理论力学 碰撞问题 PPT课件
合集下载
理论力学-碰撞PPT课件

锤不回跳,此时可近似认为k =0,于是汽锤效率
m2 0.949% 4
m1m2
2021
25
§19-5 碰撞冲量对绕定轴转动刚体的作用 撞击中心
设刚体绕固定轴z 转动,转动惯量为IZ,受到外碰撞冲量
S (e) i
(i1,2, ,n)
的作用。
碰撞开始时 Lz1 I z1
碰撞结束时 Lz2 I z 2
的积分形式为:
m um vS
(1-19)
2021
8
对于有n个质点组成的质点系,将作用于第 i 个质点上的
碰撞冲量分为外碰撞冲量
S
( i
e
)
和内碰撞冲量
S
( i
i
)
,则有:
m iu i m iv i S i(e ) S i(i) ( i 1 ,2 , ,n )
将这n个方程相加, 且Si(i) 0(内碰撞冲量总是成对出现的),故
2021
1
在前面讨论的问题中,物体在力的作用下,运动速度都 是连续地、逐渐地改变的。本章研究另一种力学现象——碰 撞,物体发生碰撞时,会在非常短促的时间内,运动速度突 然发生有限的改变。本章研究的主要内容有碰撞现象的特征, 用于碰撞过程的基本定理,碰撞过程中的动能损失,撞击中 心。
2021
2
第十九章 碰撞 §19–1 碰撞现象及其基本特征 碰撞力
§19-2 用于碰撞过程的基本定理
§19–3 质点对固定面的碰撞 恢复系数
§19–4 两物体的对心正碰撞 动能损失
§19–5 碰撞冲量对绕定轴转动刚体的作用
撞击中心
小结
2021
3
§19-1 碰撞现象及其基本特征 碰撞力
碰撞:运动着的物体在突然受到冲击(包括突然受到约 束或解除约束)时,其运动速度发生急剧的变化,这种现象 称为碰撞。
理论力学课件第12章

对球B,应用动能定理,则有
得
1
0 mu22 mgl (1 cos )
2
(d)
u2 2 gl (1 cos )
将式(d)、(e)代入式(c)中,解得
k 2
1 cos
1 cos30
1 2
1 0.353
1 cos
1 cos 45
(e)
小为
v v 3 0.2
a
0
0.002
m/s2 1 400 m/s2
设在敲击时,钉给手锤的力为F,手锤重为G,可写出手锤的
动力学基本方程为
ma F G
由方程解得
F m( g a) 1 409.8 N
可见,碰撞力F远远大于手锤的重量G。如果碰撞时间再短一
些或碰撞前后的速度变化更大一些,则碰撞力将更大。碰撞力
(12-14)
将式(12-13)和(12-14)代入式(12-12),得
mm
1
T T1 T2 (1 k ) 1 2 (v1 v2 )[(v1 u1 ) (v2 u2 )]
2
m1 m2
由式(12-6),得
u1 u2 k (v1 v2 )
于是
T T1 T2
(12-6)化为
u
k
v
若球自由下落,则可通过球距离固定面的高度H和回跳
的高度h来表示k。由自由落体公式可知
| v | 2 gH
于是得
| u | 2 gh
u
k
v
h
H
图12-3
(12-10)
测出球的降落高度H和回跳高度h,即可计算出球和固定面两种材料
16-4 碰撞课件 (共15张PPT)

【例1 】质量相等的两只小球A、B,在光滑的水平面上沿
同一直线向同一方向运动,A球的初动量为7kg.m/s, B
球的初动量为5kg.m/s,当A球追上B球发生碰撞后, A、
B两球的动量可能为:( A A.PA=6 Kg.m/s B.PA=3 Kg.m/s C.PA=-2 Kg.m/s D.PA=-4 Kg.m/s
' 2 v 2 2
非弹性碰撞
碰撞
1 1 1 2 ' 2 m 1v 1 > m 1v 1 + m 2 2 2
' 2 v 2 2
正碰(对心碰撞) 碰撞的 维度
斜碰(非对心碰撞)
三、散射
1.概念:微观粒子的碰撞叫做散射。 微观粒子发生对心碰撞的概率很小,多数粒子碰撞后飞向四面八方。
' m 1v1 = m 1v ' + m v 2 1 2
弹性碰撞 有无 能量 损失
1 1 1 2 ' 2 m 1v 1 = m 1v 1 + m 2 2 2
' m 1v1 = m 1v ' + m v 2 1 2
V0=0
μ= 0
若两钢球碰撞后粘在一起运动,动量是否守恒?机械 能是否守恒?试计算说明。
v
V0=0
μ= 0
一、弹性碰撞与非弹性碰撞
1. 弹性碰撞:如果碰撞过程中机械能守恒,这样的 碰撞叫弹性碰撞。 动能 动能 弹性势能 例如:钢球、玻璃球的碰撞 2.非弹性碰撞:如果碰撞过程中机械能不守恒,这 样的碰撞叫非弹性碰撞。 动能
两物体的速度分别为:
m1 m2 v1 v1 m1 m2
'
2m1 v v1 m1 m2
理论力学经典-碰撞PPT课件

最后得到碰撞后,二飞船的速度分别为
vA= 0.09i 50.03j0.02 km, /s vB= 0.28im 5 /s
vA = x0 .0. m 9, 5v /B s = x0 .2m 8295/s
请注意:
1、乒乓球在运动的过程中发生了几次碰撞?
2、这种碰撞具有. 什么特点?
30
1、 主要是来球和回球方向两次碰撞。
2、 摩擦力的作用,使球发生旋转,回球碰撞台面后的速度大于
球拍击出的速度。
.
31
来球与球拍的碰撞-挥拍击来球, 球受 FN1 和 F1 两个力。 FN1 为法向正 压力; F1 为摩擦力。而且,F1> FN1 。碰撞后,球在前进的同时发生旋转。
应用刚体平面运动的积分形式
m v 1 x v 1 x Ix e0 F 1 x F N 1 xd t
例题3
mB
vB
mA
vA
B
A
m A1 8 13k 0, gm B6.613k 0; g 在惯性v参 A = 0.2 考 0 i0.0 系 j3 0.中 0k2 m : , /vsB0
求:1.对接成功后,联合体的质心速度; 2.对接不成功,恢复系数e=0.95,碰撞后二者的速度。
(以上分析中均可略. 去飞船的转动)
对于球B
kII1 2m m B Bv vB vB vv vB vB v
k I2 vB vA
I1. vA vB
16
对于球A与固定平面的正碰撞情形
k I2 vB vA I1 vA vB
AA
vBvB0
,kI2vA I1 vA
h2 h1
vAv'A
vA2g1h , vA2g2h
B
vA= 0.09i 50.03j0.02 km, /s vB= 0.28im 5 /s
vA = x0 .0. m 9, 5v /B s = x0 .2m 8295/s
请注意:
1、乒乓球在运动的过程中发生了几次碰撞?
2、这种碰撞具有. 什么特点?
30
1、 主要是来球和回球方向两次碰撞。
2、 摩擦力的作用,使球发生旋转,回球碰撞台面后的速度大于
球拍击出的速度。
.
31
来球与球拍的碰撞-挥拍击来球, 球受 FN1 和 F1 两个力。 FN1 为法向正 压力; F1 为摩擦力。而且,F1> FN1 。碰撞后,球在前进的同时发生旋转。
应用刚体平面运动的积分形式
m v 1 x v 1 x Ix e0 F 1 x F N 1 xd t
例题3
mB
vB
mA
vA
B
A
m A1 8 13k 0, gm B6.613k 0; g 在惯性v参 A = 0.2 考 0 i0.0 系 j3 0.中 0k2 m : , /vsB0
求:1.对接成功后,联合体的质心速度; 2.对接不成功,恢复系数e=0.95,碰撞后二者的速度。
(以上分析中均可略. 去飞船的转动)
对于球B
kII1 2m m B Bv vB vB vv vB vB v
k I2 vB vA
I1. vA vB
16
对于球A与固定平面的正碰撞情形
k I2 vB vA I1 vA vB
AA
vBvB0
,kI2vA I1 vA
h2 h1
vAv'A
vA2g1h , vA2g2h
B
6.3碰撞(1)8882346页PPT

碰撞力(瞬时力):在碰撞过程中出现的数值 很大的力称为碰撞力;由于其作用时间非常短促, 所以也称为瞬时力。
24.05.2020
14
设榔头重10N,以v1=6m/s的速度撞击铁块,碰撞时间
=1/1000s , 碰撞后榔头以v2=1.5m/s的速度回跳。求榔头打
击铁块时力的平均值。
锤的平均加速度:
a )v 2 ( v 1 ) 1 .5 6 7 5 0 0 m /s2 0 .0 0 1
0<e<1 部分弹性碰撞:变形不能完全恢复。
e=1 完全弹性碰撞:无能量损耗,变形可完全恢复;
e=0 完全塑性碰撞:能量完全损耗,变形完全不能恢复。
24.05.2020
23
二、用于碰撞过程的动力学定理 1. 用于碰撞过程的动量定理
p 2p 1IR e Iie m v C 2 m v C 1 IR e I ie
不利因素:机械、仪器及其它物品由于碰撞而 造成损坏等。 有利方面:利用碰撞进行工作,如锻打金属, 用锤打桩等。
24.05.2020
16
近4年全国道路交通事故基本情况
年份 道路交通 事故数(起)
06 51,572
死亡 人数 7,806
受伤 人数 50,697
直接经济损 失(亿)
3
07 327,209 81,649 380,442
12
08 265,204 73,484 304,919
10.1
09 238,351 67,759 275,125
9.1
24.05.2020
17
1912年4月10日,号称永不沉没的超级巨轮“泰坦尼克号”由 英国往纽约处女航,在大西洋洋面行驶时因与冰山发生碰撞 而沉没,造成船上2235人中的1522人丧身.
24.05.2020
14
设榔头重10N,以v1=6m/s的速度撞击铁块,碰撞时间
=1/1000s , 碰撞后榔头以v2=1.5m/s的速度回跳。求榔头打
击铁块时力的平均值。
锤的平均加速度:
a )v 2 ( v 1 ) 1 .5 6 7 5 0 0 m /s2 0 .0 0 1
0<e<1 部分弹性碰撞:变形不能完全恢复。
e=1 完全弹性碰撞:无能量损耗,变形可完全恢复;
e=0 完全塑性碰撞:能量完全损耗,变形完全不能恢复。
24.05.2020
23
二、用于碰撞过程的动力学定理 1. 用于碰撞过程的动量定理
p 2p 1IR e Iie m v C 2 m v C 1 IR e I ie
不利因素:机械、仪器及其它物品由于碰撞而 造成损坏等。 有利方面:利用碰撞进行工作,如锻打金属, 用锤打桩等。
24.05.2020
16
近4年全国道路交通事故基本情况
年份 道路交通 事故数(起)
06 51,572
死亡 人数 7,806
受伤 人数 50,697
直接经济损 失(亿)
3
07 327,209 81,649 380,442
12
08 265,204 73,484 304,919
10.1
09 238,351 67,759 275,125
9.1
24.05.2020
17
1912年4月10日,号称永不沉没的超级巨轮“泰坦尼克号”由 英国往纽约处女航,在大西洋洋面行驶时因与冰山发生碰撞 而沉没,造成船上2235人中的1522人丧身.
理论力学PPT课件第6章 6.3碰撞46页PPT

1987年12月20日,“多纳帕斯号”(设计载人:608人,经改装 后可载人:1518人,实际载人:3000人),在往马尼拉方向行驶 时因与油轮相撞而起火,造成船上3000人几乎丧身.
2019/10/8
19
2. 研究碰撞的基本假设:
(1) 在碰撞过程中,重力、弹性力等非碰撞力与碰撞力相比 小得多,其作用可以忽略不计。但必须注意,在碰撞前和 碰撞后,非碰撞力对物体运动状态的改变作用不可忽略。 (2) 由于碰撞时间极短,而速度又是有限量,所以物体在 碰撞过程的位移很小,可以忽略不计,即认为物体在碰撞 开始时和碰撞结束时的位置相同。
v1
v2
u1
u2
取整体,由冲量守恒,有 m 1 v 1 m 2 v 2 m 1 u 1 m 2 u 2 以及:e u2 u1 v1 v2
2019/10/8
31
u1v1(1e)m 1m 2m 2(v1v2)v1
u2v2(1e)m 1m 1m 2(v1v2)v2
2. 用于碰撞过程的冲量矩定理
L O 2 L O 1 M 0 e M 0 ( I i e )
2019/10/8
25
用于定轴转动刚体碰撞时的微分方程积分形式
J O z2 J O z1 M O e z =m O z ( I i e )
用于平面运动刚体碰撞时的微分方程积分形式
T= m1m2
2m1 m2
v12=1T1m1
m2
说明系统损失的动能与两物体的质量比有关。
2019/10/8
34
工程应用:
T=
T1
1 m1
m2
(1) 打桩时,希望桩获得尽可能多的动能,去克服土
壤给桩的阻力,这就要求损失的动能越少越好。这时
2019/10/8
19
2. 研究碰撞的基本假设:
(1) 在碰撞过程中,重力、弹性力等非碰撞力与碰撞力相比 小得多,其作用可以忽略不计。但必须注意,在碰撞前和 碰撞后,非碰撞力对物体运动状态的改变作用不可忽略。 (2) 由于碰撞时间极短,而速度又是有限量,所以物体在 碰撞过程的位移很小,可以忽略不计,即认为物体在碰撞 开始时和碰撞结束时的位置相同。
v1
v2
u1
u2
取整体,由冲量守恒,有 m 1 v 1 m 2 v 2 m 1 u 1 m 2 u 2 以及:e u2 u1 v1 v2
2019/10/8
31
u1v1(1e)m 1m 2m 2(v1v2)v1
u2v2(1e)m 1m 1m 2(v1v2)v2
2. 用于碰撞过程的冲量矩定理
L O 2 L O 1 M 0 e M 0 ( I i e )
2019/10/8
25
用于定轴转动刚体碰撞时的微分方程积分形式
J O z2 J O z1 M O e z =m O z ( I i e )
用于平面运动刚体碰撞时的微分方程积分形式
T= m1m2
2m1 m2
v12=1T1m1
m2
说明系统损失的动能与两物体的质量比有关。
2019/10/8
34
工程应用:
T=
T1
1 m1
m2
(1) 打桩时,希望桩获得尽可能多的动能,去克服土
壤给桩的阻力,这就要求损失的动能越少越好。这时
碰撞(公开课)ppt

3. 完全非弹性碰撞:碰撞中能量损失最大 碰撞之后两物体结合到一起,以共同速度运动
即:动量守恒,动能不守恒
三、对心碰撞与非对心碰撞 1、对心碰撞——正碰:
碰前运动速度与两球心连线处于同一直线上
2、非对心碰撞——斜碰: 碰前运动速度与两球心连线不在同一直线上
【设问】斜碰过程满足动量守恒吗?为什么?如图, 能否大致画出碰后A球的速度方向?
② 若m1>m2 , 则v1’>0;且v2’一定大于0
若m1<m2 , 则v1’<0;且v2’一定大于0
③若 m2>>m1 , 则v1’= -v1 , v2’=0 .
④ 若 m1 >> m2 , 则v1’= v1,v2’=2v1 .
小结:质量相等,交换速度; 大碰小,一起跑;小碰大,要反弹
2. 非弹性碰撞:碰撞中有能量损失 即:动量守恒,动能不守恒
按能量损失的情况分
斜碰
弹 性 碰 撞 : 动量守恒,动能没有损失
非 弹 性 碰 撞 : 动量守恒,动能有损失 完全非弹性碰撞: m1v1+m2v2=(m1+m2)v
,动能损失最大
1、现有AB两滑块,质量分别为3m和m,以相同的 速率v在光滑水平面上相向运动,发生了碰撞, 已知碰撞后,A静止不动,则这次碰撞是()
• 以v2=0.8m/s 的初速度水平向右运动, (取g= 10m/s2)求:
• (1)物块和小车相对静止时,物块和小车的速度 大小和方向
• (2)为使物块不从小车上滑下,小车的长度L至
少多大?
v1
m
M v2
解:(1)木块先向左匀减速运动到0,再匀加 速运动到共同速度V
由动量守恒定律 V=0.4m/s
即:动量守恒,动能不守恒
三、对心碰撞与非对心碰撞 1、对心碰撞——正碰:
碰前运动速度与两球心连线处于同一直线上
2、非对心碰撞——斜碰: 碰前运动速度与两球心连线不在同一直线上
【设问】斜碰过程满足动量守恒吗?为什么?如图, 能否大致画出碰后A球的速度方向?
② 若m1>m2 , 则v1’>0;且v2’一定大于0
若m1<m2 , 则v1’<0;且v2’一定大于0
③若 m2>>m1 , 则v1’= -v1 , v2’=0 .
④ 若 m1 >> m2 , 则v1’= v1,v2’=2v1 .
小结:质量相等,交换速度; 大碰小,一起跑;小碰大,要反弹
2. 非弹性碰撞:碰撞中有能量损失 即:动量守恒,动能不守恒
按能量损失的情况分
斜碰
弹 性 碰 撞 : 动量守恒,动能没有损失
非 弹 性 碰 撞 : 动量守恒,动能有损失 完全非弹性碰撞: m1v1+m2v2=(m1+m2)v
,动能损失最大
1、现有AB两滑块,质量分别为3m和m,以相同的 速率v在光滑水平面上相向运动,发生了碰撞, 已知碰撞后,A静止不动,则这次碰撞是()
• 以v2=0.8m/s 的初速度水平向右运动, (取g= 10m/s2)求:
• (1)物块和小车相对静止时,物块和小车的速度 大小和方向
• (2)为使物块不从小车上滑下,小车的长度L至
少多大?
v1
m
M v2
解:(1)木块先向左匀减速运动到0,再匀加 速运动到共同速度V
由动量守恒定律 V=0.4m/s
001碰撞ppt 30张

6、完全非弹性碰撞:
V1 V2
光滑
m1 v1 m 2 v 2 (m1 m 2 )v 1 1 1 2 2 m1 v1 m 2 v 2 (m1 m 2 )v 2 Ek max 2 2 2
碰撞的分类
正碰
按碰撞前后速度方向的关系分 按能量损失的情况分
斜碰
弹 性 碰 撞 : 动量守恒,动能没有损失 非 弹 性 碰 撞 : 动量守恒,动能有损失 完全非弹性碰撞: m1v1+m2v2=(m1+m2)v, 动能损失最大
B
B.动量不守恒,机械能不守恒
C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒
5.(多选)如图甲所示,在光滑水平面上的两小球发生正
碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的s-
t(位移—时间)图象.已知m1=0.1 kg.由此可以判断(
C
)
A.碰前m2静止,m1向右运动 B.碰后m2和m1都向右运动 C.m2=0.3 kg
求:(1)滑块A与滑块B碰撞结束瞬间的速度;
(2)被压缩弹簧的最大弹性势能.
【解析】(1)滑块A下滑过程中机械能守恒,设A到达水平面
时速度为v1,由机械能守恒定律有
m A gh
A、B碰撞过程中动量守恒,设滑块A与滑块B碰撞结束瞬间
1 m A v12 , 解得v1 2gh 2
的速度为v2,由动量守恒定律有
' m1v1 m2 v2 m1v1' m2 v2
弹性碰撞中没有机械能损失
1 1 1 1 2 2 '2 ' 2 m1v1 m2 v 2 m1v1 m2 v 2 2 2 2 2
2m2 v2 m1 m2 v1 v m1 m2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由上式可见 当 2a 1 0 3l 2
IOx 0
此时撞于撞击中心 由上式得 l 4a 3
vAy
vC y
1 2
cos
2
v sin
vC y
1 2
2
cos
2
6v sin 2 (1 3cos2 )l
如图,均质圆柱体A半径为r,质量为m,可沿水平面作纯滚 动。在其质心A上用铰链悬连了长为l,质量为m的均质杆 AB。初瞬时系统静止。质量为m0的子弹以速度v1水平射入 杆内,以速度v2穿出,求碰撞后圆柱体质心A的速度。
t1
3. 相对于质心的冲量矩定理
LC2 LC1 mC (Ii(e) )
4.刚体平面运动的碰撞方程
对于平行于其对称面的平面运动刚体
mvvC mvvC
n
v I (e)
i
i 1
v
JC2 JC1 MC (Ii(e) )
--刚体平面运动的碰撞方程
例 12-6
已知 m1, v1, v2, h, AB=l, mAB=m2 ,求:θ
(v1
v2 )
如果 m1 m2 则 v1 v2 ,v2 v1
即两物体在碰撞结束时交换了速度
当两物体做塑性碰撞时,即k=0,有
v1
v2
m1v1 m2v2 m1 m2
即碰撞结束时两物体速度相同,一起运动
碰撞过程中的动能损失
T1
1 2
m1v12
1 2
m2v22 ,T2
1 2
m1v12
1 2
m2v22
例12-9
均质杆质量为m,长为2a,其上端由圆柱铰链固定,
杆由水平位置无初速地落下,撞上一固定的物块,设恢 复因数为k.
求(1)轴承的碰撞冲量
(2)撞击中心的位置
解: 应用动能定理:
1 2
J O12
0
mga
由恢复因数 k vn 2l 2 vn 1l 1
1
2mga JO
3g 2a
2 k1
推论 a) 普通力的冲量忽略不计 b) 碰撞过程中,物体的位移忽略不计.
§12-5 用于碰撞过程的基本定理
1.冲量定理
K2 K1
I(e) i
2. 冲量矩定理
t2
t2
LO2 LO1
mO (Fi(e) )dt
mO (Fi(e) )dt
t1
t1
t2
mO ( Fi(e)dt) mO (Ii(e) )
T
T1
T2
1 2
m1 (v12
v12 )
1 2
m2 (v22
v22 )
1 2
m1 (v1
v1)(v1
v1)
1 2
m2 (v2
v2 )(v2
v2
)
T
T1
T2
m1m2 2(m1 m2 )
(1
k 2 )(v1
v2 )2
(d)
在理想情况下 k=1 T T1 T2 0
在塑性碰撞时 k=0 动能损失为
m0 (v0 v1) JC
(h
l2 ) 2
Hale Waihona Puke 6m0 (v0 ml 2v1 )
( 2h l2
1)
3. 分析AB杆运动
vB vC vBC
vB
vC
AB
l2 2
m0 (v0 v1) ml2
1
6
h l2
1 2
例12-7 另解
1. 研究 m0+AB
2. Ix 0
m0v0 m0v1 mvC
恢复因数的试验测定
v 2gh1
v 2gh2
恢复因数
k v h2 v h1
斜碰撞: 此时定义恢复因数为 k vn vn
光滑碰撞
vn tan vn tan
k vn tan vn tan
例12-5
两物体的质量分别为 和m1 ,m恢2 复因数为k,产生对心正碰
撞. 求:碰撞结束时各自质心的速度和碰撞过程中动能的损失.
mO(I) 0
m0v0
(h
l1)
m0 v1(h
l1)
J C AB
mvC
(l1
l2 2
)
m0 (v0
v1)h
JCAB
mvC
l2 2
AB
m0 (v0 v1) JC
(h
l2 ) 2
6m0 (v0 ml 2
v1 )
( 2h l2
1)
5.恢复因数
v k v
常数k 称为恢复因数
0<k<1---弹性碰撞 k=1---完全弹性碰撞 k=0---非弹性碰撞或塑性碰撞
解:1. 碰撞过程,研究 m1+mAB
LA2 LA1 mA(I) 0
LA1 m1v1h
LA2 m2v2h J AAB
AB
1 JA
m1v1
m1v2 h
m1h JA
v1
v2
2. 碰撞后的摆动过程,研究 AB杆
T1
1 2
J
A
2 AB
T2 0
W12
1 2
m2 gl(1
cos )
mCy mCy I y JC2 JC1 MC (I(e) )
整理
I x 0 有 vC x vCx v cos
mvC y mv sin I
1 12
ml 22
I
l 2
cos
碰撞条件
k vAy vAy 1
vAy v sin
选质心为基点,有 vA vC vAC
沿y轴投影,有
T
T1
T2
m1m2 2(m1 m2 )
(v1
v2 )2
若 v2 0 则动能损失为
T
T1
T2
m1m2 2(m1 m2 )
v12
例12-8 均质细杆长l,质量为m,速度为 vv平行于杆,杆与地面成
θ角,斜撞于光滑地面,设为完全弹性碰撞.
求:撞后杆的角速度.
解:取杆为研究对象
mCx mCx Ix
§ 12-4 碰撞的分类·碰撞问题的简化
碰撞: 相对运动,瞬间接触,速度发生突然变化 碰撞时两物体间的相互作用力称为碰撞力
1.碰撞的分类
对心碰撞 偏心碰撞 正碰撞
斜碰撞
光滑碰撞 非光滑碰撞
完全弹性碰撞 弹性碰撞 塑性碰撞
2.碰撞问题的简化
t 0 v 为有限值
lim F t 为有限值
t 0
mC x mCx I x IOx mC y mCy I y IOy
因为 vC y vCy 0 IOx m(vC x vCx ) I x ,IOy I y
由此可见,一般情况下,在轴承处将引起碰撞冲量.
IOx m(vC x vCx ) Ix ,IOy I y
若令在轴承处引起的碰撞冲量=0. 则由
对点O的冲量矩定理为 J O2 J O1 Il
I
JO l
(2
1)
4ma 2 3l
(1 k)1
I 2ma (1 k) 6ag 3l
冲量定理
m(2a 1a) IOx I ,IOy 0
则
IOx ma(1 2 ) I I (1 k)am1
(1 k)m( 2a 1) 6ag 3l 2
解:取整体为研究对象 m1v1 m2v2 m1v1 m2v2
(a)
k v2 v1 v1 v2
(b)
v1 v2
v1
(1
k
)
m2 m1 m2
v2
(1
k
)
m1 m1 m2
(v1
v2
)
(v1
v2
)
(c)
在理想情况下, k=1,有
1
v1
2m2 m1 m2
(v1
v2 ),v2
v2
2m1 m1 m2
§12-9 碰撞冲量对绕定轴转动刚体的作用·撞击中心
1.定轴转动刚体受碰撞时角速度的变化
n
v
Lz2 Lz1 M z (Ii(e) )
i 1
即
n
v
J z2 J z1
M
z
(
I (e) i
)
i 1
角速度的变化为
v
2 1
M z (Ii(e) ) Jz
2.支座的反碰撞冲量·撞击中心
应用冲量定理有:
T2 T1 W12
cos
1
J
2
A AB
mAB gl
例 12-7
已知 h, m0, v0, v1, OA=l1, AB=l2,mAB=m, 求碰撞后B点的速度
解:1. 研究 m0 m0 (v1 v0 ) I
2. 研究 AB杆
mvC I
JCAB
I
(h
l2 2
)
vC
m0 m
v0
v1
AB
IOy 0
Iy 0
即要求外碰撞冲量与y轴垂直即 I必须垂直于
支点O与质心C的连线。由
IOx 0
m(vC x vCx ) I x I
设质心C到轴O的距离为a
vC x vCx 式中l=OK
a(2
1)
aIl Jz
点K是外碰撞冲量
I的作用线与OC
的交点
l Jz ma
IOx 0
此时点K 称为撞击中心