面向对象特征提取

合集下载

基于ENVI的遥感图像分类方法比较研究

基于ENVI的遥感图像分类方法比较研究

基于ENVI的遥感图像分类方法研究比较(聊城大学环境与规划学院GIS专业2010级4班学号:2010203***)摘要基于监督分类方法在遥感图像分类中已经普遍应用,本文将介绍了几种ENVI 提供的常用的监督分类方法和ENVI EX提供的面向对象的分类方法。

对同一遥感图像运用这几种方法进行分类,并对分类结果进行对比,从而分析这几种方法分类精度之间的差异。

关键词遥感图像分类平行六面体最小距离法最大似然法面向对象第一章绪论1.1、研究的背景和意义随着遥感技术的发展,遥感已逐步成为采集地球数据及其变化信息的重要技术手段和重要的信息来源,并在世界范围内以及我国的许多政府部门、科研单位和公司得到广泛的应用。

由于不同领域遥感图像的应用对遥感图像处理提出了不同的要求,所以图像处理中重要的环节——图像分类也就显得尤为重要。

遥感图像通过亮度值或像元值的高低差异( 反映地物的光谱信息) 及空间变化( 反映地物的空间信息) 来表示不同地物的差异。

这是区分不同图像地物的物理基础。

遥感图像分类就是利用计算机通过对遥感图像中各类地物的光谱信息和空间信息进行分析,选择特征,将图像中每个像元按照某种规则或算法划分为不同的类别,然后获得遥感图像中与实际地物的对应信息,从而实现遥感图像的分类。

目前随着各种新理论新方法的相继涌现,遥感图像存在多种分类方法,所以本文主要是选取几种常用的监督分类方法和ENVI EX提供的面向对象分类方法用实验结果表明它们之间存在的差异。

1.2、研究方法(1)、本文从遥感图像解译的基本原理出发,阐述了ENVI软件在遥感图像解译中使用的原理,并对其提供的方法进行了详细的解读。

(2)、详细叙述了ENVI EX提供的Feature Extraction工具即面向对象分类方法的使用。

(3)、根据得到的分类结果,采用混淆矩阵和kappa系数对分类结果进行精度评价。

从中得出一些结论,并对ENVI软件在遥感图像分类方法中提出可行性建议。

高分一号-卫星遥感影像面向对象的水边线提取

高分一号-卫星遥感影像面向对象的水边线提取

高分一号-卫星遥感影像面向对象的水边线提取摘要:本文通过采用高分一号卫星的遥感影像,结合面向对象的方法实现水边线的提取。

通过对高分一号卫星遥感影像的数据处理,生成具有高精度的数字卫星图像,并利用面向对象的方法,基于多特征融合的思想,对水边线进行提取,并与现场调查结果进行对比,结果表明本文提取出的水边线与现场调查结果相近,具有较高的提取准确度。

关键词:高分一号,遥感影像,面向对象,水边线提取,多特征融合,提取准确度Introduction:随着卫星技术的不断发展,卫星遥感技术已经成为了地球环境变化研究的有力工具。

水边线是很多地理信息系统应用中一个重要的参数,例如水资源管理、海岸线资料的获取等。

本文基于高分一号卫星遥感影像,采用面向对象的方法实现水边线的提取。

Methodology:本文采用高分一号卫星遥感影像,对其进行预处理、增强,利用面向对象的方法提取水边线。

面向对象的方法能够对地物进行更加精细的识别和分类,进而提高水边线提取的准确率。

同时,为了增加提取准确率,本文采用多特征融合的思想,将多种特征结合在一起进行水边线提取。

具体步骤如下:1. 预处理:将高分一号卫星遥感影像进行预处理,包括图像平滑、噪声去除等。

2. 增强处理:对预处理后的图像进行增强处理,增强水边线的对比度和边缘信息。

3. 物体分割:采用基于颜色和纹理的物体分割算法,对水域及其周围的其他物体进行分割。

4. 特征提取:对分割后的物体进行特征提取,包括:颜色、纹理、形状、边缘等。

5. 特征融合:采用多特征融合的思想,将多种特征结合在一起进行水边线提取。

6. 水边线提取:基于提取出来的特征,采用基于几何形状的水边线提取算法,提取出水边线。

Results:将本文提取的水边线与现场调查结果进行对比,结果表明本文提取出的水边线与现场调查结果相近。

同时,本文采用准确度和混淆矩阵对提取结果进行评估,证明了本文的提取方法具有较高的准确度和可靠性。

Conclusion:通过对高分一号卫星遥感影像的处理和分析,本文采用面向对象的方法,结合多特征融合的思想,实现了对水边线的提取。

基于高分辨率影像土地利用遥感动态监测与分类信息提取方法

基于高分辨率影像土地利用遥感动态监测与分类信息提取方法

基于高分辨率影像土地利用遥感动态监测与分类信息提取方法摘要:本文介绍了基于高分辨率影像的土地利用遥感动态监测与分类信息提取方法,利用遥感技术动态监测土地利用的本质是对图像系列时域效果进行量化,通过量化多时相遥感图像空间域、时间域、光谱域的耦合特征,来获得土地利用变化的类型、位置和数量等内容。

利用遥感技术可以快速、大范围的获得土地利用变化区域,例如建设用地、农业用地、工业用地、交通用地,水体(河道变化)等。

关键字:遥感技术土地利用影像分类动态监测图像分割1.背景随着社会经济的发展,特别是城市建设步伐的加速,城市土地利用每年都在发生明显的变化。

传统的土地利用调查需要花费大量的人力、时间和经费,难以适应土地利用的这种快速变化。

遥感以其覆盖面大、信息更新快、人为干扰因素小等优点已逐渐应用到土地利用变化遥感动态监测中。

我国遥感技术在土地资源调查和监测中的应用始于20 世纪90 年代。

国家土地管理局成立以后,在国务院统一布署下,利用了TM、SPOT等多种遥感数据源,进行目视解译、分析和计算机自动分类制图等组织完成了全国县级土地详查,这一成果为各级政府制定经济建设规划、计划,为农业、工业、水利、能源、交通等各专业部门制定规划、计划提供了可靠的数据资料、为各项土地管理工作提供准确依据,已在经济建设、农业生产和土地管理中发挥了重要作用,也为我国开展土地利用动态监测提供了完整、可靠的本底资料。

1.技术流程和关键技术1.技术流程土地利用变化遥感动态监测是一个工作量比较大的过程,对遥感数据的预处理要求较高,变化信息的发现和变化信息的提取可选择和组合的方法很多,技术含量较高。

下图为土地利用变化遥感动态监测的技术流程。

1.动态监测技术流程1.关键技术遥感动态监测主要涉及图像预处理和土地利用变化信息检测和提取两部分,其关键技术也就主要包括图像预处理方法和土地利用变化信息提取方法。

值得我们注意的是,变化检测方法和信息提取方法不能说哪个绝对的好与坏,只能是根据不同的数据源和不同的应用需求选用适合的方法。

实验3面向对象图像特征提取

实验3面向对象图像特征提取

面向对象图像特征提取面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息对图像分割和分类,以高精度的分类结果或者矢量输出。

❶发现对象①启动ENVI EX,在ENVI EX中,选择File >> Open>>选择目录:D:\遥感数字图像处理实验\实验数据\面向对象图像特征提取,选择qb_colorado.img图像文件,打开图像文件。

Qb_colorado.img②在ENVI EX 中,双击Toolbox中的Feature Extraction ,选择输入文件qb_colorado.img如下图,单击Select Additional Files 前的三角形符号。

Base Image : 必选项,基本图像数据。

Ancillary data (辅助数据):可将栅格文件作为辅助数据加入FX中,以提高提取精度,如高程数据等。

Mask file (掩膜文件):定义Base Image 的掩膜区,只提取感兴趣区域的特征。

这里我们只选择一个图像数据作为Base Image ,不选择掩膜文件和辅助数据。

③单击OK ,进入下一步操作。

设定分割阈值❷图像分割①在scale level 项中,通过滑块或者手动输入一个分割阈值。

这里我们选择经验值40.②单击select onput bands 下的按钮,可以选择波段,这里我们选择默认波段。

③将Preview 前的复选框打钩,在zoom图像显示区出现一个矩形预览区。

如下图分割效果预览④设置好参数后单击Next按钮,只是FX生成一个Region means 图像自动加载到图层列表中(Layer manager )并在窗口中显示。

它是分割后的结果,每一分割块被填充上该块图像的平均光谱值。

❸合并分块1、在Merage level 项中,通过滑块或者手动输入一个分割阈值。

值越大被合并的块越多,这里我们输入94.0设定分块合并阈值2、单击Next 按钮,进入下一步❹分块精炼①单击Thresholding (advanced)选项,在Thresholding选项中,可以设定灰度值的范围,这里我们直接选择No Thresholding (default)。

影像信息提取之--面向对象特征提取流程

影像信息提取之--面向对象特征提取流程

影像信息提取之--面向对象特征提取流程“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。

本专题以ENVI中的面向对象的特征提取FX 工具为例,对这种技术和处理流程做一个简单的介绍。

本专题包括以下内容:●面向对象分类技术概述● ENVI FX简介● ENVI FX操作说明1、面向对象分类技术概述面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。

它主要分成两部分过程:对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。

比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。

影像对象的分类,目前常用的方法是“监督分类”和“基于规则(知识)分类”。

这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等对象属性信息。

基于规则(知识)分类也是根据影像对象的属性和阈值来设定规则进行分类。

表1为三大类分类方法的一个大概的对比。

类型基本原理影像的最小单元适用数据源缺陷传统地物的单个的中低分辨丰富的空基于光谱的分类方法光谱信息特征影像像元率多光谱和高光谱影像间信息利用率几乎为零基于专家知识决策树根据光谱特征、空间关系和其他上下文关系归类像元单个的影像像元多源数据知识获取比较复杂面向对象的分类方法几何信息、结构信息以及光谱信息一个个影像对象中高分辨率多光谱和全色影像速度比较慢表1 传统基于光谱、基于专家知识决策树与基于面向对象的影像分类对比表2、ENVI FX简介全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。

面向对象的高分影像城市绿地精准提取方法研究

面向对象的高分影像城市绿地精准提取方法研究

面向对象的高分影像城市绿地精准提取方法研究张云英;汪金花;陈晓婷;曹兰杰【摘要】文中以ENVI为实验平台,利用唐山市Geoeye影像数据进行绿地信息的提取,通过监督分类和面向对象的方法分类结果进行了实验对比,得出面向对象的方法在高分辨率信息提取上要优于传统的分类技术,取得较好的提取效果;并对唐山市四中典型绿地斑块进行了提取,就提取结果对唐山市生态绿地进行了评价,得出唐山市整体绿地结构相对单一,有待增强植被的多样化,在增加城市的绿化程度时也要注重城市景观异质性的提高;研究为后续基于影像的城市规划提供较好的数据和理论支持.【期刊名称】《矿山测量》【年(卷),期】2016(044)002【总页数】4页(P76-79)【关键词】城市绿地;面向对象;高分影像;图像分类;信息提取【作者】张云英;汪金花;陈晓婷;曹兰杰【作者单位】华北理工大学,河北唐山 063000;华北理工大学,河北唐山 063000;华北理工大学,河北唐山 063000;华北理工大学,河北唐山 063000【正文语种】中文【中图分类】P237遥感技术经过半个多世纪的发展,已经步入了“三高”的发展局面——高时间分辨率、高光谱分辨率、高空间分辨率。

如今已能够高效地获取丰富的遥感影像信息,这得益于遥感技术的飞速发展,但同时人们还不能及时对所获的信息加以认识和利用,从而造成了大量的数据闲置,极大地限制了遥感技术的实际应用[1]。

国外的高分辨率遥感影像已经被广泛的应用于众多领域,随着我国的高分系列卫星的发射,高分对地观测计划正在启动。

因此,国内的高分辨率遥感数据将作为主要的研究对象,如何从这些丰富的遥感数据中准确地获取所需信息并及时的加以处理和应用将成为亟待解决的问题之一[2-4]。

本文以河北省唐山市为主要研究区域,探讨城市绿地的信息提取。

采用的数据是2010年夏季的Geoeye影像,包括0.41 m全色影像和1.65 m多谱段影像,多光谱含四个波段分别为红、绿、蓝和近红外。

“高分二号”卫星数据面向对象的海岸线提取法

“高分二号”卫星数据面向对象的海岸线提取法

“高分二号”卫星数据面向对象的海岸线提取法“高分二号”卫星数据面向对象的海岸线提取法摘要随着卫星遥感技术的不断发展,基于遥感数据进行海岸线提取已成为海岸带研究中的重要手段。

在大量遥感数据处理的过程中,如何提高数据处理精度和提升数据处理效率,一直是遥感技术研究和应用中亟待解决的问题。

本文提出了一种基于“高分二号”卫星数据面向对象的海岸线提取法,该方法能够准确、高效地提取海岸线,并且具有一定的普适性。

关键词:高分二号;遥感;海岸线提取;面向对象Introduction海岸带是海陆交界区,具有岸滩、河口、河流、湖泊、水库等水体,同时也包括大量的生态环境和地面覆盖类型。

因此,海岸带的研究具有重要的科学价值和应用价值。

而海岸线则是海岸带中的一个重要部分,它是水域和陆域的分界线,影响着人们的休闲、资源开发和海岸带生态环境等方面。

基于遥感技术的海岸线提取方法,已成为海岸带研究中的重要手段。

目前,随着“高分二号”卫星数据的不断完善和遥感技术的不断提高,基于“高分二号”卫星数据进行海岸线提取已成为研究的新方向。

Methodology法,主要是基于遥感数据处理中的面向对象方法。

具体如下:1. 预处理。

首先,对卫星数据进行去噪、增强、几何校正等预处理,以使数据的质量满足后续数据处理的需求。

2. 纹理特征提取。

通过使用纹理特征提取算法,得到每个像素点的纹理属性信息,以帮助提高后续的特征分割精度和数据处理精度。

3. 面向对象分割。

采用面向对象分割方法对卫星数据进行分割,得到不同类别的区域和目标,并且补充和修正形态信息。

4. 海岸线提取。

在面向对象分割后,根据区域和目标的几何形态信息和纹理特征信息,结合阈值分析、形态学运算等方法,提取海岸线,以得到海岸带区域边缘。

Results通过对测试数据的处理,本文所提出的基于“高分二号”卫星数据面向对象的海岸线提取法,得到了较好的结果。

首先,基于预处理后的数据,纹理特征提取的方法为后续处理提供了非常有效的信息。

高分辨率遥感影像面向对象耕地信息提取方法探讨

高分辨率遥感影像面向对象耕地信息提取方法探讨

高分辨率遥感影像面向对象耕地信息提取方法探讨摘要:随着高分辨率遥感技术发展,高分辨率遥感影像得到广泛应用,特别是高分辨率遥感影像面向对象信息提取技术应用广泛。

本文以某地区遥感影像为基础数据,探讨了高分辨率遥感影像面向对象耕地信息提取的技术方法,并对耕地信息提取实验结果进行精度评价,得到了良好的效果。

关键词:面向对象特征提取耕地随着遥感卫星技术的发展,高分辨率遥感影像得到了普遍应用,遥感信息提取技术得到了快速发展,特别是面向对象高分辨率遥感影像信息提取技术的实现,为人们的生产生活提供了极大方便。

面向对象提取技术促进了影像分析技术的发展[1],与传统的基于像素的分类结果相比,基于目标对象的方法得到的结果更容易被解译,而且处理结果中图斑的完整性更好[2]。

特别是利用面向对象的分类方法进行了耕地信息提取,能达到理想的精度,效果较好。

本文就基于ENVI EX高分辨率遥感影像面向对象耕地信息提取技术方法进行探讨。

1 研究区域和影像数据1.1 数据源为了准确的提取耕地信息,选择某城市全色波段与多光谱融合后的影像作为实验数据,研究区域中包括典型的耕地,以及少量的建筑物和水体。

2 耕地信息提取及分类2.1 发现对象2.1.1 准备工作根据数据源和特征提取类型等情况,进行分类提取之前,可以有选择地对对原始影像进行几何校正、辐射校正等预处理工作,如调整空间分辨率、调整光谱分辨率等。

2.1.2 影像分割及分割参数的确定影像多尺度分割中的尺度是一个关于多边形对象异质性最小的阈值,决定生成最小多边形的级别大小,分割的质量及信息提取的精度。

ENVI EX提供了一种阈值法进一步精炼分块的方法,即基于亮度值的栅格操作,根据分割后结果中的一个波段的亮度值聚合分块。

分割效果的好坏一定程度决定了分类效果的精确度,结合preview 预览分割效果,选择一个理想的分割阀值,尽可能好地分割出边缘特征。

根据参数选择原则,设置分割参数,通过试验得出,分割尺度为50,耕地类型能够被准确的分割出来,该参数比较合适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

面向对象特征提取
1、启动eCognition,选择Rule Set Mode。

2、新建工程:File -> New Project或者点击按钮,选择影像or_196560080.tif,确定。

3、界面布局:选择Classification -> Class Hierarchy,打开类层次视图;选择Image Objects -> Image Objects Information,打开目标信息视图;选择Process -> Process Tree,打开进程树视图;选择Tools -> Feature View,打开特征视图。

通过拖拽,形成下面的工作界面:
4、设置尺度参数:设置三个分割尺度,分别是100,70,50,三个尺度对应的层次分别命名为L1,L2,L3。

5、第一尺度(100)分割:在Process Tree中右键,选择Append New,在Algorithm中选择Segmentation -> multiresolution segmentation,Image Object Domain中选择Pixel Level,而Algorithm parameters中的Level Name命名为L1,Scale Parameter设为100,Shape设为0.2,
Compactness设为0.5,如下图所示:
点击OK后,Process Tree中会多出一条记录,如下:
在该记录上点击右键,选择Execute,即按照设定的参数进行分割,分割的效果如下:
6、第二尺度(70)分割:在eCognition的尺度分层规则中,大尺度对应的层摆在最上面,小尺度的层摆在下面。

在Process Tree中右键,选择Append New,在Algorithm中选择Segmentation -> multiresolution segmentation。

由于第二尺度对应为第二层次,因此其应该在第一层(L1)下面,所以Image Object Domain中选择image object level,Level设置为L1,而Algorithm parameters中的Level Name命名为L2,Level Usage 设置为Create below,Scale Parameter设为70,Shape设为0.2,Compactness设为0.5,如下图所示:
按第5步的步骤运行该尺度的分割,可以得到该尺度下的分割结果。

7、第三尺度(50)分割:与第6步一样,只不过Image Object Domain中的Level设置为L2,Algorithm parameters中的Level Name设置为L3,Scale parameter设置为50,如下图:
在Process Tree中右键点击Execute后得到该尺度下的分割结果。

双击Process Tree中的每一条记录,或者在记录上右键单击Edit,可以修改该分割参数,重新Execute后可以得到新的分割结果。

在修改过程中,层之间的关系不能随意调整。

8、视图切换:有以下几个视图切换比较常用,,第一个是层视图,用于查看原始影像;第二个是分类视图,用于查看分类结果;第三个是样本视图,用于查看样本;第四个是特征视图,用于查看特征。

,都是用来显示分割目标的边界。

用来显示原始图像或者均值图像。

,通过这个上下箭头来显示不同的层。

9、特征提取:eCognition中对特征的提取是在某一尺度下进行的。

由于不同地物在不同尺度上分割出来的目标具有不同的形态特征,比如颜色、形状、纹理等,通过这些特征可以在不同尺度上提取地物的特征。

例如道路等具有明显长条形状,适合在大尺度上提取,而房屋的形态适合在小尺度上提取。

在Feature View视图中,选择一个特征,双击,分割影像会显示出相应的特征,单击影像上的一个目标,会显示该目标在该特征上的值。

例如双击Object
Features -> Layer Values -> Mean -> Layer 3,影像的该层的特征,如下图:
与原始影像比对可以看出,草地和湖泊在该特征上的值很小,显示得很暗,而道路和房屋的值很大,显示得很亮,因此在此尺度上可以很好区分草地湖泊与道路房屋;而双击Object Features -> Geometry -> Extent -> Length/Width,可以看出道路在这个特征上的值很
大,显示得很亮,因此可以通过这个特征将道路与其他地物区分开。

影像对象,如下图:
征,才能更好地提取不同的地物,也才能为后续的影像分类打好基础。

相关文档
最新文档