒的密度为ρ 。
P101,2.24 1
小球可以看作质点 杆的直径可以忽略
小球可以看作质点
(1)
2 杆的直径不可以忽略
3
小球可以不看作质点
杆的直径可以忽略
(2)
2+1+1=4
1+1 2+1 1+1+1
§2.7.3能量均分定理
能量按自由度均分定理(简称能量均分定理)---处于温度为T的平衡态的气体中,分子热运动动 能平均分配到每一个分子的每一个自由度上,每 一个分子的每一个自由度的平均动能都是kT/2。
1 2
mv
2 y

1 2
mvz2

1 2
kT
每一个方向的平均平动动 能都均分 kT/2
§2.7.2 自由度与自由度数
描述一个物体在空间的位置所需的独立坐标称为 该物体的自由度。而决定一个物体在空间的位置所需 的独立坐标数称为自由度数。
1)平动
质点
任一直线形成一组平行线
2)转动
3)振动
例1 自由运动的质点 (三维空间) 3 个 平动自由度 记作 t = 3
复习、提问
最概然速度=? 思考题2.14
§2.6 玻尔兹曼分布
一、等温大气压强公式
该系统达到平衡的条件为:
p A ( p dp) A gAdz, dp gdz
p dp
z mg dz
0p
0 kT
p(z) p(0) exp( M m gz ) RT
每一点绕过c 点的轴转动 共有 3个转动自由度
可以理解成物体系 对三个轴的旋转
例3 由 N 个独立的粒子组成的
质点系的自由度 (一般性讨论)
● 每个独立的粒子各有3个自度
系统最多有3N个自由度
●基本形式 平动 + 转动 + 振动
t
r
s
随某点平动 t = 3
过该点轴的转动
r=3
其余为振动
s = 3N-6
§2.7.6能量均分定理的局限 自由度的冻结
1、能量均分定理的局限
2、自由度的冻结
CV,m / R
7/2
振动 5/2
转动 3/2
平动
0 25 100 500 1000 5000 T / K 氢气CV,m---T曲线
课后作业
2.7.1 2.7.3
每一个分子的总的平均能量为: (t r 2v) kT 1 ikT,
22
注意
i t r 2v
1)、各种振动、转动自由度都应是确实对能量均分定理作全部贡献的自由度。 2)、只有在平衡态下才成立。 3)、它是对大量分子统计平均所得结果。 4)、它不仅适用于理想气体,而且也适用于液体和固体。 5)、气体:靠分子间大量无规则的碰撞来实现;液体、固体:分子间强相 互作用来实现
相关文档
最新文档