固定收益证券计算题
固定收益证券计算题

计算题题型一:计算普通债券的久期和凸性久期的概念公式:t Nt W t D ∑=⨯=1其中,W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且以上求出的久期是以期数为单位的,还要把它除以每年付息的次数,转化成以年为单位的久期。
久期的简化公式:yy c y c T y y y D T +-+-++-+=]1)1[()()1(1 其中,c 表示每期票面利率,y 表示每期到期收益率,T 表示距到期日的期数。
凸性的计算公式:t Nt W t ty C ⨯++=∑=122)()1(1其中,y 表示每期到期收益率;W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且求出的凸性是以期数为单位的,需除以每年付息次数的平方,转换成以年为单位的凸性。
例一:面值为100元、票面利率为8%的3年期债券,半年付息一次,下一次付息在半年后,如果到期收益率(折现率)为10%,计算它的久期和凸性。
每期现金流:42%8100=⨯=C 实际折现率:%52%10=即,D=5.4351/2=2.7176利用简化公式:4349.5%5]1%)51[(%4%)5%4(6%)51(%5%516=+-+⨯-⨯++-+=D (半年) 即,2.7175(年)36.7694/(1.05)2=33.3509 ;以年为单位的凸性:C=33.3509/(2)2=8.3377利用凸性和久期的概念,计算当收益率变动1个基点(0.01%)时,该债券价格的波动①利用修正久期的意义:y D P P ∆⨯-=∆*/5881.2%517175.2*=+=D (年)当收益率上升一个基点,从10%提高到10.01%时,%0259.0%01.05881.2/-=⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0259.0%)01.0(5881.2/=-⨯-≈∆P P 。
②凸性与价格波动的关系:()2*21/y C y D P P ∆∙∙+∆∙-=∆当收益率上升一个基点,从10%提高到10.01%时,%0259.0%)01.0(3377.821%01.05881.2/2-=⨯⨯+⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0676.0%)01.0(3377.821%)01.0(5881.2/2=⨯⨯+-⨯-≈∆P P又因为,债券价格对于收益率的降低比对收益率的上升更加敏感,所以凸性的估计结果与真实价格波动更为接近。
固定收益证券 习题答案

6
9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20
9.2188% 9.2700% 9.3194% 9.3672% 9.4132% 9.4575% 9.5000% 9.5408% 9.5799% 9.6172% 9.6528% 9.6866% 9.7188% 9.7491% 9.7778% 9.8047% 9.8299% 9.8533% 9.8750% 9.8950% 9.9132% 9.9297% 9.9444%
折现因子 1 0.9619 0.9245 0.8880 0.8523 0.8175 0.7836 0.7506 0.7186 0.6876 0.6575 0.6285 0.6004 0.5733 0.5472 0.5220 0.4978 0.4745 0.4522 0.4308 0.4102
现金流量 0 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80 0 80
9、当期的平价到期收益曲线 1 如下:
1
平价收益率是指证券价格等于面值时的到期收益率 3
到期日 1 2 3 4 5
平价收益率 10% 15% 20% 23% 25%
假设平价到期收益率的单位 为年,按年复利计息。 利用上面提供的信息,计算以下债券在零期的价格,该债券获得的现金流如下: C1 =10元, C2 = 10元, C3 = 110元,其中Ct是在第t期获得的现金收入。
r3 = 21.56%
债券的价值为
10 10 110 + + = 77.84 2 1.1 (1.1539) (1.2156) 3
固定收益证券题目及解答

23、假设货币市场期限为3个月、6个月和9个月 的债券的实际季度收益率分别为0.75%、1.5%和 2%,再假设该市场上存在期限为3个月和9个月 的两种贴现国债,面值都是100元。如果投资者 的投资期限是3个月,并假定收益率曲线在未来3
个月里不会变化。请问该投资者应选择哪一种债 券投资?
3、一张期限为10年的等额摊还债券,每年等 额偿还的金额为100元;另有一张永久债券, 每年支付利息为50元。如果市场利率为8%, 试比较它们价格的大小。
4、若市场上有下表所示的两个债券,并假设 市场利率的波动率是10%,构建一个二期的利率 二叉树。
市场债券品种假设
品种 A
到期期限 息票利率 折现率 当前价格
12、考虑票面金额1000元、票面利率为8%、 期限为5年的每年付息一次的债券,现有两种 情况:到期收益率为7%时,上升1个百分点 所引起的债券价格变化率为多少? 到期收益 率为8%时,上升1个百分点所引起的债券价 格变化率为多少?哪种情况下债券价格变化率 大?
13、某投资者购买了10张面值为100元,票 面利率为6%、每年付息一次的债券,债券刚 付息,持有3年,获得3年末的利息后出售。 期间获得的利息可以再投资,假设再投资收 益率为4.5%。每份债券购买价为103元,出 售价为107元。求该投资者的总收益率。
14、某一次还本付息债券,面值100元,票面 利率3.5%,期限3年,2011年12月10日到期。 债券交易的全价为99.40元,结算日为2009年9 月15日,试计算其到期收益率。
15、假设有3个不同期限债券,它们的数据
见下表,其中第一个为零息债券,后两个是附
息债券,且都是每年付息一次。试给出1年期
6、设某债券与上题B债券条件相同,但 为可回售债券,持有人有权在发行后的 第一年末以99.50元的价格向发行人回售, 利率二叉树与上题亦相同,试计算该债 券的价格。
《固定收益证券》课程计算题

《固定收益证券》课程计算题《固定收益证券》课程练习题1、某投资者在上海证券交易所市场上以6%的年收益率申报买进200手R003,请计算成交后的购回价(小数点后保留三位)。
2、设一家公司从员工工作第1年末开始,每年给员工3000元福利存入一个银行账户,连续存4年,3年期存款年复利率为6.5%,2年期存款年复利率为5%,1年期存款年复利率为3%,那么这个年金终值是多少?3、一张期限为10年的等额摊还债券,每年等额偿还的金额为100元;另有一张永久债券,每年支付利息为50元。
如果市场利率为8%,试比较它们价格的大小。
4、若市场上有下表所示的两个债券,并假设市场利率的波动率是10%,构建一个二期的利率二叉树。
注:A债券到期一次还本付息,B债券是每年付息一次,两个债券面值都是100元。
5、设某债券与上题B债券条件相同,但为可赎回债券,发行人有权在发行后的第一年末以99.50元的价格赎回债券,利率二叉树与上题亦相同,试计算该债券的价格。
6、设某债券与上题B债券条件相同,但为可回售债券,持有人有权在发行后的第一年末以99.50元的价格向发行人回售,利率二叉树与上题亦相同,试计算该债券的价格。
7、设某张可转换债券的面值为100元,票面利率为5%,期限5年,转换比例为5。
预计2年后的标的股票价格为22元/股,折现率为6%,则该投资者认为该可转换债券的合理价格为多少元?8、有一贴现债券,面值100元,期限180天(一年设为360天),以5%的贴现率发行。
某投资者以发行价买入后持有至期满(一年设为365天),计算债券的发行价和该投资者的到期收益率。
(精确到小数点后两位)9、有一附息债券,一年付息一次,期限5年,票面金额为1000元,票面利率5.2%。
某投资者在该债券发行时以998元的发行价购入,持满3年即以1002.20元的价格卖出。
请计算该投资者的持有期收益率是多少(可用简化公式)?当期收益率是多少?(精确到小数点后两位)10、有一企业债券,面值100元,期限3年,票面利率4%,到期一次还本付息,利息所得税税率为20%,请计算持有该债券到期的税后复利到期收益率。
固定收益证券计算题

计算题题型一:计算普通债券的久期和凸性久期的概念公式:t Nt W t D ∑=⨯=1其中,W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且以上求出的久期是以期数为单位的,还要把它除以每年付息的次数,转化成以年为单位的久期。
久期的简化公式:yy c y c T y y y D T +-+-++-+=]1)1[()()1(1 其中,c 表示每期票面利率,y 表示每期到期收益率,T 表示距到期日的期数。
凸性的计算公式:t Nt W t ty C ⨯++=∑=122)()1(1其中,y 表示每期到期收益率;W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且求出的凸性是以期数为单位的,需除以每年付息次数的平方,转换成以年为单位的凸性。
例一:面值为100元、票面利率为8%的3年期债券,半年付息一次,下一次付息在半年后,如果到期收益率(折现率)为10%,计算它的久期和凸性。
每期现金流:42%8100=⨯=C 实际折现率:%52%10=即,D=5.4351/2=2.7176利用简化公式:4349.5%5]1%)51[(%4%)5%4(6%)51(%5%516=+-+⨯-⨯++-+=D (半年) 即,2.7175(年)36.7694/(1.05)2=33.3509 ;以年为单位的凸性:C=33.3509/(2)2=8.3377利用凸性和久期的概念,计算当收益率变动1个基点(0.01%)时,该债券价格的波动①利用修正久期的意义:y D P P ∆⨯-=∆*/5881.2%517175.2*=+=D (年)当收益率上升一个基点,从10%提高到10.01%时,%0259.0%01.05881.2/-=⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0259.0%)01.0(5881.2/=-⨯-≈∆P P 。
②凸性与价格波动的关系:()2*21/y C y D P P ∆∙∙+∆∙-=∆当收益率上升一个基点,从10%提高到10.01%时,%0259.0%)01.0(3377.821%01.05881.2/2-=⨯⨯+⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0676.0%)01.0(3377.821%)01.0(5881.2/2=⨯⨯+-⨯-≈∆P P又因为,债券价格对于收益率的降低比对收益率的上升更加敏感,所以凸性的估计结果与真实价格波动更为接近。
固定收益证券期末试题

固定收益证券期末试题一、选择题1. 固定收益证券的主要特点是()。
A. 收益固定B. 风险较低C. 流动性较好D. 所有以上选项2. 下列关于债券的陈述,哪一项是正确的?A. 债券的市场价格与利率呈正相关B. 债券的市场价格与利率呈负相关C. 债券的信用评级越高,其收益率越高D. 债券的到期时间越长,其价格对利率的敏感度越低3. 债券的到期收益率(YTM)是指()。
A. 债券的当前市场价格B. 债券的持有期回报率C. 债券的内部收益率D. 如果持有债券直到到期所能获得的年化收益率4. 债券的信用风险可以通过以下哪种方式降低?A. 购买高信用评级的债券B. 增加债券投资的多样性C. 购买债券期权D. 所有以上选项5. 以下哪种类型的债券通常具有最高的信用风险?A. 国债B. 地方政府债券C. 公司债D. 可转换债券二、简答题1. 请简述固定收益证券的定义及其主要类型。
2. 描述债券的久期以及它如何帮助投资者管理利率风险。
3. 解释债券信用评级的基本原理,并举例说明不同信用评级对投资者的意义。
三、计算题1. 假设你购买了一张面值为1000元,年票面利率为5%,剩余期限为10年的债券,当前市场价格为950元。
请计算该债券的到期收益率(YTM)。
2. 假设你持有一张面值为1000元,票面利率为6%,剩余期限为5年的债券,你预计在2年后将其出售。
如果当前的即期利率为4%,请使用久期估算你持有的债券在2年后的大致市场价格。
四、论述题1. 论述固定收益证券在投资组合管理中的作用及其对投资组合风险和收益的影响。
2. 分析当前经济环境下,投资者应如何选择合适的固定收益证券策略来优化其投资组合。
3. 讨论利率变动对固定收益证券市场的影响,以及投资者可以采取哪些策略来应对这些变动。
请注意,以上内容仅为试题框架,具体答案需要根据实际情况和所学知识进行详细解答。
在撰写答案时,应确保分析准确、逻辑清晰,并结合实际案例或数据支持观点。
固定收益证券的复习计算题

Fixed-income treasuryPpt31、公式:Practice Question 3.1Suppose currently, 1-year spot rate is 1% and marketexpects that 1-year spot rate next year would be 2%and 1-year spot rate in 2 years would be 3%. Compute today’s2-year spot rate and 3-year spot rate.(已做答案)2、Current YieldCompute the current yield for a 7% 8-year bond whose price is$94.17. How about the current yield if price is $100, $106,respectively?3、Case 3.1Consider a 7% 8-year bond paying coupon semiannually which is sold for $94.17. The present value using various discount rate is:A. What is the YTM for this bond?B. How much is the total dollar return on this bond?C. How much is the total dollar return if you put the same amount of dollars into a deposit account with the same annual yield?4、Forward Rates注:6-month bill spot rate is 3%是年化利率(3%要除以2)1-year bill spot rate is 3.3%是年化利率(3.3%要除以2)Ppt41、Fixed‐Coupon BondsPractice Question 4.2A. What is the value of a 4-year 10% coupon bond that pays interest semiannually assuming that the annual discount rate is 8%? What is the value of a similar 10% coupon bond with an infinite maturity(无期限)?B. What is the value of a 5-year zero-coupon bond with a maturity value of $100 discounted at an 8% interest rate?C. Compute the value par $100 of par value of a 4-year 10% coupon bond, assuming the payments are annual and the discount rate for each year is 6.8%, 7.2%, 7.6% and 8.0%, respectively.Infinite maturityPv=($100*10%/2)/(8%/2)(半年付息)Present Value PropertiesPractice Question 4.4A. Suppose the discount rate for the 4-year 10% coupon bond with a par value of $100 is 8%. Compute its present value.B. One year later, suppose that the discount rate appropriate for a 3-year 10% coupon bond increases from 8% to 9%. Redo your calculation in part A and decompose the price change attributable to moving to maturity and to the increase in the discount rate.(期限与贴现率变化)3、Pricing a Bond between Coupon PaymentsPractice Question 4.6Suppose that there are five semiannual coupon payments remaining for a 10% coupon bond. Also assume the following:①Annual discount rate is 8%② 78 days between the settlement date and the next coupon payment date③182 days in the coupon periodCompute the full price of this coupon bond. What is the clean price of this bond?4、Valuation ApproachCase 4.1A. Consider a 8% 10-year Treasury coupon bond. What is its fair value if traditional approach is used, given yield for the 10-year on-the-run Treasury issue is 8%?B. What is the fair value of above Treasury coupon bond if arbitrage-free approach is used,given the following annual spot rates?C. Which approach is more accurate(准确)?C、Arbitrage-Free Approach is more accuratePpt52、ConvexityConsider a 9% 20-year bond selling at $134.6722 to yield 6%. For a 20 bp change in yield, its price would either increase to $137.5888 or decrease to $131.8439.A. Compute the convexity for this bond.B. What is the convexity adjustment for a change in yield of 200 bps?C. If we know that the duration for this bond is 10.66, what should the total estimated percentage price change be for a 200 bp increase in the yield? How about a 200 bp decrease in the yield?Ppt61、Measuring Yield Curve RiskCase 6.1: Panel AConsider the following two $100 portfolios composed of2-year, 16-year, and 30-year issues, all of which are zero-coupon bonds:For simplicity, assume there are only three key rates—2years, 16 years and 30 years. Calculate the portfolio’s key rate durations at these three points and its effective duration.Case 6.1: Panel BConsider the following three scenarios:Scenario 1: All spot rates shift down 10 basis points.Scenario 2: The 2-year key rate shifts up 10 basis points an the30-year rate shifts down 10 basis points.Scenario 3: The 2-year key rate shifts down 10 basis points andthe 30-year rate shifts up 10 basis points.How would the portfolio value change in each scenario?Ppt7Consider a 6.5% option-free bond with 4 years remaining to maturity. If the appropriate binomial interest rate tree is shown as below, calculate the fair price of this bond.Ppt81、Valuing Callable and Putable BondsCase 8.1: Valuing a callable bond with singlecall priceConsider a 6.5% callable bond with 4 years remaining to maturity, callable in one year at $100. Assume the yield volatility is 10% and the appropriate binomial interest rate tree is same as Case 6.4. Calculate the fair price of this callable bond.2、Case 8.2: Valuing a callable bond with call scheduleConsider a 6.5% callable bond with 4 years remaining tomaturity, callable in one year at a call schedule as below:Assume the yield volatility is 10% and the appropriate binomial interest rate tree is same as Case 6.4. Calculate the fair price of this callable bond.3、Case 8.3: Valuing a putable bond Consider a 6.5% putable bond with4 years remaining to maturity, putable in one year at $100. Assume the yieldvolatility is 10% and the appropriate binomial interest rate tree is same as Case 6.4. Calculate the fair price of this putable bond.Convertible BondsCase 9.1:Suppose that the straight value of a 5.75% ADC convertible bond is $981.9per$1,000 of par value and its market price is $1,065. The market price per share of common stock is $33and the conversion ratio is 25.32shares per $1,000 of parvalue. Also assume that the common stock dividend is $0.90 per share.公式:Minimum Value: the greater of its conversion price and its straight value. Conversion Price = Market price of common stock ×Conversion ratioStraight Value/Investment Value: present value of the bond’s cash flows discounted at the required return on a comparable option-free issue.Market Conversion Price/Conversion ParityPrick= Market price of convertible security ÷Conversion ratioMarket Conversion Premium Per Share= Market conversion price – Market price of common stockMarket Conversion Premium Ratio= Market conversion premium per share ÷Market price of common stock Premium over straight value= (Market price of convertible bond/Straight value) – 1The higher this ratio, the greater downside risk and theless attractive the convertible bond.Premium Payback Period= Market conversion premium per share ÷Favorable income differential per shareFavorable Income Differential Per Share= [Coupon interest – (Conversion ratio × Common stock dividend per share)] ÷Conversion ratioA. What is the minimum value of this convertible bond?B. Calculate its market conversion price, market conversion premium per share and market conversion premium ratio.C. What is its premium payback period?D. Calculate its premium over straight value.Market price of common stock=$33,conversion ratio = 25.32Straight Value=$981.9 ,market price of conversible bond = $1,065common stock dividend = $0.90Coupon rate=5.75%A、Conversion Price = Market price of common stock ×Conversion ratio=$33*25.32=$835.56the minimum value of this convertible bond=max{$835.56,$981.9}=$981.9B、Market Conversion Price/Conversion ParityPrick= Market price of convertible security ÷Conversion ratio=$1065/25.32=$42.06Market Conversion Premium Per Share= Market conversion price – Market price of common stock= $42.06 -$33= $9.06Market Conversion Premium Ratio= Market conversion premium per share ÷Market price of common stock= $9.06/$33=27.5%C、Premium Payback Period= Market conversion premium per share ÷Favorable income differential per shareFavorable Income Differential Per Share= [Coupon interest – (Conversion ratio × Common stock dividend per share)] ÷Conversion ratioCoupon interest from bond = 5.75%×$1,000 =$57.50Favorable income differential per share = ($57.50 –25.32×$0.90) ÷25.32 = $1.37 Premium payback period = $9.06/$1.37 = 6.6 yearsD、Premium over straight value= (Market price of convertible bond/Straight value) – 1=$1,065/$981.5 – 1 =8.5%Ppt10No-Arbitrage Principle:no riskless profits gained from holding a combination of a forward contract position as well as positions in other assets.FP = Price that would not permit profitable riskless arbitrage in frictionless markets, that is:Case 10.1Consider a 3-month forward contrac t on a zero-coupon bond with a face value of $1,000 that is currently quoted at $500, and assume a risk-free annual interest rate of 6%. Determine the price of the forward contract underthe no-arbitrage principle.Solutions.Case 10.2Suppose the forward contract described in case 10.1 is actually trading at $510, which is greater than the noarbitrage price. Demonstrate how an arbitrageur can obtain riskless arbitrage profit from this overpriced forward contrac t and how much the arbitrage profit would be.Case 10.3If the forward contract described in case 10.1 is actually trading at $502, which is smaller than the no-arbitrage price. Demonstrate how an arbitrageur can obtain riskless arbitrage profit from this underpriced forward contract and how much the arbitrage profit would be.Case 10.4:Calculate the price of a 250-day forward contract on a 7% U.S.Treasury bond with a spot price of $1,050 (including accrued interest) that has just paid a coupon and will make another coupon payment in 182 days. The annual risk-free rate is 6%.Solutions. Remember that T-bonds make semiannual coupon payments, soCase 10.6Solutions.The semiannual coupon on a single, $1,000 face-value7% bond is $35. Abondholder will receive one payment 0.5 years from now (0.7 years left to expiration of futures) and one payment 1 year from now (0.2 yearsuntil expiration). Thus,Ppt11Payoffs and ProfitsCase 11.1Consider a European bond call option with an exercise price of $900. The call premium for this option is $50. At expiration, if the spot price for the underlying bond is $1,000, what is the call option’s payoff as well as its gain/loss? Is this option in the money, out of money, or at the money? Will you exercise this option? How about your answers if the spot price at expiration is $920, and $880, respectively? Solutions.A. If the spot price at expiration is $1,000, the payoff to the call option ismax{0, $1,000 - $900}=$100. So, the call is in the money and it will beexercised with a gain of $50.B. If the spot price at expiration is $920, the payoff to the call option ismax{0, $920 - $900}=$20. So, the call is in the money and it will beexercised with a loss of $30. (why?)C. If the spot price is $880 at expiration, the payoff to the call option ismax{0, $880 - $900}=0. So, the call is out of money and it will not be exercise. The loss occurred would be $50.Case 11.2Consider a European bond put option with an exercise price of $950. The put premium for this option is $50. At expiration, if the spot price for the underlying bond is $1,000, what is the put option’s payoff as well as its gain/loss? Is this option in the money, out of money, or at the money? Will you exercise this option? How about your answers if the spot price at expiration is $920, and $880, respectively?Solutions.A. If the spot price at expiration is $1,000, the payoff to the put option is max{0, $950 - $1,000}=0. So, the put is out of money and it will not be exercised. The loss occurred would be $50.B. If the spot price at expiration is $920, the payoff to the put option is max{0, $950 - $920}=$30. So, the put is in the money and it will be exercised with a loss of $20. (why?)C. If the spot price is $880 at expiration, the payoff to the call option is max{0, $950 - $880}=$70. So, the put is in the money and it will not be exercise with a gain of $20.。
固定收益证券全书习题

第一章固定收益证券简介三、计算题1.如果债券的面值为1000美元,年息票利率为5%,则年息票额为?答案:年息票额为5%*1000=50美元。
四、问答题1.试结合产品分析金融风险的基本特征。
答案:金融风险是以货币信用经营为特征的风险,它不同于普通意义上的风险,具有以下特征:客观性. 社会性.扩散性. 隐蔽性2.分析欧洲债券比外国债券更受市场投资者欢迎的原因。
答案:欧洲债券具有吸引力的原因来自以下六方面:1)欧洲债券市场部属于任何一个国家,因此债券发行者不需要向任何监督机关登记注册,可以回避许多限制,因此增加了其债券种类创新的自由度与吸引力。
2)欧洲债券市场是一个完全自由的市场,无利率管制,无发行额限制。
3)债券的发行常是又几家大的跨国银行或国际银团组成的承销辛迪加负责办理,有时也可能组织一个庞大的认购集团,因此发行面广4)欧洲债券的利息收入通常免缴所得税,或不预先扣除借款国的税款。
5)欧洲债券市场是一个极富活力的二级市场。
6)欧洲债券的发行者主要是各国政府、国际组织或一些大公司,他们的信用等级很高,因此安全可靠,而且收益率又较高。
3.请判断浮动利率债券是否具有利率风险,并说明理由。
答案:浮动利率债券具有利率风险。
虽然浮动利率债券的息票利率会定期重订,但由于重订周期的长短不同、风险贴水变化及利率上、下限规定等,仍然会导致债券收益率与市场利率之间的差异,这种差异也必然导致债券价格的波动。
正常情况下,债券息票利率的重订周期越长,其价格的波动性就越大。
三、简答题1.简述预期假说理论的基本命题、前提假设、以及对收益率曲线形状的解释。
答案:预期收益理论的基本命题预期假说理论提出了一个常识性的命题:长期债券的到期收益率等于长期债券到期之前人们短期利率预期的平均值。
例如,如果人们预期在未来5年里,短期利率的平均值为10%,那么5年期限的债券的到期收益率为10%。
如果5年后,短期利率预期上升,从而未来20年内短期利率的平均值为11%,则20年期限的债券的到期收益率就将等于11%,从而高于5年期限债券的到期首。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题题型一:计算普通债券的久期和凸性久期的概念公式:t Nt W t D ∑=⨯=1其中,W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且以上求出的久期是以期数为单位的,还要把它除以每年付息的次数,转化成以年为单位的久期。
久期的简化公式:yy c y c T y y y D T +-+-++-+=]1)1[()()1(1 其中,c 表示每期票面利率,y 表示每期到期收益率,T 表示距到期日的期数。
凸性的计算公式:t Nt W t ty C ⨯++=∑=122)()1(1其中,y 表示每期到期收益率;W t 是现金流时间的权重,是第t 期现金流的现值占债券价格的比重。
且求出的凸性是以期数为单位的,需除以每年付息次数的平方,转换成以年为单位的凸性。
例一:面值为100元、票面利率为8%的3年期债券,半年付息一次,下一次付息在半年后,如果到期收益率(折现率)为10%,计算它的久期和凸性。
每期现金流:42%8100=⨯=C 实际折现率:%52%10=即,D=5.4351/2=2.7176利用简化公式:4349.5%5]1%)51[(%4%)5%4(6%)51(%5%516=+-+⨯-⨯++-+=D (半年) 即,2.7175(年)36.7694/(1.05)2=33.3509 ;以年为单位的凸性:C=33.3509/(2)2=8.3377利用凸性和久期的概念,计算当收益率变动1个基点(0.01%)时,该债券价格的波动①利用修正久期的意义:y D P P ∆⨯-=∆*/5881.2%517175.2*=+=D (年)当收益率上升一个基点,从10%提高到10.01%时,%0259.0%01.05881.2/-=⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0259.0%)01.0(5881.2/=-⨯-≈∆P P 。
②凸性与价格波动的关系:()2*21/y C y D P P ∆••+∆•-=∆当收益率上升一个基点,从10%提高到10.01%时,%0259.0%)01.0(3377.821%01.05881.2/2-=⨯⨯+⨯-≈∆P P ;当收益率下降一个基点,从10%下降到9.99%时,%0676.0%)01.0(3377.821%)01.0(5881.2/2=⨯⨯+-⨯-≈∆P P又因为,债券价格对于收益率的降低比对收益率的上升更加敏感,所以凸性的估计结果与真实价格波动更为接近。
题型二:计算提前卖出的债券的总收益率首先,利息+利息的利息=⎥⎦⎤⎢⎣⎡-+⨯111)1(r r C n ;r 1为每期再投资利率;然后,有 债券的期末价值=利息+利息的利息+投资期末的债券价格;其中,投资期末的债券价格:[]NN N Nt t r Fr r C r F r C P )1()1(1)1()1(222212+++-=+++=-=∑; N 为投资期末距到期日的期数;r 2为预期的投资期末的每期收益率。
例二:投资者用905.53元购买一种面值为1000元的8年期债券,票面利率是12%,半年付息一次,下一次付息在半年后,再投资利率为8%。
如果债券持有到第6年(6年后卖出),且卖出后2年的到期收益率为10%,求该债券的总收益率。
解:602%121000=⨯=C %42%81==r %52%102==r6年内的利息+6年内利息的利息=55.901%41%)41(6012=⎥⎦⎤⎢⎣⎡-+⨯元第6年末的债券价格=[]46.1035%)51(1000%5%)51(16044=+++-⨯-元 所以,6年后的期末价值=901.55+1035.46=1937.01元总收益=1937.01-905.53=1031.48元 半年期总收益率=%54.6153.90501.193712=-总收益率=(1+6.54%)2-1=13.51%题型三:或有免疫策略(求安全边际)例三:银行有100万存款,5年到期,最低回报率为8%;现有购买一个票面利率为8%,按年付息,3年到期的债券,且到期收益率为10%;求1年后的安全边际。
解:①银行可接受的终值最小值:100×(1+8%)5=146.93万元; ②如果目前收益率稳定在10%:触碰线:36.100%)101(93.1464=+万元1年后债券的价值=100×8%+2%)101(108%1018+++=104.53万元;③安全边际:104.53-100.36=4.17万元;所以,采取免疫策略为卖掉债券,将所得的104.53万元本息和重新投资于期限为4年、到期收益率为10%的债券。
债券年收益率=%88.81100%)101(53.10454=-+⨯题型四:求逆浮动利率债券的价格例四(付息日卖出):已知浮动利率债券和逆浮动利率债券的利率之和为12%,两种债券面值都为1万,3年到期。
1年后卖掉逆浮动利率债券,此时市场折现率(适当收益率)为8%,求逆浮动利率债券的价格。
解:①在确定逆浮动利率债券价格时,实际上是将浮动和逆浮动利率这两种债券构成一个投资组合,分别投资1万元在这两种债券上,则相当于购买了票面利率为6%、面值为1万元的两张债券。
又因为在每个利息支付日,浮动利率债券价格都等于其面值,所以逆浮动利率债券价格易求。
②1年后,算票面利率为6%,面值为1万的债券价格347.9643%)81(10600%)81(6002=+++=P 元③P 逆=2P-P 浮=2×9643.347-10000=9286.694元题型五:关于美国公司债券的各种计算(债券面值1000美元、半年付息一次)(YTM 实为一种折现率)例五:现有一美国公司债券,息票利率为8%,30年到期,适当收益率为6%,求债券现在的价值?解:因为该债券面值为1000美元,每半年付息一次,所以:60601%)31(1000%)31(40+++=∑=n n P =⎥⎦⎤⎢⎣⎡+-⨯-%3%)31(14060+60%)31(1000+=1276.76元例六:现有一美国公司债券,息票利率为8%,30年到期,假设现在的售价为676.77美元,求债券到期收益率?解:因为该债券面值为1000美元,每半年付息一次,所以:60601)1(1000)1(4077.676YTM YTM n n +++=∑==6060)1(1000)1(140YTM YTM YTM ++⎥⎦⎤⎢⎣⎡+-⨯- 通过上式求出该债券的半年期到期收益率为6%,因此该债券的年到期收益率为6%×2=12%例七:美国债券市场上交易的一种零息债券,距到期日还有10年,到期价值为5000元,年适当贴现率是8%,计算该债券的价值。
解:因为该债券半年付息一次,所以每期贴现率为8%/2=4% n=20P=20%)41(5000+=2281.93元例八:一种美国公司债券,票面利率是10%,2008年4月1日到期。
每年的4月1日和10月1日分别支付一次利息。
如果投资者在2003年7月10日购买,该债券的适当贴现率是6%,则该债券的净价是多少?全价是多少?(采用360天计算)解:2003年7月10日距下一次利息支付日10月1日还有81天,且利息支付期为半年,即180天。
那么n=81/180=0.45。
79.1189%)31(1050%)31(50......%)31(50%)31(5045.945.845.145.0=++++++++=P 元即该债券的净价为1189.79元又因为距上一次付息日为180-81=99天,所以5.271809950=⨯=AI 元即该债券的全价为27.5+1189.79=1217.29元例九:在美国债券市场上有一种2年期的零息债券,目前的市场价格为857.34元,计算该债券的年到期收益率。
解:因为该债券为票面价格为1000元,半年付息一次,所以:4)1(100034.857YTM +=通过上式求出该债券的半年到期收益率为3.9%,因此该债券的年到期收益率为3.9%×2=7.8%例十:美国债券市场上有一种债券,票面利率为10%,每年的3月1日和9月1日分别付息一次,2005年3月1日到期,2003年9月12日的完整市场价格为1045元,求它的年到期收益率。
(按一年360天计算)解:2003年9月1日距下一次利息支付日2004年3月1日还有169天,半年支付一次。
即n=169/180=0.9389又因为全价=净价+应付利息06.318016918050=-⨯=AI 元所以,净价=1045-3.06=1041.94元 即,9389.29389.19389.0)1(1050)1(50)1(5094.1041YTM YTM YTM +++++=该债券的半年到期收益率为YTM=3.58% 年到期收益率为3.58%×2=7.16%题型六:交税方法例十一:一种10年期基金,票面利率为6%、按年付息、持有到期。
政府对其收税,税率为20%。
现有两种交税方式:①一年一付;②到期时一起付;问选择哪种交税方式更好?(改变哪个数值会造成相反的结果)解:设在某年年初购买该基金;基金面值为100元; 市场适当收益率为r ;①一年一付(年末付):每年年末应交:2.1%20%6100=⨯⨯元现值:[]r r r PV n n101011)1(12.1)1(2.1-=+-=+=∑②到期时一起付总利息为:10×1.2=12元 现值:102)1(12r PV +=若21PV PV =,则%1≈r所以:①当市场适当收益率为1%时,两种交税方式都可以; ②当市场适当收益率大于1%时,选择到期一起付; ③当市场适当收益率小于1%时,选择一年一付。
附:课上提过的重点题例十二:有一个债券组合,由三种半年付息的债券组成,下次付息均在半年后,每种债券的相关资料如下:解:①若考试时试题未给出债券的市场价格,必须计算出来。
A :12121%)5.31(1000%)5.31(3068.951+++=∑=n n B :10101%)75.21(20000%)75.21(55020000+++=∑=n n (平价出售) C :881%)41(10000%)41(37568.9831+++=∑=n n ②该债券组合的总市场价值为:951.68+20 000.00+9 831.68=30 783.36元③列表:r 为债券组合的到期收益率④列方程:121110987)1(1030)1(30)1(20580)1(580)1(10955)1(195536.30783r r r r r r r +++++++++++-⨯=-%13.3≈r所以该债券的半年期到期收益率为3.13%;其年到期收益率(内部回报率)为6.26%。