故障电弧
故障电弧是什么

故障电弧是什么故障电弧探测装置如何工作的
电弧是由于绝缘体受到电压击穿,从原先的不导电变成导电,并发光发热的现象。
人类根据电弧的性质研发出了许多产品。
而故障电弧人类无法控制,还会引发火灾。
那么,故障电弧是如何产生的?故障电弧探测装置又是如何工作的?
第一、故障电弧
1、产生故障电弧的原因
产生故障电弧主要原因有三个:线路中导线的绝缘老化、破损;导线的连接位置接触不良;线束内部有断裂部分。
2、故障电弧的危害
故障电弧产生时,会发出高温,极易引起火灾。
而且这种故障使用常见的断路器等电路保护装置无法保护的。
除此之外,产生故障电弧时,线路中的电压会产生波动,电流也会发生突变,这容易造成用电设备故障。
3、电弧故障的种类
单一的带电导体主要产生串联式电弧故障。
由于连接位置接触不良或线束中有断裂现象,间隙位置被电击穿后会产生电弧故障。
在带电导体之间主要产生并联式电弧故障。
由于导体之间绝缘老化,时间长了会形成谈话通道。
当线路的绝缘程度降低后,碳化通道容易被带电导体之间的电压击穿,产生并联式电弧故障。
第二、故障电弧探测装置的工作
故障电弧探测装置通过检测被保护线路中电流电压的波形,根据所统计的电弧故障特征,准确的区分线路中故障电弧和工作状态的电流(正常产生的电弧),从而对线路进行保护。
这种新型的装置虽然可以防止火灾发生,但它图片、同时也是一种独立的产品,会在检测到电弧故障后切断电源。
而目前的火灾监控系统时服务型的系统,有着只需报警,不需切断的服务理念。
因此,这种新型装置无法进行进一步的智能化保护。
关键词:海水湾电气科技消防巡检柜。
故障电弧诊断总结

研究意义:电弧故障(Arc Fault )有并联电弧故障和串联电弧故障之分。
并联电弧故障表现为电路短路,故障电流大,现有电气保护体系能对其保护;而串联电弧故障因受线路负载限制,其故障电流小,常为5~30A ,甚至更低(荧光灯电弧故障电流有效值约为0.1A ),以至于现有保护体系无法实现对串联电弧故障保护,是现有电气保护体系的漏洞之一,存在潜在电气安全隐患。
串联电弧可分为“好弧”和“坏弧”,如电弧焊机、有刷电机工作时产生的电弧及插拔插座时产生的电弧常称为“好弧”;其他非按人类意愿或控制产生的电弧称为“坏弧”。
对电弧故障进行检测时,不应将“好弧”误判为电弧故障,进而切断电源造成不必要损失。
实时准确检测串联电弧故障,并切断故障电路是避免电弧持续燃烧以至于酿成火灾等事故的有效途径。
依据电弧发生时所产生的声、光、电、磁等特性,采用实验方法研究电弧特性。
以电弧电、磁特征作为检测方法输入,实验研究了电弧故障,分析说明串联电弧与并联电弧,交流电弧与直流电弧之不同;在频域展开电弧特性研究,指出故障电弧特征量多集中在2-200kHz 频段。
随着电力电子技术发展,非线性负载增多,传统基于电弧“零休”等特性的检测方法已不能满足要求。
采用AR 参数模型对低压电弧故障进行检测,并给出回路识别参考矢量;采用小波熵分析电弧故障,指出若小波熵值大于0.002 则可判定发生电弧故障;基于小波变换模极大值建立电弧故障神经网络模型,以实现电弧故障检测与分类。
注:输入参数的提取可以从一下三个方面:(1)负载正常工作时的电流特性;(2)开关插拔产生的正常电弧电流特性现实中我们在拔、插插头的瞬间也会产生电弧,它们持续的时间短,在瞬间就熄灭了,不连续也不影响线路中设备的正常工作,几乎不会因此产生火灾而威胁环境的安全;(3)故障电弧(接触不良)的电流特性。
主要是由于线路绝缘层老化、绝缘损坏或者短路等原因而产生的电弧。
这种电弧持续时间长,电弧燃烧时放出大量的热量,对周围环境存在极大的火灾安全隐患,是需要预防制止的电弧,也称为故障电弧。
ii 类故障电弧保护设置

ii 类故障电弧保护设置II类故障电弧保护设置。
一、II类故障电弧概述。
故障电弧是一种气体游离放电现象,当电路中的电流在某些不良条件下(如绝缘损坏、接触不良等),会在正常的导电通路之外形成电弧。
II类故障电弧相对特殊,它在电气系统中具有一定的隐蔽性和危险性。
(一)II类故障电弧的特点。
1. 能量较低但危害大。
- II类故障电弧的能量可能相对I类故障电弧较低,但它依然能够产生高温。
例如,在家庭电路中,即使是较小能量的II类故障电弧,其温度也可能达到数千摄氏度,足以熔化金属,引发火灾。
- 由于电弧的高温,它会使周围的绝缘材料迅速碳化,进一步破坏电路的绝缘性能,从而可能引发更大规模的故障。
2. 难以检测。
- 与短路等故障不同,II类故障电弧通常不会引起明显的电流突变。
它可能在正常的工作电流范围内产生,例如在一些电器设备的内部线路中,由于长期的振动或者轻微的接触不良,可能产生II类故障电弧,而传统的过流保护装置很难检测到这种微小的电弧变化。
二、保护设置的必要性。
1. 保障电气安全。
- 在各种电气环境中,无论是工业厂房还是家庭住宅,电气设备的安全运行至关重要。
II类故障电弧如果不加以保护,可能引发电气火灾。
据统计,在电气火灾事故中,有相当一部分是由故障电弧引起的。
例如,在老旧的建筑电气系统中,线路老化容易产生故障电弧,通过设置保护装置,可以大大降低火灾风险。
2. 保护电气设备。
- 故障电弧产生的瞬间高电压和高电流可能会对电气设备造成损坏。
对于一些精密的电子设备,如计算机服务器、医疗设备等,即使是短暂的II类故障电弧也可能导致设备内部元件的损坏,从而影响设备的正常运行,造成经济损失。
保护设置能够在故障电弧产生的初期就进行检测和处理,避免设备受到进一步的损害。
三、保护设置的关键参数。
1. 电弧检测灵敏度。
- 这是II类故障电弧保护设置的重要参数之一。
灵敏度的设置需要综合考虑电气系统的具体情况。
如果灵敏度设置过高,可能会导致误报警,例如在一些正常的电弧产生情况(如电器开关正常开合产生的电弧)下也会触发保护装置。
电弧故障分类

电弧故障分类
电弧故障可以根据不同的分类标准进行分类,以下是一些常见的电弧故障分类:
1. 根据电弧引起的破坏程度分为:
- 烧蚀故障:电弧引起电气设备表面或连接件的烧蚀和局部
熔化;
- 烧熔故障:电弧引起电气设备内部部件的烧熔和局部熔融; - 爆炸故障:电弧引起电气设备内部出现爆炸现象,导致设
备严重损坏。
2. 根据电弧形成的位置分为:
- 外部电弧故障:电弧在设备外部形成,如电缆的接头、插
座等处;
- 内部电弧故障:电弧在电气设备内部形成,如开关柜、断
路器等内部部件。
3. 根据电弧故障发生的原因分为:
- 设备故障引起的电弧故障,如设备老化、设备缺陷等;
- 操作失误引起的电弧故障,如误碰、错误操作等;
- 外界因素引起的电弧故障,如雷击、动物触碰等。
4. 根据电弧故障的持续时间分为:
- 瞬时电弧故障:短时间内形成和消失的电弧,持续时间较短;
- 持续电弧故障:持续时间较长的电弧,可能持续数秒钟或
更长时间。
5. 根据电弧故障的危害程度分为:
- 一般电弧故障:对设备造成一定损坏,但损失较小,不会引发火灾或爆炸等严重事故;
- 严重电弧故障:对设备造成严重损坏,可能引发火灾、电击等严重事故,对人身安全造成威胁。
开关设备中的故障电弧及其防护

开关设备中的故障电弧及其防护电弧故障是指开关设备在断开或闭合过程中产生的电弧现象,它是由于电流突变或电压突变导致的。
电弧故障不仅会给设备带来损坏,还可能引发火灾等严重后果。
因此,保护设备免受电弧故障的影响是非常重要的。
本文将介绍电弧故障及其防护措施。
一、电弧故障的成因1. 断开电弧故障:在断开电流时,电弧故障主要是由于电流突变所引起的。
断开时,电路中的电感元件(如电动机、电抗器等)会使电流持续流动一段时间,此时如果突然断开电路,电感元件会反向释放能量,导致电流突变,进而产生电弧故障。
2. 闭合电弧故障:在闭合电路时,电弧故障主要是由于电压突变所引起的。
闭合时,电源电压一般都会有瞬间突变,这是由于电网的电压波动或电源的特性引起的。
电压突变会导致电弧故障的发生。
二、电弧故障的危害电弧故障会给设备带来许多危害,主要包括以下几个方面:1. 设备损坏:电弧故障会导致开关设备磨损,烧坏绝缘件,损坏电接点等,从而降低设备的可靠性和寿命。
2. 人身伤害:电弧故障产生高温、高压等危险因素,会对操作人员的安全造成威胁。
电弧故障产生的火花、气体和烟雾会对人体造成伤害,甚至引发爆炸。
3. 火灾:电弧故障引起的火花和高温可能引发火灾,造成财产损失和人员伤亡。
三、电弧故障的防护措施为了保护设备和人员免受电弧故障的危害,需要采取相应的防护措施。
以下是一些主要的防护措施:1. 设备设计防护:对于断开电弧故障,可以采用额定电流断开容量合适的开关器件,这样可以减小电流突变引起的电弧能量,从而降低电弧故障的危害。
对于闭合电弧故障,可以采用额定电压连接能力合适的开关器件,这样可以减小电压突变引起的电弧能量。
2. 维护保养:定期对开关设备进行检查和维护,防止设备出现磨损、松动等问题,这样可以减少电弧故障的发生。
3. 使用防弧装置:控制电弧故障的传播和损害范围是一种有效的防护措施。
可以采用弧光探测器、电弧隔离器等装置来检测和分离电弧故障,从而避免电弧故障对设备和人员造成伤害。
故障电弧形成过程

故障电弧形成过程故障电弧是电力系统故障时产生的一种强烈的放电现象,经常造成电力系统的故障和事故。
故障电弧的形成过程是一个复杂的物理过程,需要深入了解各种因素的作用,才能有效地预防和控制故障电弧的发生。
下面分步骤阐述故障电弧的形成过程。
第一步,电路发生故障。
电路故障可能由多种因素引起,如过电流、短路、接地等。
在电路故障发生时,随着电流的急剧增加,电路中的电压也会急剧升高,直至达到弧放电的临界电压。
第二步,故障电弧的形成。
当电路中的电压超过弧放电的临界电压时,电弧会在电路中形成。
电弧是由电荷的自由移动引起的,当电路中的电荷达到一定数量时,就可形成电弧。
故障电弧的形成是一个瞬间的过程,时间极短,一般只有毫秒级别。
第三步,弧光渐近。
当电弧形成后,它会自行维持,并形成一定的电弧距离。
电弧距离是指电流通过电弧时,电极之间的距离。
随着电弧的继续发展,弧光会向两端成锥形扩散,并且电弧距离也会增加。
此时电路中的电流很大,这可能会对电器设备造成很大的损害。
第四步,弧光稳定。
当电弧距离扩张到一定程度时,弧光就会稳定下来。
此时弧光渐渐消失,但是电弧仍然存在,继续在电路中高速电荷移动。
电弧稳定后,其电流可能比刚开始大或小,这取决于电路的额定电流和短路的类型等因素。
第五步,故障电弧的终止。
电弧的终止是指电弧光失去,并且电弧距离迅速缩小至几乎为零的状态。
电弧终止可能是自然失弧或受到外部干扰而失弧。
失弧后,电路的电压和电流重新回到稳态范围。
总之,故障电弧的形成是一个比较复杂的物理过程,它会对电力系统的安全运行带来极大的威胁。
了解故障电弧的形成过程及其原因,对于提高电力系统的安全运行有重要意义。
通过采取相应的预防和控制措施,可以有效防止故障电弧的发生,实现电力系统的安全运行。
什么是故障电弧探测装置_故障电弧探测装置和灭弧式短路保护器的区别

故障电弧探测装置和灭弧式短路保护器的区别故障电弧探测装置是电气火灾监控系统最新的产品,国家标准GB14287.4-2014,已于2015年6月1日正式实施。
该产品是通过检测线路中因线路老化、绝缘皮破损引起的并联故障电弧和因线路接触不良等情况引起的串联故障电弧,提前预警,及时通知用户检修这些电气隐患,来达到对电气火灾的预防性防护。
故障电弧,俗称就是电火花,中心温度极高,发生时有金属喷溅物,极易引起火灾。
并联电弧发生时,火线和零线并未直接接触,只是因为绝缘皮老化失去绝缘特性或绝缘皮破损,但火线和零线的距离又离的非常近,电流击穿火线和零线之间的空气,在火线和零线之间放电打火。
串联电弧发生主要是因为接触不良或者导线断裂,这是发生在一根相线中的情况,在一根相线的断裂处或接触不良处空气被击穿而发生放电打火。
以上故障电弧发生时,线路中的电流变化很小,断路器和灭弧式短路保护器都无法检测到,目前只能通过故障电弧探测器才能探测到。
故障电弧探测装置最先进和最核心的技术在于,能够有效的区分好弧(电器正常工作时产生的电弧)和故障电弧,做到不误动作,不拒动作。
经过专家分析,这种非接触性的故障电弧(电火花),是导致如今电气火灾高发的主要原因。
灭弧式短路保护器,灭弧式是定语,短路保护器是主语,其实质上就是针对金属性短路的一个保护。
说到这里有人会问,那它和断路器有区别吗?有区别。
断路器主要保护金属性短路、过载和漏电,而灭弧式短路保护器只针对金属性短路这一种故障进行保护(尽管其宣称也能保护过载,其实它对过载本身并不保护,只是过载到一定程度,线路发热融化导致火线和零线粘连在一起造成金属性短路,所以还是对金属性短路进行保护)。
但灭弧式短路保护器在金属性短路这一单个保护功能上却有与断路器不同的地方。
断路器在金属性短路时会立即跳闸,切断电源,但同时也会伴随短路电火花产生,经专家分析,因为金属性短路发生火灾的概率还是比较低的,因为在一般环境中,短路产生时,今天市场上合格的断路器都能迅速跳闸,但如果周围环境配合极好,如果短路点周围就是易燃物或者易燃易爆气体的存在时,还是可能引起火灾的。
电力系统中的电弧故障分析与防范技术

电力系统中的电弧故障分析与防范技术电力系统是现代社会不可或缺的基础设施之一,它为我们的生活提供了稳定、可靠的电力供应。
然而,电力系统中的电弧故障可能会导致严重的事故,对人们的生命财产安全造成巨大威胁。
因此,电弧故障的分析和防范技术具有重要意义。
一、电弧故障的原因电弧故障是指由于绝缘损坏或间隙距离过小,电力系统中电压击穿空气,形成的带电气体放电现象。
电弧故障的主要原因如下:1.绝缘故障:电力系统中的绝缘材料,如电缆、绝缘子、开关设备等,会受到恶劣环境、老化、机械损伤等因素的影响,导致绝缘性能下降或绝缘破坏,从而引发电弧故障。
2.间隙击穿:当电力系统中的导线故障或设备短路时,电压会突然升高,导致电力系统中的间隙距离不足,空气被击穿,形成电弧故障。
3.操作失误:不规范的操作或维护,如过载、短路、误接线等,可能引发电弧故障。
二、电弧故障的危害电弧故障在电力系统中可能引发以下危害:1.火灾:电弧故障产生的高温和火焰可能引发周围物质的燃烧,造成火灾事故。
2.电压波动:电弧故障会导致电力系统中的电压波动,可能使设备受损甚至烧毁,对电力系统的稳定运行产生负面影响。
3.人身伤害:电弧故障产生的火焰、高温和高压可能对人体造成直接伤害,如烧伤、电击等。
同时,电弧故障还可能引发爆炸、毒气泄漏等其他事故,对人们的生命安全造成威胁。
三、电弧故障的分析方法为了提高电力系统的安全性,我们需要对电弧故障进行准确的分析。
下面介绍几种常用的电弧故障分析方法:1.故障现场观察:通过对故障现场的观察,可以了解电弧故障的发生位置、形态、持续时间等情况,为分析故障原因提供依据。
2.电弧故障事件记录:通过记录电弧故障事件的时间、地点、电流大小等信息,可以对故障进行事后分析和研究。
3.故障设备检测:通过对故障设备进行检测,如绝缘阻抗测试、电弧光谱分析等,可以了解设备的绝缘情况和电弧特征,为故障原因的判断提供数据支持。
四、电弧故障的防范技术为了有效防范电力系统中的电弧故障,我们需要采取一系列的防范技术措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
电弧的特性 平肩部检测
3.轮询对25个周波中每个 波进行检查,首先计算出 该周期内若干个电流值当 中在0附近的值的个数或 者变化幅度平缓的点个数, 来表征该周期的电流是否 存在平肩部,得到个数的 参数N;N大于5个点则对 进行不对称判断、幅值越 限等进一步判断。如果没 有平肩部,则对下一个周 波进行判断。左边的图示 是一个比较典型的平肩部。 如果对实时要求比较高也 可以将轮询的周波数减小。 每5个周波进入一次软终 端进行判断,最后集合 25个周波的数据。
故障电弧检测解决方案
目
1 2 3 4 5 6
录
简述 故障电弧特性 检测方案 方案演示 需要的支持 结语
3
1
电弧的特性
从上面的截图可以看 出电弧波形的几个特 点。 1.平肩 2.有效值越限 3.正负半周波不对称 4.奇次谐波含量比较 高 针对以上的这些特性, 利用合理的嵌入式采 集平台和算法可以准 确检测出线路上是否 有故障电弧的存在。
1 2 3
电弧的特性 平肩部检测 其他特性检测
4
统计判断
7. Iaver*K1+ Ioffset*K2 +Ihar>2则认为波形充分满 足电弧要求,该周波为电 弧周波。 8.25个周波内连续出现8个 或者不连续有15个波形符 合故障电弧的波形都认为 是线路存在电弧隐患,立 刻上传报警事件。
4
其他支持
1.我在dsp上对算法做过验 证。单个模块的运行耗时 都不长。整个运行的时间 大概是40us,考虑到dsp 的主频是300Mhz,如果用 低端一些的mcu,200us之 内应该可以处理完。 2.选用的片子最好片内资 源多一,带浮点计算库。 3.实验的波形是从标准上 摘下来数字化处理后转换 成的实际的波形是怎么样 的不清楚。有条件可以在 研发时用电弧发生器采集 实际波形进行测试。 4.检测回路的个数,计算 负荷和测量的回路数是成 正比的,需要确定检测的 最大回路数。
5
结语
基于故障电弧的波形特性的检测方法,需要 软件算法的支持,对于cpu的计算能力有一 定要求,但是并不高。目前的算法的检测波 形不一定准确需要后期采集实际的波形,进 一步的优化算法。
1 2 3
电弧的特性 平肩部检测 其他特性检测 4.检测存在平肩部后通过 计算该周期电流的平均值 来判断该周期电流的正负 半周是否对称,不对称度 Iaver在0.5~1.5之间,保 存该值; 5.通过计算当前的幅值和 之前的滑动幅值进行比较, 获得越限的程度Ioffset 0.5~1.5之间; 6.计算该周波的谐波含量, 只计算奇数3、5、7、9、 11的含量,超过5%以上, Ihar置0.5超过10%置为1.